Изоляция электрических машин высокого напряжения

Порядок работы, поведение в эксплуатации и усовершенствование изоляции высоковольтных электрических машин. Основные требования, предъявляемые к изоляционным материалам. Характеристика корпусной (главной) и межвитковой (продольной) изоляции машин.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 12.03.2017
Размер файла 155,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Реферат

на тему: Изоляция электрических машин высокого напряжения

Содержание

Введение

1. Виды изоляции

2. Корпусная (главная) изоляция

3. Межвитковая (продольная) изоляция

Список литературы

Введение

Крупные электрические машины являются важнейшими элементами энергосистем. В настоящее время большая часть генераторов выпускается на номинальное напряжение от 3,15 до 21 кВ, а в отдельных случаях на еще более высокие напряжения. Мощность генераторов достигает 800 МВт; разрабатываются генераторы с мощностью в единице 1200ч1500 МВт. Поведение их изоляции в эксплуатации в значительной степени определяет надежность и бесперебойность электроснабжения потребителей. Повреждение изоляции крупных электрических машин во время работы является одним из наиболее тяжелых видов аварий энергосистем.

В процессе работы изоляция машин находится в тяжелых условиях эксплуатации (перенапряжения, высокая рабочая температура, вибрация, циклы нагрева и охлаждения, механические усилия, воздействия продуктов разложения воздуха - озона, оксидов азота и др.). Кроме того, существенное значение имеют технологические трудности при изготовлении и укладе изоляции, приводящие к механическим повреждениям изоляции в процессе изготовления, а также несовершенство методов контроля и испытания.

Усовершенствование изоляции высоковольтных электрических машин идет по пути повышения ее надежности и долговечности, а также повышения удельных показателей за счет применения тонкослойной изоляции на основе синтетических изоляционных материалов, обладающих более высокой электрической и механической прочностью и нагревостойкостью.

Основным требованием, предъявляемым к изоляционным материалам, технологии изготовления и конструированию, является способность изоляции длительное время противостоять комплексу эксплуатационных воздействий без значительного старения изоляции и образования местных дефектов в пределах срока службы. Последние приводят к тому, что наряду с высокими средними значениями электрической и механической прочности (электрическая прочность превышает номинальное напряжение в 10ч15 раз) в машинах имеется некоторое (порядка 1%) количество стержней, электрическая прочность которых близка к величинам испытательных напряжений или перенапряжений. Поведение изоляции машины в эксплуатации определяется наиболее слабыми ее элементами в электрическом и механическом отношениях. Поэтому важно обеспечить высокие характеристики новой изоляции и поддерживать их в эксплуатации.

1. Виды изоляции

В зависимости от номинального напряжения, мощности и типа машины (турбо- или гидрогенераторы; синхронные компенсаторы; электродвигатели) и способа охлаждения применяются разнообразные конструкции изоляции и различные изоляционные материалы.

Изоляцию машин можно подразделить на корпусную (главную) и межвитковую (продольную). Современные турбогенераторы большой мощности, как правило, имеют обмотку с одновитковыми стержнями, и, следовательно, витковая изоляция в таких машинах в стержне отсутствует. На рис. 3.36 представлен разрез паза статорной обмотки турбогенератора средней мощности.

Рис. Конструкция паза статорной обмотки турбогенератора с воздушным охлаждением: 1 - клин; 2 - изоляционные прокладки; 3 - корпусная изоляция; 4 - проводник; 5 - витковая изоляция; 6 - межслоевая изоляция; 7 - изоляция стержня

2. Корпусная (главная) изоляция

Главной (высоковольтной) изоляцией является изоляция стержня относительно корпуса 2, 3 и между стержнями 7. Современные машины имеют непрерывную микалентную компаундированную изоляцию, покрытую асбестовой лентой. Микалента состоит из двух слоев специальной бумажной подложки, между которыми располагаются пластинки слюды. Слюда в микаленте удерживается масляно-битумным лаком (компаундом). Стержни состоят из медных проводников, разделенных низковольтной изоляцией 6 из асбеста или стекловолокна.

