Судовые двигатели внутреннего сгорания

Классификация двигателей внутреннего сгорания. Физико-химические свойства и виды топлива для дизелей. Основные параметры рабочего процесса двигателя, процесс смесеобразования и сгорания топлива в цилиндрах дизеля. Чертеж форм камер сгорания двигателей.

Рубрика Физика и энергетика
Вид курсовая работа
Язык русский
Дата добавления 12.04.2017
Размер файла 1,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Желательно иметь большое количество струй, обусловленное числом сопловых отверстий распылителя форсунки: чем больше струй, тем равномернее распределяется топливо в воздушном объёме камеры сгорания. Однако как бы небыли совершенны формы камер сгорания и распыливания топлива, при впрыскивании топлива отдельными струями оно не будет перемешано со всем воздухом, если последний будет неподвижен. Следовательно, для наиболее совершенного смесеобразования необходимо, чтобы в момент впрыскивания топлива в воздухе, заполняющим камеру сгорания, были вихревые движения

Распыливание топлива. Сопловые отверстия распылителя форсунки являются каналами, в 4-7 раз больше их диаметра. Вследствие трения внешнего слоя струи топлива о стенки канала скорость перемещения частиц топлива внутри струи разная: она тем выше, чем ближе находится слой топлива к оси канала. Значит, распад основной струи топлива на отдельные струи начинается ещё в сопловом канале. При выходе из него струи встречают сильное сопротивление сжатого воздуха, заполняющего камеру сгорания. Частицы топлива дробятся, уменьшаются в результате испарения, отклоняясь дальше от оси канала. В результате монолитная в начале струя, распадаясь, образует подобие факела, состоящего из паров топлива, воздуха и остаточных газов. Топливо самовоспламеняется практически во время дробления струй

Размеры струй зависят от свойств топлива, формы сопловых каналов и сопротивления воздуха. На продолжительность процесса распыливания топлива влияют его поверхностное натяжение, вязкость и плотность. При значительных поверхностном натяжении и вязкости дробление топлива затрудняется, уменьшается угол рассеивания струи, а её длина увеличивается.

Форма и частота сопловых каналов влияет на образование вихрей внутри струи топлива. При значительной длине соплового канала, его острых кромках и шероховатости топливо дробится быстрее, угол рассеивания струи снаружи увеличивается, а длина уменьшается. Сопротивление, оказываемое сжатым воздухом в камере сгорания струям топлива, зависит от скорости его истечения из сопловых отверстий распылителя форсунки. Для качественного смесеобразования скорость истечения топлива должна быть 250- 359 м/с. С повышением её происходит более мелкое и равномерное дробление топлива и увеличивается длина струи.

Скорость истечения топлива при определённой впрыскиваемой дозе зависит от разности давления вспрыскивания воздуха в цилиндре и от суммарного поперечного сечения сопловых отверстий распылителя. У форсунок двигателя в распылителе предусматривают 6-8 сопловых отверстий диаметром от 0.2 до 0.5 мм. В таких условиях для получения указанной скорости истечения топлива давление впрыскивания должно быть 40-80 МПа и выше.

Таблица 1

Показатели

Дизельное топливо для быстроходных дизелей (ГОСТ 305-82)

Газотурбинное топливо(ГОСТ 10433-75)

Топливо для мало и среднеоборотных дизелей (ГОСТ 1667-68)

Л

З

А

ТГВК

ТГ

ДК

ДМ

Цетановое число Фракционный состав

45

45

45

?

?

?

?

50% перегоняется при температуре, °С, не выше

280

280

255

?

?

?

?

96% перегоняется при температуре (конец перегонки), °С, не выше

360

340

330

?

?

?

?

Кинематическая вязкость при 20 °С мм2/с 50 °С ВУ не более

3-6 ?

1,8-5 ?

1,5-4 ?

?

?

?

?

Температура застывания, °С, не выше, для климатической зоны: Умеренной Холодной

-10 ?

-35 -45

? -55

+5 ?

+5 ?

-5 ?

+10 ?

Температура помутнения, °С, не выше, для климатической зоны. Умеренной Холодной

-5 ?

-25 -35

? ?

? ?

? ?

? ?

? ?

