Управление ресурсом оборудования электростанций, как инструмент прогнозирования развития электроэнергетики

Рассмотрение прогноза уровней электропотребления в соответствии с энергетической стратегией России. Исследование особенностей функционирования тепловых электростанций. Характеристика структуры установленной мощности тепловых электростанций России.

Рубрика Физика и энергетика
Вид статья
Язык русский
Дата добавления 27.02.2017
Размер файла 431,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

ОАО «РАО “ЕЭС России”»

Управление ресурсом оборудования электростанций, как инструмент прогнозирования развития электроэнергетики

Ливинский А.П.

Электроэнергетика, являясь базовой отраслью российской экономики, обеспечивает внутренние потребности народного хозяйства и населения в электроэнергии, а также экспорт электроэнергии в страны СНГ и дальнего зарубежья.

С целью максимально эффективного использования природных топливно-энергетических ресурсов и потенциала энергетического сектора для долгосрочного, стабильного обеспечения экономики и населения страны всеми видами энергии Правительство Российской Федерации утвердило Энергетическую стратегию России на период до 2020 года, которая предусматривает:

- надежное энергоснабжение экономики и населения страны электроэнергией;

- сохранение целостности и развитие Единой энергетической системы страны, ее интеграцию с другими энергообъединениями на Евразийском континенте;

- повышение эффективности функционирования и обеспечение устойчивого развития электроэнергетики на базе новых, современных технологий;

- снижение вредного воздействия на окружающую среду.

В нынешней редакции Энергетической стратегии приняты более умеренные уровни электропотребления, увеличены темпы развития нетрадиционных и возобновляемых источников энергии и в первую очередь гидроэнергетики, приняты более реальные вводы генерирующих мощностей и соответствующие им инвестиции.

В благоприятном варианте развитие электроэнергетики России ориентировано на сценарий, предполагающий форсированное проведение социально-экономи-ческих реформ с темпами роста производства валового внутреннего продукта до 5-6 % в год и соответствующим устойчивым ростом электропотребления 2,0-2,5 % в год (рис. 1). В результате потребление электроэнергии достигнет к 2020 г. в оптимистическом варианте 1290, в умеренном - 1145 млрд. кВтч.

С учетом прогнозируемых объемов спроса на электроэнергию при оптимистическом варианте суммарное производство (рис. 2) возрастет по сравнению с отчетным 2002 г. в 1,2 раза к 2010 г. (до 1070 млрд. кВтч) и более чем в 1,5 раза к 2020 г. (до 1365 млрд. кВтч); при умеренном варианте развития экономики соответственно в 1,14 (до 1015 млрд. кВтч) и в 1,36 раза (до 1215 млрд. кВтч).

Рис. 1. Прогноз уровней электропотребления в соответствии с Энергетической стратегией России на период до 2020 года

Рис. 2. Производство электроэнергии на электростанциях России (при умеренном и оптимисти-ческом вариантах)

Рис. 3. Установленная мощность электростанций России (при умеренном и оптимистическом вариантах)

Производственный потенциал электроэнергетики России (рис. 3) в настоящее время состоит из электростанций общей установленной мощностью около 215 млн. кВт, в том числе АЭС - 22 и ГЭС - 44 млн. кВт, остальное - теплоэнергетика и линии электропередачи всех классов напряжения общей протяженностью 2,5 млн. км. Более 90 % этого потенциала объединено в Единую энергетическую систему (ЕЭС) России, которая охватывает всю обжитую территорию страны от западных границ до Дальнего Востока.

По принятой Энергетической стратегии в структуре генерирующих мощностей существенных изменений не произойдет: основой электроэнергетики останутся тепловые электростанции; их доля сохранится на уровне 66-67 %, АЭС - 14 %, доля ГЭС практически не изменится (20 %).

