Применение сепараторов для эффективной очистки теплоносителя

Сепараторы для дегазации и удаления шлама, описание их конструкции и особенности установки. Механизмы извлечения газов и твердых частиц. Сепараторы с магнитными ловушками. Эффект глубокой очистки от шлама и дегазации системы с помощью сепараторов.

Рубрика Физика и энергетика
Вид доклад
Язык русский
Дата добавления 27.02.2017
Размер файла 2,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Применение сепараторов для эффективной очистки теплоносителя

Введение

Известно, что при запуске систем отопления большие проблемы вызывают остающиеся внутри воздушные полости и циркулирующие в потоке твердые частицы или шлам. Наличие воздушных полостей и пробок автоматически означает высокую концентрацию растворенных газов в воде, что может вызвать усиление процессов коррозии и эрозии, проблемы с кавитацией, снижение эффективности работы насосов, арматуры и теплообменников. Наличие газов в свою очередь стимулирует появление твердых частиц в теплоносителе. Оседая в местах с наименьшей скоростью, слои частиц резко снижают эффективность теплопередачи. Попадая в насосы и регулирующую арматуру, они быстро выводят оборудование из строя. Процессы коррозии под слоем отложившегося шлама трудно затормозить. Если учесть, что при периодической остановке систем на профилактику на дне трубопроводов оседают тонны частиц, этот процесс каждый раз создает новые источники язвенной коррозии.

Существующие в настоящее время методы и оборудование направлены в большей степени на обработку воды, поступающей в систему /1/. При этом иногда не принимается во внимание, что системы не могут быть идеально герметичными, газовые потоки внутрь систем могут быть достаточно большими даже в закрытых системах, а дегазация крупных и сложных систем может занимать продолжительное время. В этом случае, как и в случае запуска, проблемы могут возникать и при нормальном качестве воды подпитки. Можно отметить также, что в случае ошибок при проектировании или настройке, в некоторых областях систем могут появляться участки отрицательных давлений. В этом случае создаются условия для возникновения устойчивых потоков газа в систему.

Принято считать, что в большинстве случаев установка достаточного количества воздухоотводчиков обеспечит дегазацию систем в процессе работы. Чтобы оценить эффективность их применения напомним, что газы в системе находятся в трех состояниях: в виде полостей, пузырьков и микропузырьков и в растворенном состоянии /2/. Работа воздухоотводчиков связана в основном с первой формой, т.к. только появление в верхней части воздухоотводчика значительного объема газа приводит в действие механизм его удаления. Основная масса пузырьков и микропузырьков идущая в потоке просто не успевает подниматься в камеру воздухоотводчика. Поэтому воздухоотводчики должны размещаться в верхних точках системы, в местах локальных возвышений и на радиаторах. В сложных системах необходимо устанавливать большое количество этих приборов. При этом воздухоотводчик наряду с расширительным баком является одним из самых уязвимых элементов. Практически все различия в конструкциях и ценах связаны с разной степенью надежности и защищенности воздухоотводчиков от блокирования их пузырьками или разгерметизации при попадании внутрь спускового механизма частиц грязи.

В сложных системах с большим количеством воздухоотводчиков, установленных в труднодоступных местах трудно проверить качество их работы. Низкая цена (и иногда качество) воздухоотводчиков зачастую не компенсирует трудоемкость обслуживания и потери от возникающих проблем. Не удаленные вовремя воздушные полости могут снова поглотиться водой при изменении режима работы системы, дополнительно стимулируя коррозию. Вытекание воды или попадание воздуха внутрь при разгерметизации воздухоотводчика может быстро вывести из строя любую систему. Автоматические поплавковые воздухоотводчики удаляют воздушные пробки и пузыри по мере их появления в автоматическом режиме /3/. Воздухоотводчики этого типа обеспечивают лучшую герметичность и лучше защищены от блокировки и разгерметизации при попадании в них грязи.

