Релейная защита

Понятия о релейной защите электрических машин и аппаратов, линий электропередач и других частей электроустановок. Измерительные преобразователи и реле. Построение кривой намагничивания магнитопровода реле. Защита трансформаторов и автотрансформаторов.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 30.03.2017
Размер файла 541,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Тема №1: Общие понятия о релейной защите

1. Назначение релейной защиты

Электрические машины и аппараты, линии электропередач и другие части электроустановок и электрических сетей постоянно находятся под напряжением и обтекаются током, вызывающим их нагрев. Поэтому в процессе эксплуатации могут возникать повреждения, приводящие к коротким замыканиям.

Короткие замыкания возникают из-за пробоя изоляции, обрывов проводов, ошибочных действий персонала (включения под напряжение заземленного оборудования, отключения разъединителей под нагрузкой) и других причин.

В большинстве случаев в месте КЗ возникает электрическая дуга с высокой температурой, приводящая к разрушениям токоведущих частей, изоляторов и электрических аппаратов. При КЗ к месту повреждения подходят токи, измеряемые тысячами ампер, которые перегревают неповрежденные токоведущие части и могут вызвать дополнительные повреждения, т.е. развитие аварии. Одновременно в сети, электрически связанной с местом повреждения, происходит глубокое понижение напряжения, что может привести к остановке электродвигателей и нарушению параллельной работы генераторов.

В большинстве случаев развитие аварии может быть предотвращено быстрым отключением поврежденного участка электрической установки или сети при помощи специальных автоматических устройств, получивших название релейной защиты, которые действуют на отключение выключателей.

При отключении выключателей поврежденного элемента гаснет электрическая дуга в месте КЗ, прекращается прохождение тока КЗ и восстанавливается нормальное напряжение на неповрежденной части электрической установки или сети. Благодаря этому сокращаются размеры или даже совсем предотвращаются повреждения оборудования, на котором возникло КЗ, а также восстанавливается нормальное электроснабжение неповрежденного оборудования.

Таким образом, основным назначением релейной защиты является выявление места возникновения КЗ и быстрое автоматическое отключение выключателей поврежденного оборудования или участка сети от остальной неповрежденной части электроустановки или сети.

Кроме повреждений электрического оборудования, могут возникать такие нарушения нормальных режимов работы, как перегрузка, замыкание на землю одной фазы в сети с изолированными нейтралями, выделение газа в результате разложения масла в трансформаторе или понижение уровня масла и др.

В указанных случаях нет необходимости немедленного отключения оборудования, так как эти явления не представляют непосредственной опасности для оборудования и могут самоустраниться. Поэтому при нарушении нормальной работы на подстанциях с постоянным дежурным персоналом, как правило, достаточно дать предупредительный сигнал.

Таким образом, вторым назначением релейной защиты является выявление нарушений нормальной работы оборудования и подача предупредительной световой и звуковой сигнализации обслуживающему персоналу.

Тема №2: Измерительные преобразователи и реле

2. Электромагнитные реле времени

В схемах защиты и автоматики часто требуется создание выдержки времени между срабатываниями двух или нескольких аппаратов. Для этой цели служат электрические аппараты, называемые «реле времени».

К реле времени предъявляются следующие общие требования:

стабильность выдержки времени при колебаниях величины и частоты напряжения питания, температуры окружающей среды и воздействии других внешних факторов;

малые потребляемая мощность, масса и габариты.

В зависимости от области применения к реле времени предъявляются различные специфические требования. Для схем автоматического управления электроприводом при большой частоте включений требуются реле с высокой механической износостойкостью -- до (5-10)106 срабатываний. Требуемые выдержки времени находятся в пределах 0,25-10 с. К этим реле не предъявляются требования высокой стабильности выдержки времени. Разброс времени срабатывания может достигать 10%. Реле должны работать в производственных условиях при наличии интенсивных механических воздействий.