В настоящее время основная доля (около 70 %) в структуре генерирующих мощностей приходится на тепловые электростанции, работающие на органическом топливе (рис. 4). Мощность ТЭС на 1.01.2003 г. составила около 147 млн. кВт. Почти 80 % генерирующих мощностей тепловых электростанций в европейской части России (включая Урал) работают на газе и мазуте. В восточной части России более 80 % работают на угле. В России действуют 36 тепловых электростанций мощностью 1000 МВт и более, в том числе 13 мощностью 2000 МВт и более. Мощность крупнейшей тепловой электростанции России - Сургутской ГРЭС-2 - 4800 МВт. На тепловых электростанциях широко используются крупные энергоблоки 150-1200 МВт. Общее количество таких энергоблоков - 233 суммарной мощностью около 65000 МВт.

Значительную долю тепловых электростанций (порядка 50 % мощности) составляют ТЭЦ, которые распределены по всей территории страны.

Размещено на http://www.allbest.ru/

Рис. 4. Структура установленной мощности тепловых электростанций России

Основная часть (более 80 %) оборудования ТЭС (котлы, турбины, генераторы) была введена в эксплуатацию в период с 1960 по 1985 год и к настоящему времени отработала от 20 до 45 лет (рис. 5). Поэтому старение энергооборудования становится ключевой проблемой современной электроэнергетики, которая в дальнейшем будет только усугубляться.

Начиная с 2005 года, произойдет нарастание объемов выработавшего парковый ресурс турбинного оборудования (рис. 6). Так, к 2010 г. 102 млн. кВт (43 %) действующего в настоящее время оборудования ТЭС и ГЭС выработает свой парковый ресурс, а к 2020 г. - 144 млн. кВт, что составит более 50 % установленной мощности.

Вывод из эксплуатации вырабатывающего парковый ресурс турбинного оборудования в условиях прогнозируемого спроса на электроэнергию и мощность приведет к образованию дефицита мощности в размере 70 ГВт на уровне 2005 года (30 % от потребности), который к 2010 году составит уже 124 ГВт (50 % от потребности) и к 2020 году - 211 ГВт (75 % от потребности в мощности) (рис. 7).

Рис. 5. Возрастная структура установленного турбинного оборудования на ТЭС России

Рис. 6. Прогноз объемов турбинного оборудования, отрабатывающих парковый ресурс

Рис. 7. Динамика сбалансированности России по мощности

Рис. 8. Основные направления покрытия прогнозируемого дефицита мощности

Обеспечение прироста потребности в генерирующей мощности возможно за счет следующих основных мероприятий:

продления срока эксплуатации действующих ГЭС, АЭС и значительного количества ТЭС с заменой только основных узлов и деталей;

достройки объектов, находящихся в высокой степени готовности;

сооружения новых объектов в дефицитных регионах;

модернизации и технического перевооружения ТЭС с использованием новых, перспективных технических решений.

Для обеспечения прогнозируемых уровней электро- и теплопотребления в оптимистическом и благоприятном вариантах вводы генерирующих мощностей на электростанциях России (с учетом необходимости замены и модернизации выработавшего свой ресурс оборудования) за период 2003-2020 гг. оцениваются примерно 177 млн. кВт (рис. 9), в том числе на ГЭС и ГАЭС - 11,2, на АЭС - 23, на ТЭС - 143 (из них ПГУ и ГТУ - 37 млн. кВт), из них вводы новых генерирующих мощностей - около 131,6 ГВт, объем замещения выработавшего ресурс оборудования за счет его технического перевооружения - 45,4 ГВт.

Рис. 9. Вводы генерирующих мощностей на электростанциях России

Рис. 10. Потребность в инвестициях на развитие электроэнергетики

В умеренном варианте вводы оцениваются примерно 121 млн. кВт, в том числе на ГЭС и ГАЭС - 7, на АЭС - 17, на ТЭС - 97 (из них ПГУ и ГТУ - 31,5 млн. кВт). энергетический тепловой электростанция

Вместе с тем суммарные усредненные вводы по России в целом за пятилетку в период с 1991 по 2002 год составили всего лишь 7 ГВт.

