Основы матричных методов расчета электрических цепей

Методы контурных токов и узловых потенциалов, значение и эффективность в принципиальном расчете любой схемы. Уравнения с контурными токами и их разрешение. Матрица узловых токов. Метод контурных токов в матричной форме. Метод узловых потенциалов.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 30.03.2017
Размер файла 82,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Основы матричных методов расчета электрических цепей

Рассмотренные методы расчета электрических цепей - непосредственно по законам Кирхгофа, методы контурных токов и узловых потенциалов - позволяют принципиально рассчитать любую схему. Однако их применение без использования введенных ранее топологических матриц рационально для относительно простых схем. Использование матричных методов расчета позволяет формализовать процесс составления уравнений электромагнитного баланса цепи, а также упорядочить ввод данных в ЭВМ, что особенно существенно при расчете сложных разветвленных схем.

Переходя к матричным методам расчета цепей, запишем закон Ома в матричной форме.

Пусть имеем схему по рис. 1, где - источник тока. В соответствии с рассмотренным нами ранее законом Ома для участка цепи с ЭДС для данной схемы можно записать:

. (1)

Однако, для дальнейших выкладок будет удобнее представить ток как сумму токов k-й ветви и источника тока, т.е.:

. (2)

Подставив (2) в (1), получим:

. (3)

Формула (3) представляет собой аналитическое выражение закона Ома для участка цепи с источниками ЭДС и тока (обобщенной ветви).

Соотношение (3) запишем для всех n ветвей схемы в виде матричного равенства

или

, (4)

где Z - диагональная квадратная (размерностью n x n) матрица сопротивлений ветвей, все элементы которой (взаимную индуктивность не учитываем), за исключением элементов главной диагонали, равны нулю.

Соотношение (4) представляет собой матричную запись закона Ома.

Если обе части равенства (4) умножить слева на контурную матрицу В и учесть второй закон Кирхгофа, согласно которому

, (5)

то

, (6)

то есть получили новую запись в матричной форме второго закона Кирхгофа.

Метод контурных токов в матричной форме

В соответствии с введенным ранее понятием матрицы главных контуров В, записываемой для главных контуров, в качестве независимых переменных примем токи ветвей связи, которые и будут равны искомым контурным токам.

Уравнения с контурными токами получаются на основании второго закона Кирхгофа; их число равно числу независимых уравнений, составляемых для контуров, т.е. числу ветвей связи c=n-m+1. Выражение (6) запишем следующим образом:

. (7)

В соответствии с методов контурных токов токи всех ветвей могут быть выражены как линейные комбинации контурных токов или в рассматриваемом случае токов ветвей связи. Если элементы j-го столбца матрицы В умножить соответствующим образом на контурные токи, то сумма таких произведений и будет выражением тока j-й ветви через контурные токи (через токи ветвей связи). Сказанное может быть записано в виде матричного соотношения

, (8)

где - столбцовая матрица контурных токов; - транспонированная контурная матрица.

С учетом (8) соотношение (7) можно записать, как:

(9)

Полученное уравнение представляет собой контурные уравнения в матричной форме. Если обозначить

, (10)

. (11)

то получим матричную форму записи уравнений, составленных по методу контурных токов:

, (12)

где - матрица контурных сопротивлений; - матрица контурных ЭДС.

В развернутой форме (12) можно записать, как:

, (13)

то есть получили известный из метода контурных токов результат.

Рассмотрим пример составления контурных уравнений.

Пусть имеем схему по рис. 2. Данная схема имеет четыре узла (m=4) и шесть обобщенных ветвей (n=6). Число независимых контуров, равное числу ветвей связи,

c=n-m+1=6-4+1=3.

Граф схемы с выбранным деревом (ветви 1, 2, 3) имеет вид по рис. 3.

Запишем матрицу контуров, которая будет являться матрицей главных контуров, поскольку каждая ветвь связи входит только в один контур. Принимая за направление обхода контуров направления ветвей связи, получим:

В

.Диагональная матрица сопротивлений ветвей

Z

Матрица контурных сопротивлений

Zk=BZBT

.

Матрицы ЭДС и токов источников

Тогда матрица контурных ЭДС

.

Матрица контурных токов

.

Таким образом, окончательно получаем:

,

где ; ; ; ; ; ; ; ; .

