Измерение тензорных величин магнитного поля в микроструктурном анализе ферромагнитных материалов
Специфические особенности применения комплексных величин для определения основных составляющих магнитного поля. Характеристика структурной схемы тензорного магнитометрического датчика. Исследование топологии тангенциальной компоненты тензорной меры.
Рубрика | Физика и энергетика |
Вид | статья |
Язык | русский |
Дата добавления | 28.05.2017 |
Размер файла | 188,8 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
Размещено на http://www.allbest.ru
Технический контроль большинства ферромагнитных изделий производится в приложенном магнитном поле. При этом допускается, что предыдущее магнитное состояние изделия не влияет, или почти не влияет, на формирование полей дефектов, находящихся в изделии. Намагничивание изделий приводит к потере структуры магнитного поля, сложившейся в результате действия нагрузок, износа, а также первичных полей дефектов.
Поля дефектов ферромагнитного изделия, находящегося в поле Земли, имеют особую структуру, т.к. формируются так называемыми объёмными зарядами. Вклад этих зарядов в общее поле изделия ощутим только в слабых полях, при намагничивании изделия до состояния, пригодного для классического магнитного контроля - состояния технического насыщения, основными источниками полей дефектов становятся поверхностные заряды.
Технический контроль можно осуществлять и в поле Земли, не прибегая к дополнительному намагничиванию, и такой подход имеет ряд преимуществ: появляется возможность контролировать износ и «усталость» металла, которые ещё не привели к образованию дефектов, структуру металла для определения его качества, исключаются затраты на подготовку изделия до контроля и после него.
Рассмотрим задачу нахождения поля дефекта в плоскопараллельной пластине, которая хорошо изучена. В качестве модели дефекта используется щель бесконечная по оси z, с шириной 2b, глубиной залегания h1, высотой h=h2 - h1 (рис. 1). Задача рассматривается в рамках дипольного приближения.
тензорный магнитометрический тангенциальный
Рис. 1 _ Дефект в плоскопараллельной пластине
Составляющие магнитного поля удобно представить в виде комплексных величин:
, .
Магнитное поле N дефектов в воздухе можно представить в виде суммы полей создаваемых отдельными дефектами:
, (1)
но так как дефекты воздействуют друг на друга, невозможно аддитивным сложением получить результирующее поле - нужно ввести поправки, описывающие взаимодействие. Поле одного дефекта можно записать в виде:
, (2)
где TFj(z) _ топографический фактор j-го дефекта, уj - плотность магнитных зарядов на гранях j-го дефекта, с учётом влияния остальных дефектов. Топографический фактор содержит информацию о геометрии дефекта и его положении, плотность магнитных зарядов определяется размером дефекта, внешним полем и характеристиками материала. Будем рассматривать только один дефект, считая, что окружающие дефекты находятся на большом расстоянии и не оказывают никакого влияния.
Топографический фактор и плотность зарядов определяются из следующих выражений:
, (3)
. (4)
Расчеты магнитных полей по формулам (1) - (4) производились в системе Mathcad. На рис. 2 представлен график тангенциальной Bx(x, 0) компоненты магнитного поля для дефекта с параметрами 2b = 0,002 мм, h1 = 0,8 мм, h2 = 0,99 мм, d = 1 мм, во внешнем поле Н0 = 40 А/м, при магнитной проницаемости материала м = 5000. Значение поля выбрано из расчёта среднего значения магнитного поля Земли. Из рис. 2 видно, что топология поля дефекта имеет явно выраженный дипольный характер.
Рис. 2 _ Топология магнитного поля модели дефекта
Для подтверждения результата расчётов был создан искусственный дефект с подобными характеристиками. Для этого в стальной пластине была прорезана тонкая канавка, к этой пластине со стороны канавки плотно прижата такая же пластина. При этом канавка находится между слоями металла и её можно считать внутренним дефектом. Регистрация поля рассеяния искусственного дефекта проводилась с помощью холловского магнитометра с использованием метода повешения чувствительности преобразователя Холла. Результаты эксперимента приведены на рис. 3. Различие в пиковых значениях поля полученного в численном и натурном эксперименте обуславливается тем, что расчётное поле получено на поверхности пластины, а реальный датчик находится на некотором расстоянии от неё, а также различием в значениях поля Земли Н0 и магнитной проницаемости исследуемого материала м.
