Решение проблем деаэрации воды в теплоэнергетике

Ознакомление с недостатками работы типовых вакуумных деаэраторов. Рассмотрение способов решения проблемы деаэрации подпиточной воды на теплоэлектроцентрале с открытыми системами теплоснабжения. Исследование и характеристика проблемы кавитации насосов.

Рубрика Физика и энергетика
Вид статья
Язык русский
Дата добавления 27.02.2017
Размер файла 567,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Решение проблем деаэрации воды в теплоэнергетике

Зимин Б.А., инженер

Москва

Введение

В теплоэнергетике остается актуальной проблема деаэрации подпиточной воды тепловых сетей. Многие города в России имеют открытую систему теплоснабжения. Подпитка теплосети на некоторых ТЭЦ достигает 2-4 тыс. т воды в час. Для деаэрации воды используется морально устаревшая техника, созданная в первой половине или в середине 20-го века. Это атмосферные деаэраторы ДА и ДСА и вакуумные деаэраторы типа ДСВ - струйные и струйно-барботажные деаэраторы, работающие на экстенсивных принципах тепло- и массообмена между деаэрируемой водой и деаэрирующим агентом - паром. В вакуумных деаэраторах типа ДСВ-800 и ДСВ-400 в качестве деаэрирующего агента применяется вода, перегретая выше температуры кипения при расчетном вакууме. При снижении давления перегретая вода вскипает, образуя пар, который барботируется через слой деаэрируемой воды и контактирует в противотоке со струями деаэрируемой воды, диспергируемыми при прохождении дырчатых тарелок.

Недостатки работы типовых вакуумных деаэраторов ДСВ:

резкое снижение качества деаэрации при нагрузках деаэратора выше 50% (по общему потоку воды);

снижение качества деаэрированной воды при переменных нагрузках;

перерасход электроэнергии на перекачку греющей воды из теплосети и обратно в сеть через деаэраторы при снижении давления воды до атмосферного;

потери пара на обеспечение вакуума паровыми эжекторами;

высокие затраты труда на обслуживание и ремонт большого количества деаэраторов, работающих при малых нагрузках.

1. Реконструкция деаэраторов

Решение проблемы деаэрации подпиточной воды на ТЭЦ с открытыми системами теплоснабжения рассмотрим на примере ТЭЦ-5 г. Омска.

На ТЭЦ-5 установлено 8 вакуумных деаэраторов типа ДСВ (ДСВ-800 - 7 шт. и ДСВ-400 - 1шт.). Потери воды в теплосети составляют 1600 т/ч, которые должны восполняться деаэрируемой водой. В деаэраторы поступает 1600 т/ч деаэрируемой воды с температурой 20 ОС и 1400 т/ч греющей воды с температурой 100 ОС из теплосети. Суммарная производительность деаэраторов и общая подпитка теплосети составляет 3000 т/ч (53% деаэрируемой воды и 47% греющей). Температура деаэрированной воды - 57-62 ОС. Процесс деаэрации происходит при глубоком вакууме.

Специалистами ЗАО «Регион-Бизнес» (г. Москва) разработан проект реконструкции системы деаэрации подпиточной воды теплосети для ТЭЦ-5 (рис. 1), который включает в себя реконструкцию двух вакуумных деаэраторов ДСВ-800 с использованием изобретений автора: центробежно-вихревых деаэраторов (первая ступень деаэрации), капельных деаэраторов (вторая ступень деаэрации), системы обеспечения вакуума, контактных охладителей выпара (данные разработки подробно представлены в НТ № 1, 2001 г и № 1, 2006 г - прим. ред.).

Для осуществления этого проекта:

из деаэрационного бака деаэратора ДСВ-800 удаляют все устройства;

изготавливают и устанавливают над баком центробежновихревой деаэратор ДЦВ-800;

в верхней части бака устанавливают диспергаторы воды, поступающей в бак из ДЦВ-800;

на выпарном трубопроводе устанавливают подогреватель низкого давления в качестве охладителя выпара;

перед деаэратором устанавливают подогреватель деаэрированной воды, способный нагреть воду до 85 ОС.