Анализ результатов показывает, что полученные три уравнения идентичны тем, которые можно записать непосредственно из рассмотрения схемы по известным правилам составления уравнений по методу контурных токов. электрический цепь матричный

Метод узловых потенциалов в матричной форме

На основании полученного выше соотношения (4), представляющего собой, как было указано, матричную запись закона Ома, запишем матричное выражение:

, (14)

где - диагональная матрица проводимостей ветвей, все члены которой, за исключением элементов главной диагонали, равны нулю.

Матрицы Z и Y взаимно обратны.

Умножив обе части равенства (14) на узловую матрицу А и учитывая первый закон Кирхгофа, согласно которому

, (15)

получим:

. . (16)

Выражение (16) перепишем, как:

. (17)

Принимая потенциал узла, для которого отсутствует строка в матрице А, равным нулю, определим напряжения на зажимах ветвей:

. (18)

Тогда получаем матричное уравнение вида:

. (19)

Данное уравнение представляет собой узловые уравнения в матричной форме. Если обозначить

(20)

, (21)

то получим матричную форму записи уравнений, составленных по методу узловых потенциалов:

(22)

где - матрица узловых проводимостей; - матрица узловых токов.

В развернутом виде соотношение (22) можно записать, как:

(23)

то есть получили известный из метода узловых потенциалов результат.

Рассмотрим составление узловых уравнений на примере схемы по рис. 4.

Данная схема имеет 3 узла (m=3) и 5 ветвей (n=5). Граф схемы с выбранной ориентацией ветвей представлен на рис. 5.

Узловая матрица (примем )

А

Диагональная матрица проводимостей ветвей:

Y ,

где .

Матрица узловых проводимостей

.

Матрицы токов и ЭДС источников

Следовательно, матрица узловых токов будет иметь вид:

.Таким образом, окончательно получаем:

,

где ; ; ; ; .

Анализ результатов показывает, что полученные уравнения идентичны тем, которые можно записать непосредственно из рассмотрения схемы по известным правилам составления уравнений по методу узловых потенциалов.

Литература

1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. -5-е изд., перераб. -М.: Энергоатомиздат, 1989. -528с.

2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. -7-е изд., перераб. и доп. -М.: Высш. шк., 1978. -528с.

Размещено на Allbest.ru

...

Подобные документы

  • Метод контурных токов позволяет уменьшить количество уравнений системы. Метод узловых потенциалов. Положительное направление всех узловых напряжений принято считать к опорному узлу. Определить токи в ветвях.

    реферат [105,0 K], добавлен 07.04.2007

  • Метод уравнений Кирхгофа. Баланс мощностей электрической цепи. Сущность метода контурных токов. Каноническая форма записи уравнений контурных токов. Метод узловых напряжений (потенциалов). Матричная форма узловых напряжений. Определение токов ветвей.

    реферат [108,5 K], добавлен 11.11.2010

  • Порядок расчета цепи постоянного тока. Расчет токов в ветвях с использованием законов Кирхгофа, методов контурных токов, узловых потенциалов, эквивалентного генератора. Составление баланса мощностей и потенциальной диаграммы, схемы преобразования.

    курсовая работа [114,7 K], добавлен 17.10.2009

  • Ориентированный граф схемы электрической цепи и топологических матриц. Уравнения по законам Кирхгофа в алгебраической и матричной формах. Определение токов в ветвях схемы методами контурных токов и узловых потенциалов. Составление баланса мощностей.

    практическая работа [689,0 K], добавлен 28.10.2012

  • Расчет токов методом контурных токов, методом узловых потенциалов. Составление баланса мощности. Определение комплексных действующих значений токов. Баланс активных и реактивных мощностей. Уравнения Кирхгоффа в дифференциальной и в комплексной формах.

    контрольная работа [226,8 K], добавлен 02.12.2014

  • Применение метода контурных токов для расчета электрических схем. Алгоритм составления уравнений, порядок расчета. Метод узловых потенциалов. Определение тока только в одной ветви с помощью метода эквивалентного генератора. Разделение схемы на подсхемы.

    презентация [756,4 K], добавлен 16.10.2013

  • Составление на основании законов Кирхгофа системы уравнений для нахождения токов во всех ветвях расчетной схемы. Определение токов во всех ветвях схемы методом узловых потенциалов и контурных токов. Расчет суммарной мощности источников электроэнергии.