Температура вспышки, °С,для судовых дизелей не ниже

61

40

35

65

61

65

85

Массовая доля серы, %, не более В топливе видаІ »»»»»»»»»»»» ІІ

0,2 0,5

0,2 0,5

0,2 0,4

1,0 ? ?

2,5 ? ?

1,5 ? ?

3,0 ? ?

Массовая доля меркаптановой серы, %, не более

0,01

0,01

0,01

?

?

?

?

Концентрация фактических смол, мг на 100см3 топлива,

40

30

30

25

25

?

?

Кислотность, мг КОН на 100 см3 топлива, не более

5

5

5

?

?

?

?

Йодное число, г йода на 100 г топлива, не более

6

6

6

20

45

?

?

Зольность, %, не более

0,01

0,01

0,01

0,01

0,01

0,04

0,15

Коксуемость, 10%-ного остатка, %, не более

0,3

0,3

0,3

0,5

0,5

3,0

10,0

Коэффициент фильтруемости, не более

3

3

3

?

?

?

?

Плотность при 20°С, кг/м3, не более

860

840

830

935

935

930

970

Продолжительность впрыскивания топлива составляет 15-40? угла поворота коленчатого вала, а у быстроходных двигателей ещё больше. Для улучшения процесса смесеобразования необходимо, чтобы скорость впрыскивания возросла и её максимум был в конце впрыскивания. Тогда каждая последующая доза впрыскиваемого в цилиндр топлива будет проникать в наиболее дальние объёмы воздуха, ещё не принявшие участия в процессе горения. В связи с этим профиль шайбы для топливного насоса высокого давления делают таким, чтобы давление впрыскивания сразу же начинало возрастать с момента начала подъёма плунжера. Начальное давление впрыскивания форсунок судовых дизелей составляет 18-38 МПа.

Формы камер сгорания и способы смесеобразования. Для обеспечения наиболее полного и равномерного заполнения объёма камеры сгорания микрокаплями топлива, образовавшимися при распыливании, форма камеры сгорания должна быть согласованна с числом, диаметром и направлением сопловых каналов форсунки

Чтобы обеспечивать качественное образование смеси топлива и воздуха в дизелях, работающих в разных условиях, на различных видах топлива, с разными диаметрами цилиндров применяют объёмный, пленочный, объёмно-плёночный, предкамерный и вихрекамерный способы смесеобразования.

Камеры сгорания по конструкции бывают неразделённые и разделённые. В неразделённых камерах применяются объёмный, плёночный и объёмно-плёночный способы смесеобразования.

В основе принципа объёмного смесеобразования впрыскивание топлива через многоструйный распылитель форсунки непосредственно в камеру сгорания и равномерное распыление микрочастиц топлива по всему её объёму.

При полусферической форме камеры сгорания основная масса воздуха сосредоточена в районе форсунки, что позволяет уменьшить длину струи и увеличить угол его рассеивания. В данном случае угол распыливания вменьше, чем в остальных камерах сгорания. При полусферической форме камеры исключено попадание частичек топлива на охлаждаемые поверхности. Вместе с тем при такой форме камеры хуже условия для отвода теплоты от днища поршня: тепловой поток должен направляться в низ, тогда как края днища направлены в верх. существуют места, как, например, в центре камеры, не охватываемые струями топлива. В связи с указанным при полусферической формы камеры особенно необходимо вихревое движение воздуха.

В двухтактных двигателях форма днища поршня затрудняет продувку цилиндра. Поэтому более эффективную камеру сгорания создают в двухтактных двигателях в днище крышки цилиндра при плоском днище поршня

Рис 13. Формы камер сгорания двигателей

а?НФД48 б?НФД26 в?Д50 г?Л275 д-ЧСП18/22 е?ДР 30/50

Наиболее соответствует формам струй топлива камера сгорания Гессельмана. В отличие от рассмотренной камеры основная масса воздуха сосредотачивается в дали от форсунки. Чтобы частички топлива не падали на охлаждаемые стенки цилиндра, по краям поршня предусматривают высокие бурты. Условия для качественного смесеобразования при такой камере лучше. Однако бурты и выступающая средняя часть днища поршня перегреваются, из-за чего закоксовываются верхние уплотнительные кольца. Вихревое движение воздуха в камере сгорания создаётся в процессе наполнения цилиндра: воздух в следствии того, что выпускной клапан смещён в сторону от оси цилиндра, завихряется. При ходе сжатия появятся вихревые потоки воздуха, обусловленные неплоской формой днища поршня или крышки цилиндра. В этом отношении камера более удачна, чем ранее рассмотренные камеры. При впрыскивании топлива вихревое движение воздуха возникает из-за поглощения им кинетической энергии струй топлива.