Рис. 3 _ Топология магнитного поля реального дефекта
Для того чтобы повысить пространственное разрешение и чувствительность технического контроля в поле Земли, необходимо привлечь дополнительную информацию о поле дефекта, исследуя его пространственные производные. Для магнитного поля в свободном пространстве существует 5 независимых компонент тензора второго ранга первых производных вида ?Bi/?rj.
Так как в слабых полях намагниченность материала вблизи дефекта изменяется резко, топология производных компонент поля рассеяния дефекта будет более информативна по сравнению с топографией самих компонент.
Для регистрации этих производных используется тензорный магнитометрический датчик, в котором преобразователи Холла расположены в вершинах равнобедренного треугольника (рис. 4).
Рис. 4 - Схема тензорного магнитометрического датчика
В качестве меры дефекта можно использовать величину:
, (5)
где Bi - значения поля в точках 1, 2 и 3, совпадающих с центрами преобразователей Холла. В зависимости от ориентации преобразователей Холла в тензорном магнитометрическом датчике измеряемыми величинами B1, B2, B3 могут быть как нормальные, то есть By компоненты индукции, так и тангенциальные, то есть Bx. На рис. 5 приведена топология тангенциальной компоненты тензорной меры (5), при а = 5,8 мм. Дефекты расположены на расстоянии 3 мм друг от друга, на разной глубине.
Рис. 5 - Топология тангенциальной компоненты тензорной меры
На рис. 6 изображена топология тангенциальной компоненты магнитного поля, сплошная линия - топология поля на поверхности пластины, пунктирная - на высоте 2 мм от поверхности. Как видно из рис. 6 топология скалярных компонент поля близкорасположенных дефектов не позволяет их разрешать.
Рис. 6 - Топология тангенциальной компоненты магнитного поля
Таким образом, привлечение дополнительной информации в виде тензорных величин магнитного поля позволяет увеличить разрешающую способность магнитного метода технического контроля, а также качество получаемых магнитных образов дефектов. Эти преимущества позволяют производить анализ микроструктуры ферромагнитных материалов.
Размещено на Allbest.ru
...Подобные документы
Анализ источников магнитного поля, основные методы его расчета. Связь основных величин, характеризующих магнитное поле. Интегральная и дифференциальная формы закона полного тока. Принцип непрерывности магнитного потока. Алгоритм расчёта поля катушки.
дипломная работа [168,7 K], добавлен 18.07.2012Регулирование скорости тягового электродвигателя при изменении магнитного поля. Пересчет характеристик при изменении магнитного поля и смешанном возбуждении. Особенности магнитного потока при шунтировании сопротивления и изменением числа витков обмотки.
презентация [321,9 K], добавлен 14.08.2013История открытия магнитного поля. Источники магнитного поля, понятие вектора магнитной индукции. Правило левой руки как метод определения направления силы Ампера. Межпланетное магнитное поле, магнитное поле Земли. Действие магнитного поля на ток.
презентация [3,9 M], добавлен 22.04.2010Расчет основных параметров низкотемпературной газоразрядной плазмы. Расчет аналитических выражений для концентрации и поля пространственного ограниченной плазмы в отсутствие магнитного поля и при наличии магнитного поля. Простейшая модель плазмы.
курсовая работа [651,1 K], добавлен 20.12.2012Магнитное поле — составляющая электромагнитного поля, появляющаяся при наличии изменяющегося во времени электрического поля. Магнитные свойства веществ. Условия создания и проявление магнитного поля. Закон Ампера и единицы измерения магнитного поля.
презентация [293,1 K], добавлен 16.11.2011Проявления магнитного поля, параметры, его характеризующие. Особенности ферромагнитных (магнитомягких и магнитотвердых) материалов. Законы Кирхгофа и Ома для магнитных цепей постоянного тока, принцип их расчета, их аналогия с электрическими цепями.