Деаэрационная установка работает без подачи в деаэратор пара или греющей воды, т.е. на, так называемом, «начальном эффекте». Вода вскипает, образуя выпар, с которым удаляются агрессивные газы. Схема реконструкции предусматривает также использование конденсата выпара в качестве обессоленной воды для паровых колов. Охлаждение воды в деаэраторе на 10 ОС за счет образования выпара обеспечивает 16 кг конденсата на каждую тонну деаэрированной воды.

В результате реконструкции достигается следующее:

вместо восьми деаэраторов в работе остаются только два. Подпитка теплосети через деаэраторы сокращается с 3000 до 1600 т/ч (за счет ликвидации рециркуляции сетевой воды из теплосети в деаэраторы). Происходит перераспределение потоков греющего пара без увеличения количества отбираемого от турбин пара;

повышается температура нагреваемой в деаэраторе воды до 85 ОС, вместо 50-65 ОС, что приведет к уничтожению бактерий, находящихся в подпиточной воде;

обеспечивается высокое качество деаэрированной воды;

деаэратор может работать, как агрегат двойного назначения (деаэрация воды и выработка конденсата, один деаэратор выработает 12800 кг/ч конденсата, два - 25600 т/ч. При повышении температуры деаэрируемой воды можно увеличить количество получаемого конденсата).

Другим примером эффективного решения проблемы деаэрации является реконструкция деаэрационной установки в Кировской районной котельной г. Омска в 2008 г. Неработающий сетевой атмосферный деаэратор ДСА-300 был реконструирован в вакуумный производительностью 600 т/ч по указанной ниже схеме (рис. 2).

Деаэрируемая вода нагревается до 85 ОС в паровом подогревателе 6, подается в ДЦВ-600 (первую ступень деаэрационной установки), где удаляется 98% агрессивных газов. Далее, частично деаэрированная вода, подается в капельный деаэратор 2, где удаляются остатки агрессивных газов (до значений ниже установленных норм). Деаэрация воды происходит за счет мгновенного испарения воды, перегретой выше температуры кипения, соответствующей вакууму в деаэраторе. Выпар поступает в контактный охладитель выпара (ОВК) 3, где конденсируется потоком деаэрируемой воды, поступающей из системы холодного водоснабжения. Из того же водопровода вода подается в водоструйный эжектор 5 (ЭВ-100 с расходом рабочей воды 100 т/ч). Вода из ОВК и из ЭВ-100 поступает в бак 8 (бак-га- зоотделитель), после которого насосом 7 подается в ДЦВ-600 через паровой подогреватель 6. Деаэрированная вода подается насосом 9 в аккумуляторные баки или непосредственно в обратный трубопровод теплосети.

После завершения реконструкции неудовлетворительно работавшие атмосферные форсуночные деаэраторы были отключены.

Ранее (в 2002 г.) аналогичная реконструкция сетевого атмосферного деаэратора в вакуумный с установкой ОВК, с увеличением производительности до 600 т/ч произведена на Черепетской ГРЭС (г. Суворов, Тульская область).

2. Решение проблемы кавитации насосов

Ранее проблема кавитации насосов, откачивающих деаэрированную воду из вакуумного деаэратора, решалась за счет установки деаэратора на отметке, превышающей отметку установки насоса на 14-17 м. Но в случае с деаэратором в Кировской котельной г Омска отметка установки деаэратора составила 5 м. Средний уровень воды в деаэраторном баке соответствует отметке 7 м. Всасывающий патрубок подпиточного насоса находился под вакуумом, что могло привести к кавитации и к прекращению подачи воды. Решение было найдено за счет рециркуляции 10% воды от нагнетательного патрубка насоса к рабочему колесу насоса. Трубопровод рециркуляции воды с соплом на конце был подведен к рабочему колесу насоса (рис. 3). Сопло разбивает воздушный или паровой пузырь перед рабочим колесом, что предотвращает завоздушивание или запаривание насоса (кавитацию). Такое решение позволяет работать откачивающему насосу при глубоком вакууме в баке-аккумуляторе деаэрационной установки, не поднимая бак на значительную высоту. деаэратор теплоэлектроцентраль кавитация