Однако все перечисленные вихри слабы и не организованны. Сильный организованный вихрь в двухтактных двигателях можно создать, если соответствующим образом направить продувочные окна. В четырёхтактных двигателях, чтобы создать круговой вихрь в поступающем в цилиндр воздухе, иногда выполняют криволинейным канал крышки цилиндра, по которому поступает воздух к впускному клапану.

Объёмный способ смесеобразования в неразделённых камерах практически у всех типов двигателей с диаметром цилиндра более 150 мм. Основные достоинства этого способа - простая конструкция камер сгорания, высокая экономичность двигателя при умеренных степенях сжатия (е=12ч17), хорошие пусковые качества, компактность элементов системы охлаждения. Его недостатки - необходимо обеспечивать высокие значения коэффициента избытка воздуха (б=1.8ч2.2) для достижения полного сгорания топлива и высокие давления впрыскивания топлива. В связи с этим требования к качеству топливной аппаратуры повышаются. Поэтому в двигателях с небольшим объёмом цилиндров (менее 150 мм) применяют другие способы смесеобразования.

Стремление улучшить процесс смесеобразования привело к созданию так называемых полуразделённых камер сгорания, расположенных в головке поршня.

Для плёночного смесеобразования необходимо значительную часть (90-95%) впрыскиваемой дозы топлива подавать на стенки камеры сгорания под небольшим углом, обеспечивающим растекание топлива тонким слоем, а около стенки организовать вихри путём перетекания воздуха из пространства над поршнем в камеру внутри самого поршня при ходе сжатия. Интенсивность вихрей будет увеличиваться при приближение поршня к в. м. т. Массивные не охлаждаемые стенки камеры способствуют быстрому воспламенению паров топлива.

Чисто плёночное смесеобразование явилось этапом на пути совершенствования способов образования горючих смесей. Из-за недостатков двигателя (сложность доводки рабочего процесса, низкие пусковые качества двигателя, дымность при работе на малых нагрузках) этот способ применяют ограниченно, но он вошёл как составная часть в объёмно-плёночный способ смесеобразования. Этот способ является одним из наиболее совершенных для высокооборотных дизелей с небольшими диаметрами цилиндров. Камера сгорания размещена так же, как и при плёночном способе, в поршне, но форсунка расположена в центре крышки цилиндра по его оси, а не под углом.

Топливные струи (40-60% всей дозы), направляемые на кромку горловины, растекаются тонким слоем по стенкам камеры и испаряются. Пары перемешиваются с воздухом благодаря интенсивному вихреобразованию вследствие вытеснения заряда из надпоршневого пространства при подходе поршня к.в.м.т.

У дизелей с объёмно-плёночным смесеобразованием умеренные значения максимального давления цикла [p =(6ч7.5) МПа], сравнительно низкий удельный расход топлива [g?=(217ч245) г/(кВт·ч)]. Достигается почти полное сгорание топлива при небольшом значении коэффициента избытка воздуха (б?1.5).

Объёмно-плёночный способ смесеобразования применяется в дизелях с диаметром цилиндров 70-300 мм.

Рис 14. Вихревая камера

Основной недостаток рассмотренных неразделённых камер - неполное сгорание форм камеры сгорания и размеров струй распылённого топлива. Кроме того, из-за влияния качества топлива на условия смесеобразования ограничено использование в таких двигателях топлив различных марок. В этом отношении зарекомендовали себя положительно так называемые разделённые камеры, состоящие из двух полостей: надпоршневой и соединённой с ней одним или несколькими каналами отделенной полости в крышке. На речном флоте широко распространены вихревые камеры разновидность многокамерного смесеобразования. При этом способе в крышке цилиндра расположена вихревая камера сферической формы. Она соединена каналом с пространством над поршнем. К приходу поршня в в. м. т. В ней находится до70-80% всего объёма воздуха, остальные 20-30% в канале и в надпоршневом пространстве. При ходе сжатия воздух из цилиндра по каналу перетекает в вихревую камеру, где появляются закономерные круговые вихри.