Высоковольтная изоляция вращающихся машин разделяется на термопластичную и термореактивную (современные конструкции мощных машин). изоляция высоковольтный электрический машина

Термопластичная изоляция, применяемая как в старых, так и в современных конструкциях, в соответствии с циклами нагрева и охлаждения размягчается и вновь затвердевает, что может приводить к возникновению в толще изоляции газообразных включений, снижающих ее электрическую прочность.

Термореактивная смола при циклах нагрева не размягчается, т. к. она находится в неплавком и нерастворимом состоянии. Это свойство позволяет использовать такую изоляцию при более высоких температурах с сохранением первоначальной электрической прочности и высокой надежности. В настоящее время широкое внедрение получила микалентная изоляция на основе подложки из двух лент стекловолокна с заключенной между ними слюдой и пропитанной эпоксидным компаундом или полиэфирным лаком.

По конструктивному исполнению изоляция стержней разделяется на гильзовую (старые конструкции) и непрерывную (современные конструкции).

Суть гильзовой изоляции заключается в том, что пазовая часть (более напряженная) выполняется в виде гильзы из микафолия (миканит с подложкой из бумаги, шелковой или стеклянной ткани), а лобовая часть (менее напряженная) - на основе микаленты. При таком способе изолирования неизбежным является наличие стыка (слабого места) за пределами выхода стержня из паза. Нарушение непрерывности изоляции приводит к существенному снижению электрической прочности в этом месте. Поэтому гильзовая изоляция применяется в машинах малой мощности и напряжения.

Непрерывная изоляция, выполняемая из одного и того же материала на всей длине стержня, имеет практически одинаковую электрическую прочность в пазовой и лобовой частях. После нанесения нескольких слоев микаленты стержни помещаются в специальные компаундировочные котлы, где изоляция сушится, вакуумируется и пропитывается под давлением расплавленным компаундом - компаундирование изоляции. Непрерывная компаундированная микалентная изоляция является термопластичной.

Современные мощные турбогенераторы имеют пазы и стержни прямоугольной формы. Поэтому для выравнивания поля на кромки стержня накладывается полупроводящая лакоткань или бумага для увеличения радиуса закругления. Затем поверх изоляции стержня наносится полупроводящее покрытие, которое электрически соединяется с железом статора во избежание разрядов между стержнем и стенкой паза.

Для устранения краевого эффекта (короны) в месте выхода стержня из паза используется нанесение полупроводящих покрытий по поверхности изоляции, что позволяет предотвратить ее преждевременное разрушение. Иногда применяется и емкостное выравнивание с помощью проводящих или полупроводящих обкладок (экранов), встраиваемых в толщу изоляции.

Наиболее распространенным методом противокоронной защиты является двухступенчатое нанесение полупроводящего слоя на изоляцию в месте выхода из паза. В пазовой части на расстоянии 50…100 мм от кромки паза наносится полупроводящий лак с S = 103…105 Ом, а затем изоляция пропитывается лаком с S = 107…109 Ом на длине 200…300 мм. Полупроводящее покрытие покрывается слоем изоляционного материала толщиной 0,4…0,5 мм, что улучшает его надежность.

Лобовые части обмотки оформляются с таким расчетом, чтобы в них отсутствовала корона при номинальном напряжении.

При внутреннем водяном охлаждении обмоток вода подводится через головки лобовых частей с помощью специальных изоляционных шлангов из фторопласта или тепломаслостойкой резины, соединяющих наконечники головок обмотки, находящейся под высоким потенциалом, с заземленным водосборным коллектором.