3. Ограничение области применения вакуумных деаэраторов

Согласно Постановлению Главного государственного санитарного врача РФ от 7 апреля 2009 г № 20 «Об утверждении СанПиН 2.1.4.2496-09» при открытой системе теплоснабжения деаэрация должна проводиться при температуре более 100 ОС. Данное постановление трактуется как запрет на проектирование и эксплуатацию вакуумных деаэраторов при открытой системе теплоснабжения, что наносит экономике страны огромный экономический ущерб. Большинство ТЭЦ имеют вакуумную систему деаэрации. Они должны или реконструировать систему водоподготовки, или отказаться от деаэрации подпиточной воды, что приведет к коррозионному разрушению трубопроводов тепловых сетей и значительным затратам на их ремонт.

Что могло послужить причиной выхода в свет такого постановления, и были ли на то причины?

Причины были. Например, в жилых домах возле котельной пос. Африканда Мурманской области (недалеко от АЭС в г. Полярные Зори) в 1999 г. при включении крана горячей воды можно было наблюдать, что из него вытекала жидкость, напоминающая в первые минуты деготь, затем воду серого цвета и только через несколько минут светлую воду.

В котельной с водогрейными котлами эксплуатировался вакуумный деаэратор ДСВ-100, осуществляющий нагрев деаэрируемой воды за счет смешения ее с греющей сетевой водой. Деаэрированная вода с температурой не более 60 ОС поступала в аккумуляторный бак, из которого подавалась потребителям. Насосы рециркуляции воды водогрейных котлов были демонтированы, что не позволяло держать температуру греющей воды за котлами выше, чем предусматривал график отпуска тепла 95/70 ОС (рециркуляционный насос позволяет, не нарушая температурного графика отпуска тепла, иметь большую температуру воды за котлом для работы деаэратора).

Из-за недостаточно высокой температуры деаэрированной воды в аккумуляторном баке развивались микроорганизмы, которые за несколько лет эксплуатации образовали на стенках бака колонии в виде черной грязи толщиной в несколько сантиметров. Эта грязь и попадала в систему ГВС.

Но даже в таких котельных можно эффективно решить все вопросы - восстановить рециркуляционные насосы и обеспечить достаточный нагрев воды для работы деаэраторов. Если бы вакуумные деаэраторы работали при температуре 80 ОС, то не образовался бы такой слой колоний микроорганизмов. Можно было бы обязать периодически дезинфицировать аккумуляторные баки горячей водой с температурой 100 ОС.

Другим примером (трагическим, но не показательным) является нарушение санитарно-эпидемиологических норм при подаче воды в систему ГВС в г. Верхняя Пышма летом 2007 г. в результате чего легионелезом было инфицировано 73 человека, пятеро скончались. Причиной стало нарушение технических регламентов и подача горячей воды с температурой ниже нормативной в трубопровод, который до этого был отключен от системы ГВС на срок 10 дней (деаэраторы в этом случае были не причем).

В большинстве же случаев причиной попадания микроорганизмов в систему горячего теплоснабжения являются не вакуумные деаэраторы, а аккумуляторные баки, эксплуатируемые без надзора. Микроорганизмы попадают в аккумуляторный бак с атмосферным воздухом, который заполняет его при периодическом опорожнении бака. Микроорганизмы осаждаются на стенках и размножаются, находясь над уровнем воды, когда и температура невысокая, и достаточно кислорода и влаги.