Устанавливаемые внутри контура системы грязевики, как правило, оснащены сетками с крупными ячейками. В противном случае они быстро забиваются, и циркуляционный поток может быть полностью блокирован. Таким образом, можно считать, что внутри системы, как правило, отсутствуют устройства, которые выполняют процессы тонкой очистки теплоносителя от шлама и его количество может расти в результате химических реакций или отслоения отложений.

1. Сепараторы для дегазации и удаления шлама

Рис.1 Сепаратор

Появившиеся в последние годы в РФ сепараторы начали производиться в Европе более 30 лет назад и стали стандартным элементом для дегазации и удаления шлама из систем отопления и водоснабжения. Кроме удаления пробок, сепараторы извлекают микропузырьки и частицы шлама из потока воды и объединяют в себе функции воздухоотводчиков, фильтров и деаэраторов. Сепараторы не требуют расходных материалов, энергии и сервисного обслуживания, работают несколько десятков лет, имеют простую и надежную конструкцию без движущихся частей.

Универсальный сепаратор представляет собой металлический цилиндр с воздухоотводчиком наверху, вентилем для сброса шлама внизу и неподвижным механическим сепарирующим элементом внутри (Рис.1). Элемент внутри сепаратора обеспечивает быструю транспортировку микропузырьков наверх и осаждение нерастворимых частиц внизу при прохождении потока воды через сепаратор. Автоматический поплавковый воздухоотводчик сепаратора выводит накапливающийся наверху воздух, а периодическое удаление шлама осуществляется вручную с помощью шарового вентиля внизу сепаратора. В обоих случаях система не разгерметизируется. При начальном заполнении системы водой большие воздушные пузыри быстро удаляются с помощью специального вентиля в корпусе воздухоотводчика. Сепараторы устанавливаются вертикально.

Сепараторы разных фирм, как правило, отличаются разным типом сепарирующих элементов. В сепараторах Пневматекс (Швейцария) в качестве такого элемента используются лепестковая спираль (спирали) с профилированной поверхностью из нержавеющей стали, установленная вертикально вдоль оси сепаратора ( Рис.1). Разными могут быть и механизмы извлечения газов и твердых частиц. Как правило, при этом используется гравитационный механизм осаждения частиц и возгонки пузырьков. Для усиления эффекта снижается скорость потока внутри сепаратора (увеличение поперечного сечения), производится ламинаризация потока. В некоторых моделях используется центробежный эффект при раскручивании потока внутри сепаратора. При использовании рабочих элементов с большой площадью включается механизм сорбции микропузырьков на поверхности с дальнейшим их слиянием в более крупные пузырьки и всплытием.

Диапазон применения сепараторов достаточно широк.

Например, промышленные сепараторы Пневматекс (типоразмеры DN 50 - 600 mm) способны обрабатывать потоки в диапазоне 5 - 2000 м3/ч. Корпуса промышленных сепараторов изготовляются из стали.

Латунные сепараторы для небольших объектов (типоразмеры DU 20 - 40 mm) обрабатывают потоки до 5 м3/ч. Все сепараторы из латуни собираются из базовых элементов и легко трансформируются.

2. Сепараторы с магнитными ловушками

Сепараторы Пневматекс с магнитными ловушками (DN 20 - DN 400 мм) улавливают нерастворимые примеси железа в воде намного эффективней, чем обычные сепараторы. Стержень (стержни) с мощным магнитом вставляется снизу снаружи в гильзу сепаратора и вынимается перед операцией вымывания шлама без нарушения герметичности системы. Магнитный стержень отделен стенками гильзы от воды и не требует очистки или защиты от коррозии. Гильза сделана из немагнитного материала, поэтому магнитные частицы быстро оседают вниз и затем шлам смывается через вентиль. Для эффективного вымывания вентиль смещен от центра (создание вихревого эффекта). Сепараторы с магнитными ловушками содержат также обычные сепарирующие элементы и обладают всеми свойствами дегазации и удаления немагнитных частиц, как и у обычных моделей сепараторов.