3. Межвитковая (продольная) изоляция

Междувитковая изоляция машин малой и средней мощности
(до 30 МВт) имеет стержни с несколькими витками, напряжение между которыми не превышает нескольких сотен вольт. Изоляция между витками рассчитывается таким образом, чтобы она могла выдерживать сравнительно невысокие испытательные напряжения (Uисп = 1000…2250 В). Особенностью витковой изоляции вращающихся машин является отсутствие расчета на воздействие импульсных волн атмосферных перенапряжений, т. к. генераторы подсоединяются к воздушным ЛЭП через кабели или трансформаторы. При непосредственном подсоединении генераторов на воздушные сети 3…10 кВ (такая работа иногда допускается) необходимо учитывать градиентные перенапряжения при воздействии импульсных волн на витковую изоляцию.

В нашей стране решаются вопросы по разработке и созданию генераторов высокого напряжения на 35…100 кВ и даже 220 кВ, что позволит питать распределительные электрические сети непосредственно от генераторов и отказаться от применения повышающих трансформаторов, обеспечив народному хозяйству большой экономический эффект. Разработана конструкция гидрогенератора на 110 кВ с корпусной бумажно-масляной изоляцией. Статор с обмоткой отделен от вращающегося ротора изоляционной перегородкой. Пространство статора заполнено маслом, служащим в качестве изоляционной и охлаждающей среды. Изоляция обмоток - бумажно-масляная.

Генераторы на 35…220 кВ могут непосредственно подключаться к ЛЭП, поэтому изоляция таких машин должна быть рассчитана на воздействие атмосферных перенапряжений.

Список литературы

1. Техника высоких напряжений, под ред. М.В. Костенко, Т38 Учебное пособие для вузов, «Высшая школа»- Москва 1973г.

2. Техника высоких напряжений, под ред. Д.В. Разевиг «Энергия » -Москва 1976г.

3. Техника высоких напряжений, Курс лекций для бакалавров, под ред. Важов В.Ф., Лавринович В.А., Лопаткин С.А.,

Размещено на Allbest.ru

...

Подобные документы

  • Конструкция обмотки статора высоковольтных электрических машин. Дефекты в изоляции высоковольтных статорных обмоток, возникающие в процессе производства. Общие сведения об адгезии. Методы неравномерного отрыва. Характеристика ленты Элмикатерм 52409.

    дипломная работа [3,2 M], добавлен 18.10.2011

  • Определение электрических величин. Номинальные фазные напряжения. Активная и реактивная составляющие напряжения короткого замыкания. Выбор главной и продольной изоляции трансформатора. Выбор конструкции магнитопровода. Основные размеры трансформатора.

    курсовая работа [2,8 M], добавлен 26.01.2012

  • Назначение, виды и монтаж устройств защитного заземления. Ремонт обмоток электрических машин, бандажирование и балансировка роторов и якорей. Сборка и испытание электрических машин. Методы оценки увлажненности и сушки изоляции обмоток трансформатора.

    контрольная работа [623,8 K], добавлен 17.03.2015

  • Описание устройства и работы асинхронного двигателя. Типы и характеристика электрических машин в зависимости от режима работы. Технические требования при выборе промышленных электродвигателей. Техника безопасности при монтаже электрических машин.

    реферат [16,5 K], добавлен 17.01.2011

  • Определение электрических величин. Фазные напряжения и токи. Выбор главной и продольной изоляции. Определение основных размеров трансформатора. Выбор конструкции обмоток. Расчет обмотки низшего и высшего напряжения, параметров короткого замыкания.

    курсовая работа [2,7 M], добавлен 12.06.2015

  • Формы электрических полей. Симметричная и несимметричная система электродов. Расчет максимальной напряженности кабеля. Виды и схема развития пробоя твердого диэлектрика. Характеристики твердой изоляции. Зависимость пробивного напряжения от температуры.

    контрольная работа [91,5 K], добавлен 28.04.2016

  • Понятия разрядного напряжения и резконеоднородного поля. Внешняя и внутренняя изоляция электрических установок. Коронный разряд у электродов с малым радиусом кривизны во внешней изоляции. Целесообразность применения внутренней изоляции электроустановок.