Форсунка впрыскивает топливо внутрь вихревой камеры, где и сгорает его основная часть. В последующем, по мере перетекания газов из вихревой камеры в цилиндр, происходит догорание топлива за счёт участия воздуха, оставшегося в канале и надпоршневом пространстве.

Ввиду наличия интенсивных вихрей воздух, заключённый в вихревой камере, обладает значительным запасом кинетической энергии. Это позволяет получить хорошее смесеобразование при малых давлениях впрыскиваемого топлива (примерно 12-24 МПа) и при одноструйном распылителе форсунки.

Вихревые камеры часто изготавливают с вставной горловиной, являющейся тепловым аккумулятором: нагреваясь при горении, она отдаёт теплоту воздуху в процессе сжатия, благодаря чему уменьшается период задержки воспламенения, особенно при малых нагрузках.

Упрощение конструкции топливной аппаратуры, связанное с относительно низким давлением впрыскивания - большое преимущество вихрекамерных дизелей. Кроме того, вследствие хорошего перемешивания воздуха с топливом в них лучше используется воздух для сгорания, что позволяет при тех же размерах цилиндра получить мощность больше, чем в двигателях с однокамерным смесеобразованием. Двигатели с вихревыми камерами менее чувствительны к качеству топлива, но и менее экономичны:

на перетекание воздуха в вихревую камеру и газов из неё затрачивается часть внутренней энергии газа, которая могла быть полезно использована;

конструкция крышки цилиндра сложнее;

вследствие разделения объёма камеры сгорания на две части увеличивается поверхность, приходящаяся на единица объёма воздуха. Из-за повышенного в связи с этим отвода теплоты через стенки снижается температура сжимаемого воздуха, в результате труднее запуск холодного двигателя. А поэтому в вихрекамерных двигателях предусматривают специальную запальную спираль, устанавливаемую под форсункой.

На ряде высокооборотных форсированных дизелей зарубежных фирм с диаметром цилиндра 160-185 мм достаточно эффективен предкамерный способ смесеобразования. Камера сгорания при таком способе состоит из предкамеры (форкамеры), расположенной в крышке цилиндра, и основной камеры, заключённой между днищами поршня, крышками и стенками цилиндровой втулки. С основной камерой предкамера соединено отверстиями, суммарное проходное сечение которых составляет 0.5-1% площади поршня. Объём предкамеры составляет 20-40% объёма камеры сжатия. Всё это обеспечивает максимальную разность давлений в конце сжатия в предкамере и надпоршневом пространстве (0.3-0.5 МПа).

При истечении из предкамеры пары топлива интенсивно перемешиваются с зарядом основной камеры сгорания, в результате чего обеспечивается наиболее полное сгорание. Дизели с предкамерами менее чувствительны к качеству топлива и условиям работы, чем вихрекамерные.

Основные недостатки предкамерных двигателей - повышенные потери теплоты из-за увеличенной поверхности камеры сгорания; энергетические потери на перемешивание паров топлива, воздуха, газов через отверстия; плохие пусковые качества (необходимо запальное устройство); низкая экономичность [удельный расход топлива 270 г/(кВт·ч)]

На речном флоте предкамерные двигатели не применяют, на морском - ограниченно в качестве вспомогательных.

Задержка самовоспламенения. Впрыснутое в цилиндр топливо воспламеняется не сразу. Сначала частички его испаряются, перемешиваются с воздухом, и смесь нагревается до температуры самовоспламенения. Затем должен произойти разрыв внутримолекулярных связей углеводородов с образованием углерода и водорода, вступающих в реакцию с кислородом воздуха. Однако этот процесс сложный, многостадийный. Под действием высокой температуры в смеси воздуха и паров топлива образуются свободные атомы или радикалы, реагирующие с молекулами углеводорода. В результате возникают новые свободные радикалы, способные вступить в реакцию и стать центрами реакций окисления.

При протекании этих процессов в смеси наблюдается неяркое голубоватое свечение, не сопровождающееся заметным повышением температуры и давления, в связи с чем такие процессы называют холодно-пламенными. С увеличением концентрации активных центров происходит тепловой взрыв, т. е. возникает горение, сопровождающееся ярким свечением, быстрым повышением температуры и давления.