    практическая работа [375,5 K], добавлен 02.12.2012

  • Уравнение для вычисления токов ветвей по законам Кирхгофа. Определение токов в ветвях схемы методом контурных токов и узловых потенциалов. Построение потенциальной диаграммы для указанного контура. Расчет линейной цепи синусоидального переменного тока.

    методичка [6,9 M], добавлен 24.10.2012

  • Система уравнений для расчётов токов на основании законов Кирхгофа. Определение токов методами контурных токов и узловых потенциалов. Вычисление баланса мощностей. Расчет тока с помощью теоремы об активном двухполюснике и эквивалентном генераторе.

    практическая работа [276,5 K], добавлен 20.10.2010

  • Определение синусоидального тока в ветвях однофазных электрических цепей методами контурных токов и узловых напряжений. Составление уравнения по II закону Кирхгофа для контурных токов. Построение графика изменения потенциала по внешнему контуру.

    контрольная работа [270,7 K], добавлен 11.10.2012

  • Понятие и общая характеристика сложных цепей постоянного тока, их отличительные признаки и свойства, сущность и содержание универсального метода анализа и расчета параметров. Метод уравнений Кирхгофа, узловых потенциалов, контурных токов, наложения.

    контрольная работа [189,5 K], добавлен 22.09.2013

  • Расчет электрической цепи постоянного тока с использованием законов Кирхгофа, методом контурных токов, методом узловых потенциалов. Расчет реактивных сопротивлений, комплексов действующих значений токов, баланса активных и реактивных мощностей цепи.

    курсовая работа [143,9 K], добавлен 17.02.2016

  • Методы контурных токов, узловых потенциалов, эквивалентного генератора. Составление уравнений по законам Кирхгофа. Линейные электрические цепи синусоидального тока. Трехфазная цепь с несимметричной нагрузкой. Расчет параметров четырехполюсника.

    курсовая работа [772,1 K], добавлен 17.03.2015

  • Определение напряжения в узлах электрической цепи. Получение тока ветвей цепи и их фазы методами контурных токов, узловых потенциалов и эквивалентного генератора. Теорема об эквивалентном источнике напряжения. Применение первого и второго закона Кирхгофа.

    курсовая работа [816,5 K], добавлен 18.11.2014

  • Основные понятия, определения и законы в электротехнике. Расчет линейных электрических цепей постоянного тока с использованием законов Ома и Кирхгофа. Сущность методов контурных токов, узловых потенциалов и эквивалентного генератора, их применение.

    реферат [66,6 K], добавлен 27.03.2009

  • Определение токов в ветвях цепи и напряжения на резисторах методами контурных токов и узловых потенциалов. Расчет тока в одной из ветвей методами наложения или эквивалентного источника напряжения. Составление баланса активных и реактивных мощностей.

    контрольная работа [2,1 M], добавлен 06.12.2013

  • Метод контурных токов и узловых потенциалов. Составление баланса электрических мощностей. Построение потенциальной диаграммы для контура, который включает источники электродвижущей силы. Нахождение тока в ветви с помощью метода эквивалентного генератора.

    контрольная работа [730,5 K], добавлен 27.03.2013

  • Решение задач: линейные электрические цепи постоянного и синусоидального тока и трехфазные электрические цепи синусоидального тока. Метод контурных токов и узловых потенциалов. Условия задач, схемы электрических цепей, поэтапное решение и проверка.

    курсовая работа [86,5 K], добавлен 23.10.2008

  • Свойства резистора. Расчет резистивной цепи постоянного тока методом эквивалентного генератора. Изучение методов уравнений Кирхгофа, контурных токов, узловых потенциалов, наложения и двух узлов. Расчет тока в электрических цепях и баланса мощностей.

    контрольная работа [443,9 K], добавлен 07.04.2015

  • Краткий обзор методик измерения токов, напряжений, потенциалов. Опытная проверка законов Кирхгофа и принципа наложения. Расчет токов, узловых потенциалов, эквивалентного генератора. Построение потенциальной диаграммы и составление баланса мощностей.

    курсовая работа [343,3 K], добавлен 09.02.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.