Реле для защиты энергосистем должны иметь большую точность выдержки времени. Эти реле работают относительно редко, поэтому к ним не предъявляются особые требования по износостойкости. Износостойкость реле времени защиты порядка (5-10) 103 срабатываний. Выдержки времени таких реле времени составляют 0,1-20 с. Для автоматизации технологических процессов необходимы реле с большой выдержкой времени -- от нескольких минут до нескольких часов. В настоящее время созданы полупроводниковые реле, удовлетворяющие указанным требованиям. Условное графическое обозначение катушки реле времени совпадает с таковым для обычного электромагнитного реле. Условные графические обозначения контактов реле времени приведены на рисунке 2.1.

Электромагнитные реле времени

Электромагнитные реле времени просты по конструкции, обладают высокой ударо-, вибро- и износостойкостью. Такое реле времени имеет конструкцию, аналогичную обычному электромагнитному реле. Для замедления переключения электромагнитного реле времени используется короткозамкнутая обмотка. Такая обмотка может содержать всего один виток в виде медной или алюминиевой гильзы, установленной на один из стержней магнитопровода. Устройство электромагнитного реле времени схематично поясняет рисунок 2.2, где обозначено: 1 -- магнитопровод, 2 -- управляющая обмотка, 3 -- короткозамкнутый виток.

релейный защита трансформатор электроустановка

Рис. 2.1. Условные графические обозначения контактов реле времени: а) контакты с замедлителем, действующим при срабатывании; б) контакты с замедлителем, действующим при возврате; в) контакты с замедлителем, действующим при срабатывании и возврате U= K 2 1 3

Рис. 2.2. К пояснению принципа действия электромагнитного реле времени

При подаче напряжения питания на управляющую обмотку и нарастании создаваемого ею магнитного потока в короткозамкнутой обмотке наводится ЭДС, под действием которой по обмотке начинает протекать ток такого направления, при котором магнитный поток короткозамкнутой обмотки направлен встречно потоку управляющей обмотка. В результате этого скорость нарастания потока в электромагните уменьшается, и время трогания якоря увеличивается. Магнитный поток нарастает по экспоненциальному закону с постоянной времени равной сумме постоянных времени двух обмоток: управляющей и короткозамкнутой.

где R1, R2, L1, L2 -- активные сопротивления и индуктивности управляющей и короткозамкнутой обмоток. Поскольку индуктивность обмотки прямо пропорциональна магнитной проводимости воздушного зазора между якорем и сердечником электромагнита, значение которой невелико при отпущенном якоре, замедление срабатывания реле получается небольшим (доли секунды).

При отключении обмотки реле от источника питания начинается уменьшение магнитного потока в электромагните. В короткозамкнутой обмотке также наводится ЭДС, и возникает ток, затягивающий уменьшение потока в системе. Замедленное спадание потока создает задержку на отпускание. Поскольку при притянутом якоре воздушный зазор в электромагните во много раз меньше, чем при отпущенном, постоянные времени T1, T2 при уменьшении потока много больше, чем при его нарастании, и время отпускания может достигать 10 с. Обычно электромагнитные реле времени включают в схему таким образом, чтобы использовать задержку при отпускании якоря.

Выдержка времени на отпускание при прочих равных условиях определяется начальным значением магнитного потока в электромагните. Если магнитная система при номинальном напряжении не насыщена (участок левее точки а на рис. 2.3), то начальное значение потока, а значит и выдержка времени сильно зависят от величины питающего напряжения. С целью уменьшения этой зависимости в электромагнитных реле времени магнитопровод выполняют сильно насыщенным (рабочая точка выбирается правее точки а на рис. 2.3), что позволяет получать стабильные выдержки времени при отклонении питающего напряжения до 50% от номинального значения.