Следует заметить, что в атмосферных деаэраторах, несмотря на то, что они работают при температуре 104 ОС, деаэрируемую воду перед подачей в аккумуляторные баки охлаждают до 70-80 ОС, и микроорганизмы все равно могут развиваться в аккумуляторных баках, если их периодически не дезинфицировать.

Действительно ли при 80 ОС микроорганизмы не прекращают свое развитие и продолжают образовывать колонии? Если бы в Постановлении было указано 80 ОС вместо «более 100 ОС», это могло спасти прогрессивное направление деаэрации - вакуумную деаэрацию (но только при условии развития новых способов вакуумной деаэрации вместо устаревшей).

Для решения возникшей проблемы применения вакуумных деаэраторов предлагается следующее:

разрешить работу вакуумных деаэраторов для деаэрации воды в системах с открытым водоразбором с температурой нагрева деаэрируемой воды до 80-85 ОС;

обеспечить контроль наличия бактерий в системе теплоснабжения и периодическую дезинфекцию аккумуляторных баков;

восстановить (или установить) на водогрейных котлах рециркуляционные насосы, позволяющие повысить потенциал греющей воды для собственных нужд без нарушения температурного графика теплопотребления;

при отсутствии аккумуляторных баков деаэрированной воды не ограничивать степень нагрева воды перед вакуумными деаэраторами значением 80 ОС (можно снизить до 70 ОС, т.к. в нагретой до этой температуры проточной воде меньше микроорганизмов, чем в холодной водопроводной);

при решении вопроса понижения температуры воды в деаэраторах со 101 до 80 ОС учитывать, что часть теплосетей работают по температурному графику 150/70 ОС, т.е. независимо от температуры подпиточной воды, температура воды в теплосети в зимний и осенне-весенний период превышает 100 ОС.

Размещено на Allbest.ru

...

Подобные документы

  • Назначение деаэраторных установок современных электростанций. Классификация способов деаэрации воды и конструктивное выполнение деаэраторов. Конструкция деаэрационной колонки. Описание процесса деаэрации. Общие требования, предъявляемые к деаэраторам.

    реферат [221,6 K], добавлен 12.09.2013

  • Эффективность водяных систем теплоснабжения. Виды потребления горячей воды. Особенности расчета паропроводов и конденсатопроводов. Подбор насосов в водяных тепловых сетях. Основные направления борьбы с внутренней коррозией в системах теплоснабжения.

    шпаргалка [1,9 M], добавлен 21.05.2012

  • Исследование возможности и целесообразности утилизации теплоты, отводимой кристаллизатором и роликами. Рассмотрение и характеристика основных способов получения горячей воды в кристаллизаторе и роликах при существующей геометрии охлаждаемых каналов.

    дипломная работа [1,4 M], добавлен 10.07.2017

  • Расчет тепловых нагрузок на отопление сетевой и подпиточной воды, добавочной воды в ТЭЦ. Загрузка турбин, котлов и составляется баланс пара различных параметров для подтверждения правильности подбора основного оборудования. Выбор паровых турбин.

    курсовая работа [204,3 K], добавлен 21.08.2012

  • Исследование структурных свойств воды при быстром переохлаждении. Разработка алгоритмов моделирования молекулярной динамики воды на основе модельного mW-потенциала. Расчет температурной зависимости поверхностного натяжения капель воды водяного пара.

    дипломная работа [1,8 M], добавлен 09.06.2013

  • Физические и химические свойства воды. Распространенность воды на Земле. Вода и живые организмы. Экспериментальное исследование зависимости времени закипания воды от ее качества. Определение наиболее экономически выгодного способа нагревания воды.

    курсовая работа [1,4 M], добавлен 18.01.2011

  • Принцип работы тахометрического счетчика воды. Коллективный, общий и индивидуальный прибор учета. Счетчики воды мокрого типа. Как остановить, отмотать и обмануть счетчик воды. Тарифы на холодную и горячую воду для населения. Нормативы потребления воды.