Важным фактором развития электроэнергетики является возможность инвестиций для нового энергетического строительства и проведения технического перевооружения действующих электростанций и электрических сетей, включая полную замену оборудования, выработавшего парковый ресурс. Потребность электроэнергетики в инвестициях за период до 2020 года с учетом АЭС в зависимости от варианта развития оценивается в 140-205 млрд. долл. США, в том числе на генерацию 100-160 млрд. долл. (рис. 10). Обеспечение роста капитальных вложений в электроэнергетику с доведением их к 2005 году до 4,0 млрд. долл. в год и к 2010 году до 6,0 млрд. долл. в год (без учета АЭС) возможно за счет введения инвестиционной составляющей в тарифе на электрическую и тепловую энергию, создания благоприятных условий для привлечения иностранных и отечественных частных инвестиций за счет государственных гарантий, налоговых льгот, выделения прямых государственных инвестиций и т.д.

Вместе с тем в 2002 г. объем инвестиций в электроэнергетику с учетом АЭС составил 2,6 млрд. долл. В 2003 г. ожидаемый объем инвестиций составит 3,6 млрд. долл.

В целом суммарные инвестиции по Холдингу за пятилетний период с 1999 по 2003 год составили 9 млрд. долл. США или чуть более 4 % от потребности в инвестициях на период до 2020 года.

Для обеспечения надежности электроснабжения потребителей в балансах мощности и электроэнергии на период до 2020 года должна сохраняться значительная доля оборудования, отработавшего свой парковый ресурс (рис. 11): в период до 2010 года объем такого оборудования будет нарастать до 93 ГВт с последующим сокращением к 2020 году до 40 ГВт.

Рис. 11. Основные направления покрытия прогнозируемого дефицита мощности в соответствии с принятой Энергетической стратегией

Обеспечение прогнозируемого спроса на электроэнергию и мощность требует сохранения работоспособности оборудования после достижения им паркового ресурса.

Это ставит задачу управления ресурсом оборудования электростанций на качественно новый уровень. Решение этой проблемы требует создания банка данных, позволяющего прогнозировать состояние оборудования, разработки системы мероприятий по сохранению работоспособности оборудования и контроля их выполнения, увязки предложений по продлению ресурса оборудования с перспективными балансами мощности и электроэнергии.

На рис. 12 показана сложившаяся к настоящему времени схема организации продления срока службы оборудования.

Рис. 12. Схема организации продления срока службы оборудования

Под парковым ресурсом понимается наработка однотипных по конструкции, материалам и условиям эксплуатации элементов теплоэнергетического оборудования, при которой обеспечивается их безаварийная работа при соблюдении стандартных требований к контролю металла, эксплуатации и ремонту энергоустановок.

К настоящему времени произошел лавинообразный рост мощностей, отработавших парковый ресурс. Требуемые объемы замен оборудования и их узлов не обеспечивались соответствующим финансированием. Возникла необходимость уточнения значений паркового ресурса применительно к конкретному оборудованию путем проведения целого ряда исследований и мероприятий.

В связи с этим было предложено перейти на индивидуальный ресурс, т.е. назначенный ресурс конкретного объекта, определенный с учетом фактических свойств металла, геометрических размеров и условий его эксплуатации.

По истечении проектного срока службы оборудования с учетом ограничений, установленных нормативно-правовыми документами, проводится анализ его состояния, по результатам которого принимается решение о замене или продлении срока службы оборудования до выработки назначенного индивидуального ресурса, который определяется комплексом мер в рамках системы продления ресурса.

Действующая в электроэнергетике система продления срока службы оборудования основывается:

1. На Федеральных законах:

“О промышленной безопасности опасных производственных объектов”;

“О техническом регулировании”;

“О лицензировании отдельных видов деятельности”.

2. На Постановлениях Правительства Российской Федерации:

“О порядке и условиях применения технических устройств на опасном производственном объекте“;

“О порядке организации и осуществления производственного контроля за соблюдением требований промышленной безопасности на опасном производственном объекте“;

“О мерах по обеспечению промышленной безопасности опасных производственных объектов на территории Российской Федерации“;

3. На нормативных документах Госгортехнадзора России:

“Общие правила промышленной безопасности для организаций, осуществляющих деятельность в области промышленной безопасности опасных производственных объектов“;

“Правила проведения экспертизы промышленной безопасности“;

“Положения о порядке продления срока безопасной эксплуатации технических устройств, оборудования и сооружений на опасных производственных объектах“;

“Типовая инструкция по контролю металла и продлению срока службы ответственных элементов котлов, турбин и трубопроводов тепловых электростанций“.