Следовательно, после впрыскивания частичек топлива в цилиндр происходит задержка самовоспламенения, вызванная физическими и химическими подготовительными процессами. Время, прошедшее от момента попадания частичек в цилиндр до начала горения, называют периодом задержки самовоспламенения. Период задержки самовоспламенения составляет 0.001-0.005 с.

Если предположить, что двигатель работает с частотой вращения 750 мин, то его коленчатый вал поворачивается на 1 примерно за 0.0002 с. Значит, за период задержки самовоспламенения кривошип повернётся на угол от 5 до 25 в зависимости от длины периода задержки самовоспламенения. Это обстоятельство вынуждает начинать впрыскивание топлива в цилиндр с опережением, т. е. до того, как кривошип прейдёт в в. м. т. Угол на который кривошип не доходит до в.м.т. в момент начала впрыскивания топлива, называют углом опережения подачи топлива. Он является очень важным параметром регулирования двигателя. У судовых дизелей угол опережения подачи топлива составляет 15-33?.

Протекание процесса сгорания. Подача топлива в цилиндр начинается с опережением. За период задержки самовоспламенения коленчатый вал поворачивается и начинается горение.

Давление в цилиндре повышается.

За период задержки самовоспламенения в цилиндр поступило какое то количество топлива, составляющее 15-50% цикловой подачи, т. е. дозы, впрыскиваемой за цикл. В течение периода задержки самовоспламенения оно успеет испариться и перемешаться с воздухом. С появлением пламени от самовоспламенения частиц топлива, поступающих в цилиндр первыми, повышаются температура и давление смеси, поэтому значительно ускоряются реакции молекул топлива, впрыснутого за период задержки самовоспламенения. В результате непосредственного контакта с пламенем и образования новых очагов самовоспламенения скопившееся в цилиндре топливо сгорает очень быстро. Температура, а следовательно и давление резко возрастают.

Если скорость нарастания давления будет больше. Чем 400-600 кПа/? п. к. в., то нагрузка на поршень будет ударной и в цилиндре возникнет стук. Такую работу двигателя называют жёсткой. При жёсткой работе повышается уровень шума, увеличивается изнашивание подшипников, появляется деформация поршневых колец, в результате которых они могут поломаться.

Рис 15 Диаграмма процесса сгорания

Топливо, поступающее в цилиндр по окончании задержки самовоспламенения, попадает в среду. Охваченную пламенем. И спокойно сгорает. Горение его заканчивается несколько позднее, чем впрыскивание. В это время поршень уже движется в низ, объём над ним увеличивается и давление в цилиндре существенно не изменяется. Некоторое количество топлива догорает уже в процессе расширения рабочего газа.

Обеспечение мягкой работы двигателя. Жёсткость работы дизеля зависит от скорости нарастания давления после воспламенения, а эта скорость - от количества топлива, поступившего с цилиндр за период задержки воспламенения. В конечном итоге жёсткость работы дизеля зависит от периода задержки самовоспламенения: чем оно больнее, тем жестче будет работа дизеля. Поэтому для обеспечения мягкой работы дизеля следует уменьшить период задержки самовоспламенения.

Скорость протекания физических и химических процессов увеличивается с повышением температуры. Следовательно, уменьшению периода задержки самовоспламенения способствует повышение температуры сжатого в цилиндре воздуха. О влиянии пониженной температуры хорошо известно в практике эксплуатации дизелей: холодный двигатель работает со стуками в цилиндре. Которые после прогрева дизеля прекращаются.

Период задержки самовоспламенения уменьшается и при повышении давления сжатия, что объяснимо как улучшением теплообмена между воздухом и топливом при увеличенной плотности воздуха, так и понижением температуры самовоспламенением с ростом давления. Таким образом, мягкая работа двигателя возможна при хорошей герметичности камеры сгорания в цилиндре, при предписанной руководством по эксплуатации дизеля степени сжатия и при поддержании его в горячем состоянии.

Период задержки самовоспламенения зависит от размера частиц топлива, образующихся при распыливании: чем они меньше, тем быстрее топливо нагревается. Следовательно, с ухудшением распыливания топлива увеличивается склонность двигателя к жёсткой работе. Однако период задержки самовоспламенения зависит не от среднего размера частиц, а от минимального, ибо некоторое количество мелких частиц имеется в топливе и при низком качестве его распыления. Поэтому жёсткая работа двигателя возможна лишь при резком ухудшении распыливания, что наблюдается, например, при зависании иглы форсунки.

