Способы составления характеристического уравнения
Определение понятия и анализ особенностей составления характеристического уравнения путем использования выражения для входного сопротивления цепи на синусоидальном токе, на основе выражения главного определителя и на основе дифференциального уравнения.
Рубрика | Физика и энергетика |
Вид | лекция |
Язык | русский |
Дата добавления | 30.03.2017 |
Размер файла | 100,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Способы составления характеристического уравнения
Характеристическое уравнение составляется для цепи после коммутации. Оно может быть получено следующими способами:
· непосредственно на основе дифференциального уравнения вида (2) (см. лекцию №24), т.е. путем исключения из системы уравнений, описывающих электромагнитное состояние цепи на основании первого и второго законов Кирхгофа, всех неизвестных величин, кроме одной, относительно которой и записывается уравнение (2);
· путем использования выражения для входного сопротивления цепи на синусоидальном токе;
· на основе выражения главного определителя.
Согласно первому способу в предыдущей лекции было получено дифференциальное уравнение относительно напряжения на конденсаторе для последовательной R-L-C-цепи, на базе которого записывается характеристическое уравнение.
Следует отметить, что, поскольку линейная цепь охвачена единым переходным процессом, корни характеристического уравнения являются общими для всех свободных составляющих напряжений и токов ветвей схемы, параметры которых входят в характеристическое уравнение. Поэтому по первому способу составления характеристического уравнения в качестве переменной, относительно которой оно записывается, может быть выбрана любая. сопротивление цепь ток синусоидальный
Составление характеристического уравнения по методу входного сопротивления заключается в следующем: записывается входное сопротивление цепи на переменном токе; jw заменяется на оператор р; полученное выражение приравнивается к нулю. Уравнение совпадает с характеристическим.
Следует подчеркнуть, что входное сопротивление может быть записано относительно места разрыва любой ветви схемы. При этом активный двухполюсник заменяется пассивным по аналогии с методом эквивалентного генератора. Данный способ составления характеристического уравнения предполагает отсутствие в схеме магнитосвязанных ветвей; при наличии таковых необходимо осуществить их предварительное развязывание.
Для цепи относительно зажимов источника
.
Заменив jw на р и приравняв полученное выражение к нулю, запишем
При составлении характеристического уравнения на основе выражения главного определителя число алгебраических уравнений, на базе которых он записывается, равно числу неизвестных свободных составляющих токов. Алгебраизация исходной системы интегро-дифференциальных уравнений, составленных, например, на основании законов Кирхгофа или по методу контурных токов, осуществляется заменой символов дифференцирования и интегрирования соответственно на умножение и деление на оператор р. Характеристическое уравнение получается путем приравнивания записанного определителя к нулю. Поскольку выражение для главного определителя не зависит от правых частей системы неоднородных уравнений, его составление можно производить на основе системы уравнений, записанных для полных токов.
Для цепи алгебраизованная система уравнений на основе метода контурных токов имеет вид
Отсюда выражение для главного определителя этой системы
.
Приравняв D к нулю, получим результат, аналогичный (1).
Общая методика расчета переходных процессов классическим методом
В общем случае методика расчета переходных процессов классическим методом включает следующие этапы:
1. Запись выражения для искомой переменной в виде
2. Нахождение принужденной составляющей общего решения на основании расчета установившегося режима послекоммутационной цепи.
3. Составление характеристического уравнения и определение его корней (для цепей, описываемых дифференциальными уравнениями первого порядка, вместо корней можно находить постоянную времени t - см. лекцию №26). Запись выражения свободной составляющей в форме, определяемой типом найденных корней.
4. Подстановка полученных выражений принужденной и свободной составляющих в соотношение (2).
5. Определение начальных условий и на их основе - постоянных интегрирования.
Примеры расчета переходных процессов классическим методом
1. Переходные процессы в R-L цепи при ее подключении к источнику напряжения
Такие процессы имеют место, например, при подключении к источнику питания электромагнитов, трансформаторов, электрических двигателей и т.п.
Рассмотрим два случая: а) и б) .
Согласно рассмотренной методике для тока в цепи можно записать
Тогда для первого случая принужденная составляющая тока
Характеристическое уравнение
,
откуда и постоянная времени .
Таким образом,
Подставляя (4) и (5) в соотношение (3), запишем
.
В соответствии с первым законом коммутации . Тогда
,
откуда .
Таким образом, ток в цепи в переходном процессе описывается уравнением
,
а напряжение на катушке индуктивности - выражением
.
При втором типе источника принужденная составляющая рассчитывается с использованием символического метода:
,
.
Отсюда
.
Выражение свободной составляющей не зависит от типа источника напряжения. Следовательно,
.