Подготовка решения о продлении срока службы с учётом всех вариантов требует серьёзного технико-экономического анализа на основании технического состояния электростанции и перспектив её развития (технического перевооружения).

В соответствии с требованиями Типовых инструкций... и Положений..., АО-энерго и АО-электростанции самостоятельно или с привлечением организаций осуществляют контроль технического состояния оборудования и проводят исследования прочностных характеристик металла.

Подобные исследования, как правило, проводятся экспертными организациями (рис. 13). Их заключения вместе с решением АО-энерго и АО-электростанции о продлении срока эксплуатации оборудования направляются, в соответствии с Типовыми инструкциями..., в ОАО «РАО “ЕЭС России”». Департамент научно-технической политики и развития ОАО «РАО “ЕЭС России”» осуществляет с привлечением отраслевых научно-исследовательских организаций анализ представленных материалов, выносит заключение о возможности и сроках дальнейшей эксплуатации оборудования. На основании решения АО-энерго и АО-электростанции, заключения специализированной организации Департамент научно-технической политики и развития ОАО «РАО "ЕЭС России"» утверждает (или не утверждает, или утверждает с ограничениями) решение АО-энерго и АО-электростанции о возможности и сроках дальнейшей эксплуатации оборудования.

Рис. 13. Действующая структура продления срока службы оборудования ТЭС

Утверждение ОАО «РАО “ЕЭС России”» решения АО-энерго и АО-электро-станции является основанием для Госгортехнадзора России о регистрации заключения экспертизы промышленной безопасности и предоставления электростанции права на дальнейшую эксплуатацию оборудования.

Основные направления совершенствования организации работ по продлению срока службы оборудования (рис. 14) будут связаны:

- с совершенствованием директивной (определяемой документами Госгортехнадзора России) части этих работ;

- с приданием экономической заинтересованности в результатах этих работ, в том числе и работ по определению коммерческого ресурса и надёжности электростанции для различных организаций (СО-ЦДУ, АТС, заводы-изготовители оборудования и др.).

Для этого планируется совершенствовать организацию продления в следующем.

1. Контроль состояния металла и оборудования ТЭС поручается аккредитованным в Госгортехнадзоре России испытательным лабораториям и лабораториям неразрушающего контроля. Аккредитация должна проводится с учётом рекомендаций Департамента научно-технической политики и развития ОАО «РАО “ЕЭС России”», в дальнейшем через НП “ИНВЭЛ” (Некоммерческое партнерство «Инновации в электроэнергетике»).

Рис. 14. Совершенствование организации продления срока службы оборудования ТЭС

2. Экспертная организация, рассматривающая материалы по продлению срока службы оборудования и делающая заключение относительно сроков эксплуатации, должна быть независимой и назначаться Департаментом научно-технической политики и развития ОАО «РАО "ЕЭС России"» и в дальнейшем НП “ИНВЭЛ”

3. Департамент научно-технической политики и развития ОАО «РАО "ЕЭС России"» (в дальнейшем НП “ИНВЭЛ”) должен организовать работу по оценке коммерческого срока и надёжности работы электростанций и определить постоянные организации, заинтересованные в такой информации.

Из представленных материалов видно, что в обозримом будущем в условиях недостатка инвестиций на новое строительство будет расти дефицит генерирующих мощностей. Основным источником его покрытия будет продление срока службы действующего оборудования. Для этого необходимо разработать организационный механизм управления ресурсом, который должен соответствовать новым реалиям, складывающимся в электроэнергетике в связи с ее реформированием. Важными организационными аспектами являются следующие:

совершенствование нормативно-технической документации, обеспечивающей надежную и безопасную эксплуатацию оборудования;

осуществление мониторинга повреждаемости оборудования, подготовка типовых технических и организационных решений по продлению срока службы оборудования (циркуляры, информационные письма);

создание базы данных по его эксплуатации;

снижение затрат на контроль и ремонт оборудования.