Как уже было показано. Период задержки самовоспламенения колеблется от 0.001 до 0.005 с. и обусловлен составом топлива. Следовательно, жёсткость работы дизеля в значительной степени зависит от температуры самовоспламенения топлива. Это качество топлива характеризуют цетановым числом. Его находят путём сравнения самовоспламенения исследуемого топлива и смеси двух эталонных углеводородов: цетана СН и альфаметилнафталина СНСН. Для первого из них характерен минимальный период задержки самовоспламенения, для второго значительный. Процесс сравнения проводят на специальном одноцилиндровом дизеле с переменной степенью сжатия. Сначала определяют степень сжатия, при котором исследуемое топливо самовоспламеняется при положении поршня строго в в.м.т. Затем подбирают эквивалентную смесь цетана и альфаметилнафталина, т. е. такую, которая при том же угле опережения подачи топлива и при той же степени сжатия самовоспламеняется при положении поршня в в.м.т.

Цетановое число топлива соответствует доле цетана в процентах в такой его смеси с альфаметилнафталином, которая эквивалентна топливу по самовоспламенению.

Например, если в эквивалентной смеси цетана содержится 45%. А альфаметилнафтанина 55%, то цетановое число будет 45.

Достаточно мягкая работа быстроходных дизелей обеспечивается при цетановом числе топлива не нижже45. Тихоходные могут мягко работать при цетановом числе ниже 40. Для повышения цитанового числа в топливо вводят присадки. При повышении цетанового числа более 55 уменьшается полнота сгорания топлива.

Кроме того, чрезмерное сокращение периода задержки самовоспламенения приводит к вялому протеканию процесса сгорания, что в конечном счёте снижает к.п.д. цикла.

Инновации.

В последнее время все большее применение получают поршневые двигатели с принудительным наполнением цилиндра воздухом повышенного давления, т.е. двигатели с наддувом. И перспективы двигателестроения связаны, на мой взгляд, с двигателями данного типа, т.к. здесь имеется огромный резерв неиспользованных конструкторских возможностей, и есть над чем подумать, а во-вторых, считаю, что большие перспективы в будущем именно у этих двигателей. Ведь наддув позволяет увеличить заряд цилиндр воздухом и, следовательно, количество сжимаемого топлива, а тем самым повысить мощность двигателя. Для привода нагнетателя в современных двигателях обычно используют энергию отработавших газов. В этом случае отработавшие в цилиндре газы, которые имеют в выпускном коллекторе повышенное давление, направляют в газовую турбину, приводящую во вращение компрессор. Согласно схеме газотурбинного наддува четырехтактного двигателя, отработавшие газы из цилиндров двигателя поступают в газовую турбину, после которой отводятся в атмосферу. Центробежный компрессор, вращаемый турбиной, засасывает воздух из атмосферы и нагнетает его под давлением 0.130...0.250 МПа в цилиндры. Помимо использования энергии выхлопных газов достоинством такой системы наддува перед приводом компрессора от коленчатого вала является саморегулирование, заключающееся в том, что с увеличением мощности двигателя соответственно возрастают давление и температура отработавших газов, а следовательно мощность турбокомпрессора. При этом возрастают давление и количество подаваемого им воздуха. В двухтактных двигателях турбокомпрессор должен иметь более высокую мощность, чем в четырехтактных, т.к. при продувке часть воздуха проходит в выпускные окна, транзитный воздух не используется для зарядки цилиндра и понижает температуру выпускных газов. Вследствие этого на частичных нагрузках энергии отработавших газов оказывается недостаточно для газотурбинного привода компрессора. Кроме того, при газотурбинном наддуве невозможен запуск дизеля. Учитывая это, в двухтактных двигателях обычно применяют комбинированную систему наддува с последовательной или параллельной установкой компрессора с газотурбинным и компрессор с механическим приводом. При наиболее распространенной последовательной схеме комбинированного наддува компрессор с газотурбинным приводом производит только частичное сжатие воздуха, после чего он дожимается компрессором, приводимым во вращение от вала двигателя. Благодаря применению наддува возможно повышение мощности по сравнению с мощностью двигателя без наддува от 40% до 100% и более. На мой взгляд, основным направлением развития современных поршневых двигателей с воспламенением от сжатия будет являться значительное форсирование их по мощности за счет применения высокого наддува в сочетании с охлаждением воздуха после компрессора. В четырехтактных двигателях в результате применения давления наддува до 3.1...3.2 МПа в сочетании с охлаждением воздуха после компрессора достигается среднее эффективное давление Pe=18.2...20.2 МПа. Привод компрессора в этих двигателях газотурбинный. Мощность турбины достигает 30% от мощности двигателя, поэтому повышаются требования к КПД турбины и компрессора. Неотъемлемым элементом системы наддува этих двигателей должен являться охладитель воздуха, установленный после компрессора. Охлаждение воздуха производится водой, циркулирующей с помощью индивидуального водяного насоса по контуру: воздухоохладитель - радиатор для охлаждения воды атмосферным воздухом. Перспективным направлением развития поршневых двигателей внутреннего сгорания является более полное использование энергии выпускных газов в турбине, обеспечивающей мощность компрессора, нужную для достижения заданного давления наддува. Избыточная мощность в этом случае передается на коленчатый вал дизеля. Реализация такой схемы наиболее возможна для четырехтактных двигателей.