Рис. 2.3. Кривая намагничивания магнитопровода реле 6

В схемах автоматики напряжение на управляющую обмотку реле времени может подаваться кратковременно. Для того чтобы выдержка времени при отпускании была стабильной, необходимо, чтобы длительность приложения напряжения к управляющей обмотке была достаточной для достижения потоком установившегося значения. Это время называется временем подготовки или зарядки реле. Если длительность приложения напряжения меньше времени подготовки, то выдержка времени уменьшается.

На выдержку времени электромагнитных реле большое влияние оказывает температура короткозамкнутой обмотки. В среднем можно считать, что изменение температуры на 10° С ведет к изменению времени выдержки на 4%. Зависимость выдержки времени от температуры является одним из основных недостатков электромагнитных реле времени.

Выдержку времени электромагнитного реле можно регулировать, изменяя натяг возвратной пружины или изменяя величину конечного воздушного зазора.

Промышленностью выпускаются реле времени с электромагнитным замедлением и выдержкой времени 0,3-5,5 с (например, реле РЭВ811…РЭВ818). Реле изготавливаются с катушками на напряжение постоянного тока 12, 24, 48, 110 и 220 В. Пример конструктивного исполнения электромагнитного реле времени показан на рисунке 2.4.

Рис. 2.4. Электромагнитное реле времени РЭВ-815

Тема№ 3: Защита трансформаторов и автотрансформаторов

3. Газовая защита трансформаторов

Газовая защита трансформаторов является наиболее чувствительной и универсальной защитой от внутренних повреждений. Она устанавливается на трансформаторах с масляным охлаждением, имеющих расширитель для масла.

Этот вид защиты основан на том, что любые повреждения в трансформаторе, включая повышенный нагрев масла, приводят к химическому разложению трансформаторного масла, а также органических материалов изоляции обмотки, в результате чего внутри трансформатора происходит выделение газа. Этот газ воздействует на специальные приборы газовой защиты, которые подают сигнал предупреждения или производят отключение трансформатора.

Газовая защита реагирует на такие повреждения, как междувитковое замыкание в обмотках трансформатора, на которые дифференциальная и максимально-токовая защита не реагирует; так как в подобных случаях величина тока замыкания оказывается недостаточной для срабатывания защиты.

Характер повреждения в трансформаторе и размеры повреждения сказываются на интенсивности образования газа. Если повреждение развивается медленно, чему соответствует медленное газообразование, то защита дает предупреждающий сигнал, но отключение трансформатора не производит. Интенсивное и даже бурное газообразование, свидетельствующее о коротком замыкании, создает в системе газовой защиты сигнал такой величины, который помимо предупреждения вызывает отключение неисправного трансформатора. Газовая защита трансформаторов вызывает предупреждающий сигнал и в том случае, когда понижается уровень масла в баке. Газовая защита трансформаторов осуществляется при помощи специальных газовых реле, монтируемых в металлический кожух, врезанных в маслопровод между баком и расширителем.

Рис. 3. Газовое реле поплавкового типа: 1 - корпус, 2,5 - контакты, 3 - стержень, 4 - изоляция выводов, 6 - крышка, 7 - рамка, 8 - ось, 9 - верхний поплавок, 10 - нижний поплавок.

Нормально реле заполнено маслом. Кожух реле имеет смотровое стекло со шкалой, указывающей количество скопившегося и реле газа. В верхней части реле имеются кран для выпуска газа и зажимы для подключения проводов к контактам, расположенным внутри реле.

Конструкция и установка наиболее распространенного газового реле типа ПГ-22 показана на рис 1. У газовых реле этого типа внутри кожуха на шарнирах укреплены два поплавка, представляющие собой полые металлические цилиндры, а на них -- ртутные контакты, соединенные гибкими проводниками с выводными зажимами на крышке реле. Верхний поплавок является сигнальным элементом защиты.

В нормальном состоянии, когда реле полностью заполнено маслом, поплавок всплывает и его контакт при этом разомкнут. При медленном газообразовании газы, поднимающиеся к расширителю, постепенно заполняют реле и вытесняют масло. С понижением уровня масла поплавок, опускаясь, поворачивается на своей оси, при этом происходит замыкание ртутных контактов и посылается предупреждающий сигнал.