Все эти мероприятия позволят усовершенствовать механизм управления ресурсом и сделать его важным инструментом прогнозирования дальнейшего развития электроэнергетики.

Первые шаги в этом направлении уже сделаны. Так, по заданию ДНТПиР ОАО «РАО “ЕЭС России”» Институтом «Теплоэлектропроект» готовятся «Предложения по продлению ресурса оборудования тепловых электростанций сверх паркового», которые включают:

- прогноз технического состояния тепловых электростанций, отрабатывающих парковый ресурс в период до 2008 года;

- разработку постанционных предложений о технических мероприятиях, позволяющих продлить ресурс оборудования сверх паркового;

- оценку финансовых затрат на реализацию мероприятий по продлению ресурса оборудования;

- организацию управления ресурсом оборудования электростанций в условиях реформирования электроэнергетики.

В рамках данной работы было проведено исследование состояния оборудования всех семи регионов России с установленной мощностью 131,422 млн. кВт. Его результаты используются при разработке пятилетнего корпоративного баланса мощностей энергии на период 2004-2008 гг.

Как показал анализ, к 2008 г. индивидуальный ресурс будет исчерпан на оборудовании установленной мощностью 10,929 млн. кВт, что составляет 9,1 % от установленной мощности ТЭС Холдинга РАО «ЕЭС России». Это потребует значительных инвестиций в работы по продлению ресурса оборудования.

Особенно большой объем работ по продлению ресурса оборудования и затрат приходится на ОЭС Урала, одного из самых энергонапряженных регионов России. За период 2004-2008 гг. стоимость мероприятий по продлению ресурса по этому региону составит 6567,7 млн. руб., объем продлеваемой мощности 5034 МВт, причем пик требуемых инвестиций придется на 2007-2008 гг.

В целом на ТЭС России за период 2004-2008 гг. потребуется провести комплекс мероприятий, обеспечивающих продление ресурса оборудования, на общую сумму, с учетом НДС, 19,58 млрд. руб. (в текущих ценах). При этом удельная стоимость продлеваемой мощности составит 1792,1 руб./кВт (58,8 долл/кВт).

При прогнозировании балансов мощности на более длительный период (10-15-20 лет) следует провести дополнительные исследования, чтобы определить характер изменения затрат на продление ресурса оборудования тепловых электростанций.

Размещено на Allbest.ru

...

Подобные документы

  • Значение электроэнергетики в экономике России. Анализ потребления энергии в Камчатском крае. Спрос на электроэнергию по изолированным узлам региона. Анализ изношенности оборудования тепловых электростанций. Проблемы возведения мини атомных электростанций.

    курсовая работа [3,8 M], добавлен 28.05.2014

  • Производство электрической энергии. Основные виды электростанций. Влияние тепловых и атомных электростанций на окружающую среду. Устройство современных гидроэлектростанций. Достоинство приливных станций. Процентное соотношение видов электростанций.

    презентация [11,2 M], добавлен 23.03.2015

  • Характеристика электрических станций различного типа. Устройство конденсационных тепловых, теплофикационных, атомных, дизельных электростанций, гидро-, ветроэлектростанций, газотурбинных установок. Регулирование напряжения и возмещение резерва мощности.

    курсовая работа [240,4 K], добавлен 10.10.2013

  • Значение электроэнергетики в экономике Российской Федерации, ее предмет и направления развития, основные проблемы и перспективы. Общая характеристика самых крупных тепловых и атомных, гидравлических электростанций, единой энергосистемы стран СНГ.

    контрольная работа [24,3 K], добавлен 01.03.2011

  • Принцип работы тепловых паротурбинных, конденсационных и газотурбинных электростанций. Классификация паровых котлов: параметры и маркировка. Основные характеристики реактивных и многоступенчатых турбин. Экологические проблемы тепловых электростанций.

    курсовая работа [7,5 M], добавлен 24.06.2009

  • Источники водоснабжения ТЭЦ. Анализ показателей качества исходной воды, метод и схемы ее подготовки. Расчет производительности водоподготовительных установок. Водно-химический режим тепловых электростанций. Описание системы технического водоснабжения ТЭС.