Заключение

Итак, мы видим, что двигатели внутреннего сгорания - очень сложный механизм. Функция, выполняемая тепловым расширением в двигателях внутреннего сгорания не так проста, как это кажется на первый взгляд. Да и не существовало бы двигателей внутреннего сгорания без использования теплового расширения газов. И в этом мы легко убеждаемся, рассмотрев подробно принцип работы ДВС, их рабочие циклы - вся их работа основана на использовании теплового расширении газов. Но ДВС - это только одно из конкретных применений теплового расширения. И судя по тому, какую пользу приносит тепловое расширение людям через двигатель внутреннего сгорания, можно судить о пользе данного явления в других областях человеческой деятельности. И пускай проходит эра двигателя внутреннего сгорания, пусть у них есть много недостатков, пусть появляются новые двигатели, не загрязняющие внутреннюю среду и не использующие функцию теплового расширения, но первые еще долго будут приносить пользу людям, и люди через многие сотни лет будут по доброму отзываться о них, ибо они вывели человечество на новый уровень развития, а пройдя его, человечество поднялось еще выше.

Размещено на Allbest.ru

...

Подобные документы

  • Понятие о смесеобразовании. Основные классификации двигателей внутреннего сгорания. Смесеобразование и сгорание топлива в цилиндрах дизеля. Фракционный состав топлива, вязкость, температурные характеристики. Задержка самовоспламенения и распыливание.

    курсовая работа [1,9 M], добавлен 11.03.2015

  • Описание двигателя внутреннего сгорания - тепловой машины, в которой химическая энергия топлива, сгорающего в рабочей зоне, преобразуется в механическую работу. Сравнительная характеристика четырёхтактного и двухтактного двигателей, их применение.

    презентация [9,0 M], добавлен 11.12.2016

  • Коэффициент полезного действия теплового двигателя. Основные элементы конструкции и функции газовой турбины. Поршневые двигатели внутреннего сгорания, их классификация. Два основных класса реактивных двигателей и характеризующие их технические параметры.

    презентация [3,5 M], добавлен 24.10.2016

  • Основные типы двигателей: двухтактные и четырехтактные. Конструкция двухтактного двигателя внутреннего сгорания. Принцип зажигания двигателя. История создания и принцип работы электродвигателя. Способы возбуждения электродвигателей постоянного тока.

    реферат [1,1 M], добавлен 11.10.2010

  • Описание идеальных и реальных циклов двигателей внутреннего сгорания. Рассмотрение термодинамических процессов, происходящих в циклах. Изучение основных формул для расчета энергетических характеристик циклов и параметров в их характерных точках.

    курсовая работа [388,1 K], добавлен 13.06.2015

  • История тепловых двигателей. Ещё в давние времена люди старались использовать энергию топлива для превращения её в механическую. Паровая машина, двигатель внутреннего сгорания, паровая и газовая турбины, реактивный двигатель.

    реферат [5,5 K], добавлен 17.05.2006

  • История создания тепловых двигателей и общий принцип их действия. Виды тепловых двигателей: паровая машина, двигатель внутреннего сгорания, паровая и газовая турбины, реактивный двигатель. Использование современных альтернативных источников энергии.