Поскольку , то
.
Таким образом, окончательно получаем
Анализ полученного выражения (6) показывает:
1. При начальной фазе напряжения постоянная интегрирования А=0. Таким образом, в этом случае коммутация не повлечет за собой переходного процесса, и в цепи сразу возникнет установившийся режим.
2. При свободная составляющая максимальна по модулю. В этом случае ток переходного процесса достигает своей наибольшей величины.
Если значительна по величине, то за полпериода свободная составляющая существенно не уменьшается. В этом случае максимальная величина тока переходного процесса может существенно превышать амплитуду тока установившегося режима. Как видно , максимум тока имеет место примерно через . В пределе при .
Таким образом, для линейной цепи максимальное значение тока переходного режима не может превышать удвоенной амплитуды принужденного тока: .
Аналогично для линейной цепи с конденсатором: если в момент коммутации принужденное напряжение равно своему амплитудному значению и постоянная времени цепи достаточно велика, то примерно через половину периода напряжение на конденсаторе достигает своего максимального значения , которое не может превышать удвоенной амплитуды принужденного напряжения: .
2. Переходные процессы при отключении катушки индуктивности от источника питания
При размыкании ключа в цепи на рис. 5 принужденная составляющая тока через катушку индуктивности .
Характеристическое уравнение
,
и .
В соответствии с первым законом коммутации
.
Таким образом, выражение для тока в переходном режиме
и напряжение на катушке индуктивности
Анализ (7) показывает, что при размыкании цепей, содержащих индуктивные элементы, могут возникать большие перенапряжения, которые без принятия специальных мер могут вывести аппаратуру из строя. Действительно, при модуль напряжения на катушке индуктивности в момент коммутации будет во много раз превышать напряжение источника: . При отсутствии гасящего резистора R указанное напряжение прикладывается к размыкающимся контактам ключа, в результате чего между ними возникает дуга.
Заряд и разряд конденсатора
При переводе ключа в положение 1 начинается процесс заряда конденсатора:
.
Принужденная составляющая напряжения на конденсаторе .
Из характеристического уравнения
определяется корень . Отсюда постоянная времени .
Таким образом,
.
При t=0 напряжение на конденсаторе равно (в общем случае к моменту коммутации конденсатор может быть заряженным, т.е. ). Тогда
.
Соответственно для зарядного тока можно записать
.
В зависимости от величины : 1 - ; 2 - ; 3 - ; 4 - - возможны четыре вида кривых переходного процесса.
При разряде конденсатора на резистор (ключ на рис.6 переводится в положение 2) . Постоянная времени .
Тогда, принимая, что к моменту коммутации конденсатор был заряжен до напряжения (в частном случае ), для напряжения на нем в переходном режиме можно записать
.
Соответственно разрядный ток
Как видно из (8), во избежание значительных бросков разрядного тока величина должна быть достаточно большой.
В заключение отметим, что процессы заряда и разряда конденсатора используются в генераторах пилообразного напряжения, широко применяемых в автоматике. Для этого ключ в схеме заменяется на электронный.
Литература
1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. -5-е изд., перераб. -М.: Энергоатомиздат, 1989. -528с.
2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. -7-е изд., перераб. и доп. -М.: Высш. шк., 1978. -528с.
3. Теоретические основы электротехники. Учеб. для вузов. В трех т. Под общ. ред. К.М.Поливанова. Т.1. К.М.Поливанов. Линейные электрические цепи с сосредоточенными постоянными. -М.: Энергия- 1972. -240с.
Размещено на Allbest.ru
...Подобные документы
Составление характеристического уравнения и расчёт его корней. Определение принужденных составляющих. Расчет независимых и зависимых начальных условий. Составление дифференциального уравнения по законам Кирхгофа. Построение графиков токов и напряжений.
курсовая работа [484,5 K], добавлен 16.07.2015Знакомство с уравнениями прямолинейного движения материальной точки. Характеристика преимуществ безразмерных переменных. Рассмотрение основных способов построения общего решения неоднородного уравнения. Определение понятия дифференциального уравнения.
презентация [305,1 K], добавлен 28.09.2013Определение реакции связей, вызываемых заданными нагрузками. Решение задачи путем составления уравнения равновесия рамы и расчета действующих сил. Сущность закона движения груза на заданном участке, составление уравнения траектории и его решение.
задача [136,1 K], добавлен 04.06.2009Описание произвольного электромагнитного поля с помощью вектор-потенциала. Волновые уравнения. Асимптотические выражения. Решение волнового уравнения для напряженностей полей. Электромагнитное мультипольное излучение. Уравнение Максвелла в пространстве.