При дальнейшем медленном газообразовании реле подействовать на отключение не может, так как оно заполняется газом лишь до верхней кромки отверстия, после чего газы будут проходить в расширитель.

Нижний поплавок, расположенный напротив отверстия маслопровода, является отключающим элементом. Если газообразование происходит бурно, то возникает сильный поток газов из трансформатора в расширитель через газовое реле, при этом нижний поплавок опрокидывается, замыкает ртутные контакты, что приводит в действие аппарат, отключающий трансформатор.

Так как при коротких замыканиях внутри бака трансформатора сразу возникает бурное газообразование, отключение трансформатора происходит быстро, через 0,1--0,3 с. Несколько позже, уже после отключения трансформатора срабатывает и сигнализация.

Для трансформаторов мощностью 6,3 тыс. кВА и выше установка газовой защиты обязательна. Для трансформаторов мощностью от 1000 до 4000 кВА она обязательна только при отсутствии дифференциальной или максимально-токовой защиты с выдержкой времени 0,5--1 с. Для трансформаторов мощностью 400 кВА и выше, устанавливаемых внутри цеха, газовая защита обязательна.

Размещено на Allbest.ru

...

Подобные документы

  • Понятие и назначение релейной защиты, принцип ее работы и основные элементы. Технические характеристики и особенности указательного реле РУ–21, промежуточного реле РП–341, реле прямого действия ЭТ–520, реле тока РТ–80, реле напряжения и времени.

    практическая работа [839,9 K], добавлен 12.01.2010

  • Изучение сущности и особенностей релейной защиты. Классификация реле и конструкция вторичных реле. Особенности токовой защиты, применяемой для защиты от междуфазных коротких замыканий и от однофазных замыканий на землю. Проверка, ремонт и наладка реле.

    курсовая работа [2,6 M], добавлен 05.11.2010

  • Общие сведения о токовой защите в сетях 6-10 кВ. Требования, предъявляемые к релейной защите, основные органы токовых защит. Расчет уставки релейной защиты и проверка пригодности трансформаторов тока. Расчет токовой отсечки, максимальная токовая защита.

    курсовая работа [2,8 M], добавлен 20.03.2013

  • Определение токов короткого замыкания. Защита питающей линии электропередачи. Дифференциальная токовая защита двухобмоточного трансформатора, выполненная на реле РНТ. Расчет релейной защиты электродвигателей, выбор установок предохранения от перегрузки.

    курсовая работа [904,9 K], добавлен 22.09.2012

  • Понятие релейной защиты. Изучение специальных устройств (реле, контакторов, автоматов и т.д.), обеспечивающих автоматическое отключение повреждённой части установки или приводящих в действие сигнализацию. Описание конструкции различных типов реле.

    лабораторная работа [845,3 K], добавлен 12.01.2010

  • Разработка электрической части подстанции 220/110/10 кВ. Выбор главной электрической схемы подстанции и основного электротехнического оборудования. Релейная защита автотрансформаторов на основе реле ДЗТ-21 и ее проверка по коэффициентам чувствительности.

    дипломная работа [1,5 M], добавлен 03.05.2016

  • Работы, проводимые с помощью устройств УПЗ-1 и УПЗ-2. Проверка защит по переменному напряжению до 10 А. Измерение временных параметров реле (простых защит). Испытания электромагнитных реле переменного тока и напряжения. Конструкция индукционного реле.

    дипломная работа [4,1 M], добавлен 25.05.2014

  • Максимальная токовая защита с независимой, зависимой и с ограниченно зависимой характеристикой выдержки времени. Токовая направленная защита, ее описание, условия применения. Релейная защита на переменном оперативном токе. Дифференциальные реле.