    презентация [1,3 M], добавлен 23.02.2011

  • Порядок расчета теоретически необходимого количества воздуха для сгорания топлива. Определение параметров процессов впуска. Вычисление основных параметров процесса сгорания, индикаторных и эффективных показателей двигателя. Основные показатели цикла.

    контрольная работа [530,4 K], добавлен 14.11.2010

  • Параметры рабочего тела. Количество горючей смеси для карбюраторного двигателя. Индикаторные параметры рабочего цикла. Расчет внешних скоростных характеристик двигателей. Силы давления газов. Приведение масс частей кривошипно-шатунного механизма.

    курсовая работа [375,9 K], добавлен 07.07.2015

  • Тепловой расчет двигателя внутреннего сгорания. Определение параметров в начале и в конце сжатия, а также давления сгорания. Построение политропы сжатия и расширения. Индикаторная диаграмма расчетного цикла. Конструктивный расчет деталей дизеля.

    дипломная работа [501,1 K], добавлен 01.10.2013

  • Изобретение первой паровой машины. Характеристика, строение, принципы работы двигателя внутреннего сгорания, двигателя Стирлинга, электродвигателя, пневмодвигателя, их классификации. Влияние выбросов двигателей на окружающую среду, загрязнение атмосферы.

    презентация [997,8 K], добавлен 18.03.2011

  • Температура - параметр, характеризующий тепловое состояние вещества. Температурные шкалы, приборы для измерения температуры и их основные виды. Термодинамический цикл поршневого двигателя внутреннего сгорания с подводом тепла при постоянном давления.

    контрольная работа [124,1 K], добавлен 25.03.2012

  • История создания и принцип работы электродвигателя. Способы возбуждения электрических двигателей постоянного тока. Основные типы двигателей и их разновидности. Конструкция двухтактного двигателя внутреннего сгорания. Принцип работы зажигания двигателя.

    презентация [419,0 K], добавлен 05.05.2011

  • Использование энергии биомассы для получения альтернативных видов моторных топлив для двигателей внутреннего сгорания, их преимущество; технология производства биогазов, биоэтанола и биодизеля из сельскохозяйственных и бытовых отходов; зарубежный опыт.

    контрольная работа [479,8 K], добавлен 16.01.2011

  • Тепловой расчет бензинового двигателя. Средний элементарный состав бензинового топлива. Параметры рабочего тела. Параметры окружающей среды и остаточные газы. Процесс впуска, сжатия, сгорания, расширения и выпуска. Индикаторные параметры рабочего цикла.

    контрольная работа [588,6 K], добавлен 24.03.2013

  • Изобретение первого парового двигателя Томасом Ньюкоменом. Использование в первых паровозах и машинах. Эволюция в индустриальную эпоху. Двигатели внутреннего сгорания. Увеличение среднего количества полезного действия. Самый сильный двигатель в мире.

    презентация [834,0 K], добавлен 17.02.2016

  • Тепловой двигатель как устройство, в котором внутренняя энергия преобразуется в механическую, история его появления. Типы двигателя внутреннего сгорания. Схемы работы двигателей. Экологические проблемы использования тепловых машин и пути их решения.

    презентация [4,3 M], добавлен 25.03.2012

  • Промышленное применение электроэнергии. Совершенствование паровых двигателей и котельных установок. Новые тепловые двигатели. Паровые турбины. Двигатели внутреннего сгорания. Водяные турбины. Идея использования атомной энергии.

    реферат [17,8 K], добавлен 03.04.2003

  • Физико–химические основы горения и взрыва. Тепловая, цепная и диффузная теории горения веществ, взрывчатые вещества. Свойства твердых топлив и продуктов сгорания, термодинамические свойства продуктов сгорания. Виды пламени и скорость его распространения.

    курс лекций [1,7 M], добавлен 05.01.2013

  • Описание парового котла. Состав и теплота сгорания топлива. Расчёт объемов и энтальпий воздуха, теплосодержания дымовых газов и продуктов сгорания, потерь теплоты и расхода топлива, топочной камеры, теплообмена в топке и конвективных поверхностей нагрева.

    курсовая работа [1000,2 K], добавлен 19.12.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.