презентация [92,5 K], добавлен 19.02.2014Способы получение характеристического уравнения. Переходные процессы в цепях с одним реактивным элементом, с двумя разнородными реактивными элементами. Временные характеристики цепей. Расчет реакции линейной цепи на входное воздействие произвольного вида.
контрольная работа [1,3 M], добавлен 28.11.2010Определение свойств объекта, подлежащего исследованию. Изменение сопротивления медного проводника. Процессы распространения тепловой энергии. Идентификация типа дифференциального уравнения. Входной и выходной параметры. Размерность входного возмущения.
курсовая работа [190,5 K], добавлен 13.03.2014Расчет силы тока и сопротивления по закону Ома. Составление характеристического уравнения и нахождение его корней через вычисление постоянной времени. Собственный магнитный поток и закон его сохранения. Построение графиков функций и схем в мультислим.
курсовая работа [2,4 M], добавлен 26.01.2011Расчет тока в катушке классическим и операторным методами для заданной электрической цепи с постоянной электродвижущей силой. Применение метода характеристического уравнения для определения вида свободной составляющей. Закон изменения тока в катушке.
курсовая работа [385,0 K], добавлен 02.11.2021Анализ и оценка влияния падения напряжения на максимум передаваемой мощности. Оценка статической устойчивости электрической системы с помощью корней характеристического уравнения. Основные допущения, принимаемые при расчете динамической устойчивости.
контрольная работа [155,4 K], добавлен 19.08.2014Магнитные измерения и нахождение электрических величин на основе второго уравнения Максвелла. Средства определения сопротивления электрической цепи и изоляции преобразователей, требования безопасности и выполнение опытов. Активная и реактивная мощность.
контрольная работа [34,9 K], добавлен 20.12.2010Расчет переходных процессов в цепях второго порядка классическим методом. Анализ длительности апериодического переходного процесса. Нахождение коэффициента затухания и угловой частоты свободных колебаний. Вычисление корней характеристического уравнения.
презентация [240,7 K], добавлен 28.10.2013Алгоритм расчета цепей второго порядка. Способ вычисления корней характеристического уравнения. Анализ динамических режимов при скачкообразном изменении тока в индуктивности и напряжения на емкости. Применение закона сохранения заряда и магнитного потока.
презентация [262,0 K], добавлен 20.02.2014Значимость кинетических уравнений типа Больцмана и Власова. Сдвиг плотности вдоль траекторий динамической системы. Уравнения геодезических и эволюция функции распределения на римановом многообразии. Одномерная модельная задача для уравнения Власова.
дипломная работа [1,8 M], добавлен 16.05.2011Методы получения дифференциального уравнения теплопроводности при одномерном распространении тепла. Расчет температурного поля в стационарных условиях по формуле Лапласа. Изменение температуры в плоской однородной стене при стационарных условиях.
контрольная работа [397,4 K], добавлен 22.01.2012Изучение движения тела под действием постоянной силы. Уравнение гармонического осциллятора. Описание колебания математического маятника. Движение планет вокруг Солнца. Решение дифференциального уравнения. Применение закона Кеплера, второго закона Ньютона.
реферат [134,8 K], добавлен 24.08.2015Анализ цепи операторным методом при апериодическом воздействии, частотным методом при апериодическом и периодическом воздействии. Уравнения состояния и система уравнений Кирхгофа. Амплитудный и фазовый спектры входного сигнала. Полоса пропускания цепи.
курсовая работа [2,0 M], добавлен 06.11.2011Конвективный теплообмен - распространение тепла в жидкости (газе) от поверхности твердого тела или к ней. Смысл закона Ньютона, дифференциального уравнения Фурье - Кирхгофа и критериального уравнения Навье – Стокса. Теплоотдача при конденсации паров.
реферат [208,1 K], добавлен 15.10.2011Уравнения Больцмана, которое описывает статистическое распределение частиц в газе или жидкости. Принципиальные свойства уравнения Лиувилля. Безразмерная форма уравнений Боголюбова. Факторизация и корреляционные функции. Свободно-молекулярное течение.
реферат [76,9 K], добавлен 19.01.2011Особенности определения токов и составления баланса мощностей. Разработка электрической схемы цепи. Определение эквивалентного сопротивления цепи. Расчет токов ветвей источника. Алгоритм составления суммарного баланса мощностей, потребляемых приемниками.
контрольная работа [1,4 M], добавлен 31.12.2021Уравнение неразрывности потока жидкости. Дифференциальные уравнения движения Эйлера для идеальной жидкости. Силы, возникающие при движении реальной жидкости. Уравнение Навье - Стокса. Использование уравнения Бернулли для идеальных и реальных жидкостей.
презентация [220,4 K], добавлен 28.09.2013