контрольная работа [122,4 K], добавлен 10.10.2010Основные параметры электромагнитного поля и механизмы его воздействия на человека. Методы измерения параметров электромагнитного поля. Индукция магнитного поля. Разработка технических требований к прибору. Датчик напряженности электромагнитного поля.
курсовая работа [780,2 K], добавлен 15.12.2011Обнаружение магнитоупругого эффекта при воздействии на феррит акустической волны при отсутствии и наличии внешнего постоянного магнитного поля. Исследование изменения магнитоупругого эффекта при изменении величины напряженности внешнего магнитного поля.
дипломная работа [2,9 M], добавлен 14.12.2015Виды геометрической симметрии источников магнитного поля. Двойственность локальной идеализации токового источника. Опытное обнаружение безвихревого вида электромагнитной индукции. Магнито-термический эффект.
статья [57,7 K], добавлен 02.09.2007Определение ионосферы и линейного слоя, расчёт диалектической проницаемости ионосферы без учёта магнитного поля. Распределение магнитного поля в точке попадания на Землю отражённого луча. Закон изменения электронной концентрации для линейного слоя.
курсовая работа [321,8 K], добавлен 14.07.2012Магнитное поле Земли и его характеристики. Понятие геомагнитных возмущений и их краткая характеристика. Механизм возмущения магнитного поля Земли. Влияние ядерных взрывов на магнитное поле. Механизм влияния различных факторов на геомагнитное поле Земли.
контрольная работа [30,6 K], добавлен 07.12.2011Исследование электрического поля методом зонда. Температурная зависимость сопротивления проводников и полупроводников. Определение удельного заряда электрона. Магнитное поле кругового тока и измерение горизонтальной составляющей магнитного поля Земли.
учебное пособие [4,6 M], добавлен 24.11.2012Определение наличия и направления магнитного поля метки. Создание постоянного магнитного поля, компенсирующего действие постоянных внешних магнитных полей. Принципиальная схема зарядно-разрядного узла устройства. Определение разряда накопительной емкости.
лабораторная работа [1,2 M], добавлен 18.06.2015Электрический заряд и закон его сохранения в физике, определение напряженности электрического поля. Поведение проводников и диэлектриков в электрическом поле. Свойства магнитного поля, движение заряда в нем. Ядерная модель атома и реакции с его участием.
контрольная работа [5,6 M], добавлен 14.12.2009Теоретическая характеристика магнитного импеданса и методика его исследования. Основные факторы, влияющие на МИ-эффект. Влияние упругих растягивающих напряжений на магнитоимпеданс аморфных фольг. Датчики магнитного поля на основе магнитного импеданса.
курсовая работа [1,2 M], добавлен 16.12.2010Образование вращающегося магнитного поля. Подключение обмотки статора к цепи переменного трехфазного тока. Принцип действия асинхронного двигателя. Приведение параметров вторичной обмотки к первичной. Индукция магнитного поля. Частота вращения ротора.
презентация [455,0 K], добавлен 21.10.2013Изучение свойств графита и структуры однослойных нанотруб. Квантовые поправки к проводимости невзаимодействующих электронов. Эффекты слабой локализации в присутствии магнитного поля. Взаимодействие в куперовском канале в присутствии магнитного поля.
дипломная работа [1,9 M], добавлен 20.10.2011Введение в магнитостатику, сила Лоренца. Взаимодействие токов. Физический смысл индукции магнитного поля и его графическое изображение. Сущность принципа суперпозиции. Примеры расчета магнитного поля прямого тока и равномерно движущегося заряда.
лекция [324,8 K], добавлен 24.09.2013Гравитационное поле и его свойства. Направленность гравитационных сил, силовая характеристика гравитационного поля. Действие магнитного поля на движущийся заряд. Понятие силы Лоренца, определение ее модуля и направления. Расчет обобщенной силы Лоренца.
контрольная работа [1,7 M], добавлен 31.01.2013Характеристики магнитного поля и явлений, происходящих в нем. Взаимодействие токов, поле прямого тока и круговой ток. Суперпозиция магнитных полей. Циркуляция вектора напряжённости магнитного поля. Действие магнитных полей на движущиеся токи и заряды.
курсовая работа [840,5 K], добавлен 12.02.2014