    курсовая работа [202,6 K], добавлен 11.04.2012

  • Сведения об приливах и отливах. Описание работы приливных электростанций, их экологические особенности. Технико-экономические обоснования необходимости и экономической эффективности внедрения приливных электростанций, их место в энергетической системе.

    курсовая работа [864,2 K], добавлен 01.02.2012

  • Приливная энергия, ее использование. Принцип действия приливных электростанций. Основные преимущества использования приливных электростанций. Экологическая характеристика и социальное значение приливных электростанций. ПЭС в энергосистеме Европы.

    реферат [225,0 K], добавлен 30.11.2010

  • Характеристика паротурбинной установки как основного оборудования современных тепловых и атомных электростанций. Ее термодинамический цикл, процессы, происходящие в ходе работы. Пути увеличения КПД цикла ПТУ. Перспективы паротурбостроения в России.

    реферат [1,3 M], добавлен 29.01.2012

  • Внедрение высокоэффективных электростанций. Нарастание процесса старения энергетического оборудования. Реконструкция действующих электростанций к 2030 году. Передача большой мощности на дальние расстояния с минимальными потерями. Резонансная передача.

    презентация [2,2 M], добавлен 17.12.2013

  • Электроэнергетика как отрасль промышленности. Структура основных потребителей электроэнергии. Типы электростанций, их характеристика. Расположение крупнейших электростанций Российской Федерации. Виды альтернативных источников энергии, их применение.

    презентация [5,6 M], добавлен 11.06.2011

  • Расчет производственной мощности и составление годового графика ремонта оборудования электростанций. Планирование режимов работы электростанций. Планирование месячной выработки электроэнергии и отпуска тепловой энергии электростанциями энергосистемы.

    курсовая работа [46,1 K], добавлен 14.07.2013

  • Особенности развития нетрадиционной электроэнергетики. Технический потенциал ветроэнергетики, волновых энергетических установок, солнечной и геотермальной энергетики, производства биодизеля из рапса, малой гидроэнергетики, морских электростанций России.

    реферат [86,4 K], добавлен 28.04.2013

  • Области применения и показатели надежности газовых турбин малой и средней мощности. Принцип работы газотурбинных установок, их устройство и описание термодинамическим циклом Брайтона/Джоуля. Типы и основные преимущества газотурбинных электростанций.

    реферат [1,4 M], добавлен 14.08.2012

  • Актуальность поиска нетрадиционных способов и источников получения энергии, в особенности возобновляемых. Эксплуатация малых гидроэлектростанций, развитие промышленной ветроэнергетики. Характеристика солнечных, приливных и океанических электростанций.

    курсовая работа [487,3 K], добавлен 15.12.2011

  • История создания промышленных атомных электростанций. Принцип работы АЭС с двухконтурным водо-водяным энергетическим реактором. Характеристика крупнейших электростанций мира. Влияние АЭС на окружающую среду. Перспективы использование ядерной энергии.

    реферат [299,9 K], добавлен 27.03.2015

  • Назначение, классификация и маркировка дизельных электростанций, их устройство и комплектация. Требования к обслуживающему персоналу. Подготовка электроагрегата к работе, пуск и остановка. Наблюдение за работой ДЭС. Указания по технике безопасности.

    реферат [5,6 M], добавлен 25.01.2011

  • Ветроэлектростанции, их характеристики. Разновидности геотермальных электростанций, их применения в децентрализованных системах электроснабжения. Основные способы преобразования энергии биотопливa в электроэнергию. Классификация солнечных электростанций.

    реферат [202,6 K], добавлен 10.06.2014

  • Значение тепловых электростанций. Определение расходов пара ступеней турбины, располагаемых теплоперепадов и параметров работы турбины. Расчет регулируемой и нерегулируемой ступеней и их теплоперепадов, действительной электрической мощности турбины.

    курсовая работа [515,7 K], добавлен 14.08.2012

  • Технико-экономические характеристики конденсационной, тепловой и атомной электростанций. Классификация резервных мощностей системы энергоснабжения по назначению и маневренности. Сравнение вариантов комбинированного и раздельного энергоснабжения.

    дипломная работа [544,7 K], добавлен 22.02.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.