3. Эффективность применения и монтаж сепараторов

Для оптимальной работы сепараторов в качестве устройств дегазации необходимо учитывать, что сепараторы, обладая функциями воздухоотводчиков, улавливают также микропузырьки и механические частицы непосредственно из потока и удаляют их из системы. Скорость дегазации сепараторов на порядки превышает соответствующие характеристики воздухоотводчиков (Рис.2). Поскольку при достаточной скорости циркуляции поток воды может захватывать воздух из пробок и переносить его в виде микропузырьков по всей системе, установка в оптимальном месте даже одного сепаратора может обеспечить быструю дегазацию системы.

Рис.2 Зависимость содержания газа в воде от времени при работе воздухоотводчиков в разных точках системы и сепаратора воздухоотводчика: 1 - на восходящем вертикальном потоке, 2 - на нисходящем, 3 - на горизонтали, 4 - сепаратор

Эффект глубокой очистки от шлама и дегазации системы с помощью сепараторов достигается за счет неоднократного прохождения жидкости через сепаратор при циркуляции. Таким образом, сепараторы используются только в циркуляционных схемах. Их гидравлическое сопротивление невелико и в процессе работы практически не меняется т.к. при переполнении грязью нижней части сепаратора частицы просто перестают оседать и уносятся потоком.

Глубина дегазации зависит от грамотного выбора места инсталляции сепараторов /4, 5/. Эффективность применения сепараторов для дегазации увеличивается при снижении давления и увеличении температуры в точках их размещения. Сепараторы для дегазации рекомендуется устанавливать после источников тепла в системах отопления либо в нагретом обратном потоке в системах охлаждения в наиболее высоких точках (Рис.3 сепаратор ZIO.S справа). Так как сепараторы удаляют воздух, находящийся в микропузырьковом состоянии, для дегазации системы их необходимо устанавливать только в тех зонах, где возможно образование микропузырьков. Таким образом, сепараторами полностью решается проблема завоздушивания и шумов, снижается скорость коррозии. Если скорость коррозии невелика, сепараторы могут удалять значительный объем кислорода. сепаратор магнитный дегазация шлам

Конечная концентрация газов в системе будет близка к величине равновесной концентрации газов в точке установки сепаратора при данных температуре и давлении. Нужно отметить, что из-за универсальных механизмов своей работы сепараторы удаляют все свободные газы, независимо от их химических свойств.

Сепараторы шлама обычно устанавливаются перед прибором, который надо защитить от грязи или в начале контура циркуляции (Рис.3, сепаратор ZIO слева от котла).

При достаточной скорости циркуляции, когда большая часть нерастворимых частиц переносится в потоке, можно добиться быстрой и практически полной очистки от шлама всей системы. Удаление шлама также снижает скорость коррозии, т.к. исключаются очаги ее образования.

Рис.3 Оптимальное расположение сепараторов в закрытой системе отопления

При использовании различных средств защиты от коррозии и образования отложений или в процессе работы системы старые слои могут отслаиваться, или образовываться новые частицы. В этом случае установка в циркуляционном контуре любых фильтров связана с риском быстрой и неожиданной блокировки циркуляционного потока, даже если используются дорогостоящие промывные фильтры с автоматическим контролем.

С помощью сепараторов можно добиться удаления шлама с размером частиц до 5 - 10 мкм. Скорость и глубина очистки растет с уменьшением скорости потока теплоносителя, увеличением размера частиц и их плотности. На Рис.4 представлены кривые степени очистки теплоносителя от твердых частиц (окислы железа) от количества циклов для двух скоростей потоков. Видно, что для очистки системы на 90 или более процентов достаточно 15-20 циклов (при скорости 1 м/c). При скорости потока 0,5 м/c скорость и глубина очистки существенно выше.