    контрольная работа [22,0 K], добавлен 17.03.2017

  • Определение расходов на хозяйственно-питьевые нужды населенного пункта. Расчет на нужды местной промышленности и на неучтенные расходы. Определение расхода воды на пожаротушение в населённом пункте. Назначение режима работы насосов насосной станции.

    курсовая работа [82,8 K], добавлен 22.04.2014

  • Водоподготовка и организация водно-химического режима электростанции. Электростанции и предприятия тепловых сетей. Использование воды в теплоэнергетике. Оборудование современных электростанций. Методы обработки воды. Водно-химический режим котлов.

    реферат [754,8 K], добавлен 16.03.2009

  • Распространенность, физическая характеристика и свойства воды, ее агрегатные состояния, поверхностное натяжение. Схема образования молекулы воды. Теплоёмкость водоёмов и их роль в природе. Фотографии замороженной воды. Преломление изображения в ней.

    презентация [2,7 M], добавлен 28.02.2011

  • Описание технологической схемы водогрейной котельной с закрытой системой теплоснабжения. Энергобаланс системы за выбранный промежуток времени. Расчет потоков греющей воды, параметров потока после смешения и действия насосов. Тепловой баланс котла.

    курсовая работа [386,0 K], добавлен 27.05.2012

  • Обоснование выбора способов обработки добавочной воды котлов ТЭЦ в зависимости от качества исходной воды и типа установленного оборудования. Методы коррекции котловой и питательной воды. Система технического водоснабжения, проведение основных расчетов.

    курсовая работа [489,6 K], добавлен 11.04.2012

  • Потери тепла, их основные причины и факторы. Классификация и типы систем теплоснабжения, их характеристика и функциональные особенности: централизованные и децентрализованные, однотрубные, двухтрубные и бифилярные. Способы циркуляции воды в теплосети.

    научная работа [1,3 M], добавлен 12.05.2014

  • Принцип работы и конструкция лопастного ротационного счетчика количества воды. Определение по счетчику объема воды, поступившей в емкость за время между включением и выключением секундомера. Расчет относительной погрешности измерений счетчика СГВ-20.

    лабораторная работа [496,8 K], добавлен 26.09.2013

  • Понятие и функциональные особенности системы очистки продувочной воды 1-го контура, ее технологическая схема, направления взаимодействия со смежными системами. Режимы работы, опробование и испытание, контроль и управление исследуемой системой очистки.

    курсовая работа [287,4 K], добавлен 14.10.2013

  • Исторические сведения о воде. Круговорот воды в природе. Виды образования от разных изменений. Скорость обновления воды, ее типы и свойства. Вода как диполь и растворитель. Вязкость, теплоемкость, электропроводность воды. Влияние музыки на кристаллы воды.

    реферат [4,6 M], добавлен 13.11.2014

  • Описание и расчёт тепловой схемы АТЭЦ-2, выбор и расчет турбин, энергетических котлов. Электрическая часть станции. Охрана труда на АТЭЦ-2. Мероприятия по изменению водно-химического режима с помощью реагента СК-110, расчет эффективности установки.

    дипломная работа [844,5 K], добавлен 24.08.2009

  • Параметры наружного воздуха. Расчет нагрузок потребителей теплоты. Выбор системы теплоснабжения. Определение расходов сетевой воды. Построение пьезометрического графика. Температурный график регулирования закрытой независимой системы теплоснабжения.

    курсовая работа [321,4 K], добавлен 23.05.2014

  • Определение массы и объёма воды, вытекающей из крана за разные промежутки времени. Расчет количества теплоты, необходимого для нагрева воды с использованием различных энергоресурсов. Оценка материальных потерь частного потребителя воды и электроэнергии.

    научная работа [130,8 K], добавлен 01.12.2015

  • Изучение расхода технической воды для конденсации отработавшего пара на электростанциях. Рассмотрение схем прямоточного и оборотного водоснабжения. Понятие градирни, их классификация и принципы работы. Основные правила выбора циркуляционных насосов.

    презентация [6,0 M], добавлен 08.02.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.