    курсовая работа [2,4 M], добавлен 02.02.2014

  • Изучение принципиальной электрической схемы газовой защиты трансформатора. Рассмотрение устройства и принципа действия газового реле. Эксплуатация и ремонт оборудования. Техника безопасности при обслуживании элементов релейной защиты и автоматики.

    реферат [588,1 K], добавлен 27.10.2014

  • Расчет параметров схемы замещения системы электроснабжения. Сопротивление и релейная защита кабельных линий. Расчёт токов короткого замыкания. Максимальная токовая и дифференциальная защита трансформатора. Защита замыканий на землю. Ток срабатывания реле.

    курсовая работа [894,8 K], добавлен 23.08.2012

  • Оценка типов защит, устанавливаемых на трансформаторе заданной мощности и питающей линии 110 кВ. Расчет токов короткого замыкания и дифференциальной защиты на реле РНТ-565. Максимальная токовая защита от перегрузок. Наименьшее сопротивление нагрузки.

    курсовая работа [1,2 M], добавлен 01.10.2014

  • Выбор релейной защиты и автоматики для линий 6кВ и 110кв. Газовая защита трансформатора. Расчёт тока срабатывания защиты по стороне 6 кВ. Выбор трансформатора тока. Расчёт тока срабатывания реле и тока отсечки. Параметры коммутационной аппаратуры.

    курсовая работа [634,8 K], добавлен 20.12.2012

  • Расчет номинальных и рабочих максимальных токов. Определение токов при трехфазных коротких замыканиях. Расчет дифференциальной защиты трансформаторов. Расчет дифференциальной токовой защиты двухобмоточного трансформатора Т2 с реле типа РНТ-565.

    курсовая работа [71,4 K], добавлен 03.04.2012

  • Основные органы релейной защиты, их функции. Пример логической части релейной защиты. Повреждения и ненормальные режимы работы в энергосистемах. Реле минимального напряжения типов РНМ и РНВ. Специальные защиты шин. Схема автоматического включения резерва.

    контрольная работа [892,5 K], добавлен 05.01.2011

  • Реле управления в электрических цепях. Схема устройства поляризованного реле. Параметры электромагнитного реле. Напряжение (ток) втягивания и отпадения. Воспринимающий, промежуточный и исполнительный орган реле. Устройство и принцип действия геркона.

    контрольная работа [2,1 M], добавлен 07.12.2013

  • Реле управления в электрических цепях. Применение реле в устройствах автоматического управления, контроля, сигнализации, защиты, коммутации. Основные типы реле. Устройство поляризованного реле. Электромагнитные реле с магнитоуправляемыми контактами.

    дипломная работа [1,7 M], добавлен 28.11.2013

  • Устройства релейной защиты и автоматики. Расчет токов короткого замыкания. Защита питающей линии электропередач. Защиты трансформаторов и электродвигателей. Самозапуск электродвигателей и защита минимального напряжения. Автоматическое включение резерва.

    курсовая работа [259,2 K], добавлен 23.08.2012

  • Определение параметров схемы замещения и расчет функциональных устройств релейной защиты и автоматики системы электроснабжения. Характеристика электроустановки и выбор установок защиты заданных присоединений: электропередач, двигателей, трансформаторов.

    курсовая работа [422,5 K], добавлен 23.06.2011

  • Расчет параметров схемы замещения, сопротивлений линий прямой последовательности, сопротивлений автотрансформаторов. Расчет двухцепной линии с двусторонним питанием, кольцевой распределительной сети. Выбор трансформаторов тока. Расчёт уставок реле.

    курсовая работа [835,2 K], добавлен 22.07.2014

  • Классификация реле. Реле, реагирующее на одну электрическую величину (ток, напряжение, время), реле с интегральными микросхемами. Электромеханические системы с втягивающим, поворотным и поперечным движением якоря. Электрические контакторы реле.

    лекция [1,2 M], добавлен 27.07.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.