Рис. 4 Степень очистки от механических частиц сепаратором (скорость потока 1 м/c, 0,5 м/c) в зависимости от количества циклов прохождения потока через контур

На Рис.5 представлен сепаратор ZIO 300 S (DN 300) для защиты котельной 12 МВт от шлама (Томск). На Рис.6 представлен сепаратор ZIK 400 F (DN 400) установленный в ЦТП университета г. Абердин (Великобритания).

Рис.5 Сепаратор шлама ZIO 300 S

Рис.6 Комбинированный сепаратор ZIK 400 F

Таким образом, сепараторы на сегодняшний день являются наиболее простым и эффективным устройством, удаляющим газы и шлам из циркуляционных контуров без разгерметизации систем и риска блокировки циркуляционного потока.

Литература

1. Слепченок В.С. “Пути борьбы с кислородной внутренней коррозией”, Новости Теплоснабжения, №4 (апрель), 2005

2. Федоров С.А. “Пути попадания газов в системы отопления и некоторые особенности деаэрации”, СОК, №4, 2007

3. John Siegenthaler "Modern Hydronic Heating“, 1995, p.437

4. Федоров С.А. “Дегазация и удаление шлама - рецепт нормальной работы систем теплоснабжения”, Новости Теплоснабжения, №12, 2006

5. Федоров С.А. “Дегазация и удаление шлама с помощью сепараторов”, АВОК, №7, 2006

Размещено на Allbest.ru

...

Подобные документы

  • Обзор методов очистки дымовых газов тепловых электростанций. Проведение реконструкции установки очистки дымовых газов котлоагрегата ТП-90 энергоблока 150 МВт в КТЦ-1 Приднепровской ТЭС. Расчет скруббера Вентури для очистки дымовых газов котла ТП-90.

    дипломная работа [580,6 K], добавлен 19.02.2015

  • Метод высокоточной гелиевой дефектоскопии. Растворимость гелия в кристаллах с дефектами вакансионного типа. Схема термодесорбционной установки, методика измерений. Система вакуумирования, калибровки масс-спектрометра, контроля температуры ячеек насыщения.

    контрольная работа [1,4 M], добавлен 03.12.2014

  • Математическая модель и решение задачи очистки технических жидкостей от твердых частиц в роторной круговой центрифуге. Система дифференциальных уравнений, описывающих моделирование процесса движения твердой частицы. Физические характеристики жидкости.

    презентация [139,6 K], добавлен 18.10.2015

  • Понятие и функциональные особенности системы очистки продувочной воды 1-го контура, ее технологическая схема, направления взаимодействия со смежными системами. Режимы работы, опробование и испытание, контроль и управление исследуемой системой очистки.

    курсовая работа [287,4 K], добавлен 14.10.2013

  • Силы, действующие на частицу, осаждающуюся в гравитационном поле. Скорость осаждения твердых частиц под действием силы тяжести в зависимости от диаметра частиц и физических свойств частицы и жидкости. Описание установки, порядок выполнения работ.

    лабораторная работа [275,9 K], добавлен 29.08.2015

  • Топливно-энергетический комплекс как источник загрязнения атмосферы. Характеристика технологического и пылегазоочистного оборудования. Определение эффективности очистки газов от полидисперсных частиц пыли последовательно включенными пылеуловителями.

    курсовая работа [1,4 M], добавлен 13.01.2014

  • Характеристика котельной, параметры работы котла и топлива. Требования к автоматизации и контролю золоулавливающей установки. Выбор оптимальной системы золошлакоудаления для котельной, сжигающей твердое топливо. Расчет себестоимости очистки газов.

    курсовая работа [514,3 K], добавлен 23.07.2011

  • Описание конструкции котла. Расчет продуктов сгорания, объемных долей трехатомных газов и концентраций золовых частиц в газоходах котла. Определение расхода топлива. Коэффициент полезного действия котла. Расчет температуры газов на выходе из топки.