    реферат [24,3 K], добавлен 07.01.2011

  • Повышение мощности крупных электрических машин. Увеличение коэффициента полезного действия. Повышение уровня надежности. Модернизация узла токосъема (контактных колец-щеток), экскаваторного электропривода для тяжелых электрических карьерных экскаваторов.

    курсовая работа [247,7 K], добавлен 30.01.2016

  • Виды и характеристика испытаний электрических машин и трансформаторов. Регулировка контакторов и магнитных пускателей, реле и командоаппаратов. Испытания трансформаторов после капитального ремонта. Выдача заключения о пригодности к эксплуатации.

    реферат [29,3 K], добавлен 24.12.2013

  • Общие сведения об электрических машинах. Неисправности, разборка, ремонт токособирательной системы электрических машин. Коллекторы. Контактные кольца. Щеткодержатели. Ремонт сердечников, валов и вентиляторов электрических машин. Сердечники. Вентиляторы.

    реферат [104,0 K], добавлен 10.11.2008

  • Электрическая прочность изоляции как одна из важных характеристик трансформатора. Внутренняя и внешняя изоляция, ее основные элементы. Влияние температуры на характеристики изоляции. Схема классификации изоляции силового масляного трансформатора.

    контрольная работа [733,6 K], добавлен 24.03.2016

  • Общие понятия и определение электрических машин. Основные типы и классификация электрических машин. Общая характеристика синхронного электрического двигателя и его назначение. Особенности испытаний синхронных двигателей. Ремонт синхронных двигателей.

    дипломная работа [602,2 K], добавлен 03.12.2008

  • Выбор электродвигателей и силового трансформатора. Основные технические характеристики. Определение структуры ЭРЦ по ремонту электрических машин. Составление графика ППР. Правила техники безопасности при ремонтах электрооборудования насосной станции.

    курсовая работа [528,0 K], добавлен 07.08.2013

  • Определение основных электрических величин. Выбор главной и продольной изоляции, конструкции магнитопровода. Расчет размеров трансформатора, обмоток низшего и высшего напряжения, параметорв короткого замыкания и магнитной системы трансформатора.

    курсовая работа [2,6 M], добавлен 10.06.2015

  • Сравнение характеристик электрических машин различных типов. Понятие постоянных и переменных потерь энергии. Способы измерения частоты вращения асинхронного двигателя. Определение критического момента и номинальной мощности электрической машины.

    презентация [103,7 K], добавлен 21.10.2013

  • Предназначение электроприводов для приведения в действие рабочих органов механизмов и машин, их основные виды. Требования, предъявляемые к электрическим двигателям холодильных установок и машин. Динамика электропривода, его механические характеристики.

    презентация [516,7 K], добавлен 11.01.2012

  • Основные типы двигателей, используемые для привода электрифицированных машин. Источники питания электроинструмента. Широтно-импульсная модуляция. Принципы построения преобразователей частоты. Требования, предъявляемые к электроприводу ручных машин.

    лекция [214,2 K], добавлен 08.10.2013

  • Трехфазные электрические сети, критерии их классификации и разновидности, функциональные особенности. Описание лабораторного стенда и контрольно-измерительных приборов. Периодический контроль изоляции. Сопротивление изоляции электроустановок аппаратов.

    лабораторная работа [174,8 K], добавлен 19.03.2014

  • Электрическая изоляция, ее контроль. Виды заземления в зависимости от назначения. Процесс растекания электрического тока в грунте. Напряжения прикосновения и шага. Измерения сопротивлений изоляции, заземляющих устройств и удельного сопротивления грунта.

    контрольная работа [461,3 K], добавлен 30.10.2011

  • Виды тепловой изоляции: естественная или природная (асбест, слюда, пробка) и предварительно обработанные материалы. Альфолевая изоляция. Термическое сопротивление теплопередачи через изолированный трубопровод. Выбор эффективной изоляции трубопроводов.

    презентация [121,0 K], добавлен 18.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.