    курсовая работа [947,7 K], добавлен 24.02.2023

  • Краткое описание котельного агрегата ДКВР-6,5-13. Выбор водоподготовительного оборудования. Теплообменники, сепараторы непрерывной продувки. Принципиальная схема газоснабжения котельной. Автоматика безопасности котла. Отопление и вентиляция помещения.

    курсовая работа [3,3 M], добавлен 09.09.2014

  • Определение предварительного расхода пара на турбину. Расчет установки по подогреву сетевой воды. Построение процесса расширения пара. Расчёт сепараторов непрерывной продувки. Проверка баланса пара. Расчёт технико-экономические показателей работы станции.

    курсовая работа [1,8 M], добавлен 16.10.2013

  • Электрификация производственных процессов на участке твердых сплавов, расчет электрического освещения и облучения. Расчет внутренних сетей. Описание изобретения для смешивания сыпучих материалов. Меры безопасности при обслуживании установки, охрана труда.

    курсовая работа [1,5 M], добавлен 20.01.2010

  • Природа явления, свойства, способы получения и использование сжиженных газов. Безопасный метода Линде, эффективный метод Клода, исследование свойств при нулевой температуре с помощью сжиженных газов. Применение газов в промышленности, медицине.

    реферат [303,8 K], добавлен 23.04.2011

  • Расчет выброса и концентрации загрязняющих веществ в атмосферу при сжигании топлива в котельных агрегатах и высоты источника рассеивания. Определение системы подавления вредных веществ и системы очистки дымовых газов в зависимости от вида топлива.

    реферат [54,3 K], добавлен 16.05.2012

  • Взаимосвязь параметров теплоносителя и рабочего тела, их влияние на показатели ядерной энергетической установки. Определение температуры теплоносителя на входе и выходе ядерного реактора. Общая характеристика метода определения параметров рабочего тела.

    контрольная работа [600,3 K], добавлен 18.04.2015

  • Описание конструкции котла. Общие характеристики топлива; коэффициенты избытка воздуха. Расчет объемов продуктов сгорания, доли трехатомных газов и концентрации золовых частиц. Тепловой расчет пароперегревателя, поверочный расчет водяного экономайзера.

    курсовая работа [364,8 K], добавлен 27.05.2015

  • Описание реальных газов в модели идеального газа. Особенности расположения молекул в газах. Описание идеального газа уравнением Клапейрона-Менделеева. Анализ уравнения Ван-дер-Ваальса. Строение твердых тел. Фазовые превращения. Диаграмма состояния.

    реферат [1,1 M], добавлен 21.03.2014

  • Преимущества технологии термоудара. Пиролизная установка по переработке угля. Системы очистки воды. Переработка твердых бытовых отходов (биогаз). Проблема ограничения эмиссии метана в атмосферу из свалок бытовых отходов. Установка по уничтожению мусора.

    реферат [949,6 K], добавлен 01.07.2011

  • Измерение силы тока, проходящего через резистор. Закон сохранения импульса. Трение в природе и технике. Закон сохранения механической энергии. Модели строения газов, жидкостей и твердых тел. Связь температуры со скоростью хаотического движения частиц.

    шпаргалка [126,6 K], добавлен 06.06.2010

  • Содержание молекулярно-кинетической теории газов. Химический состав жидкости. Особенности межмолекулярного взаимодействия в данном агрегатном состоянии. Механические и тепловые свойства твердых тел. Практическое применение плазмы - ионизованного газа.

    контрольная работа [26,0 K], добавлен 27.10.2010

  • Исследование технических, химических и механических средств дезактивации и дезактивирующих растворов. Изучение способов удаления радиоактивных веществ с заражённой территории, сооружений, техники, одежды и воды. Метод лазерной очистки и дезактивации.

    реферат [55,3 K], добавлен 22.02.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.