Цифровой емкостный дилатометр

Развитие нанотехнологий и электроники в направлении миниатюризации. Разработка простого и недорогого емкостного цифрового дилатометра. Изучение конструкции датчика перемещения. Зависимость показаний механизма от температуры микросхемы-преобразователя.

Рубрика Физика и энергетика
Вид статья
Язык русский
Дата добавления 29.05.2017
Размер файла 211,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Волгоградский государственный университет

Цифровой емкостный дилатометр

А.А. Орлов

В.К. Игнатьев

Развитие нанотехнологий и электроники в направлении миниатюризации ставит перед измерительной техникой задачу вывести контроль размеров и перемещений на принципиально новый уровень. При этом промышленные измерители перемещения (дилатометры) являются дорогостоящим оборудованием, что часто делает невозможным использование их в учебных целях или в мелком производстве.

Была проведена разработка простого и недорогого емкостного цифрового дилатометра. При этом предполагаемая предельная чувствительность прибора должна составить 10 нм. Наличие такого устройства позволит внедрять системы интегрированного контроля состояния систем, подвергающихся различному воздействию (тепловое, электромагнитное и др.). Появится возможность контролировать свойства материалов непосредственно на месте их использования, а не в специализированных лабораториях.

Блок схема разработанного Цифрового емкостного дилатометра (далее ЦЕД) представлена на рис. 1.

Рис. 1. Структурная схема цифрового емкостного дилатометра

Измерение емкости и прямое преобразование емкость-код осуществляет микросхема AD7745 фирмы Analog Device [1]. В основе принципа преобразования лежит эффект переключающихся конденсаторов в сигма-дельта АЦП.

Преобразование перемещения в емкость осуществляет дифференциальный емкостной датчик перемещения оригинальной конструкции. Среди иных типов преобразования перемещения в измеряемую величину (индуктивный, радиорезонансный, оптический и др.) он обладает следующими преимуществами: 1) потребностью в малом перемещении подвижной части емкостного датчика; 2) малым потребление энергии; 3) простотой изготовления; 4) использованием дешевых материалов; 5) отсутствием контактов; 6) высокой точностью и стабильной работой систем с емкостными датчиками; 7) возможностью широкой регулировки приборов с некоторыми типами емкостных датчиков. [2].

Чертеж разработанного дифференциального емкостного датчика приведен на рис. 2. Контакт с контролируемым образцом осуществляется при помощи заостренного текстолитового штыря (10). Он приклеен к подвижному штоку (4), который представляет собой две стеклянные трубочки, между которыми вклеены последовательно прямоугольные пластинки керамика - текстолит - керамика (Рис. 2 (б)). Подвижный шток перемещается внутри системы трех электродов (5, 6). Возвращающую упругую силу обеспечивает пружина (2), припаянная к измерительной плате (1). Основной принцип заключается в создании большой неоднородности диэлектрической проницаемости в пространстве датчика, что позволяет добиться большой крутизны преобразования перемещение _ емкость. Для компенсации взаимного влияния каналов между дифференциальными обкладками (5) проложена через текстолитовые прослойки медная фольга, подключенная к специальному выводу (SHEILD) микросхемы AD7745, предназначенному для компенсации емкости электродов на экран при измерениях. Электроды емкостной системы подключаются к измерительной плате (1) посредством вилок на плате и розеток BLS (7, 8) на корпусе. Вся система экранируется электростатическим экраном из медной фольги толщиной 0,1 мм. цифровой дилатометр температура микросхема

Рис. 2. Конструкция емкостного датчика перемещения: а) неподвижная часть,

1 - плата измерительной части; 2 -пружина; 3 -- заземленный электрод; 4 - составной шток; 5 - дифференциальные электроды; 6 - общий электрод; 7 -- розетка BLS-3; 8 - розетка BLS-2; 9 - корпус датчика; 10 - текстолитовый заостренный штырь; 11 - медный экран б) подвижный шток

Код, соответствующий измеренной емкости, отсылается по интерфейсу I2C на микроконтроллер Atmega 16 [3]. Данные обрабатываются на микроконтроллере и отсылаются на персональный компьютер (далее ПК) через группу интерфейсов UART-USB-COM, реализованную на микросхеме FT232RL [4]. Микроконтроллер обладает собственной клавиатурой и LCD экраном для автономной работы. Запрограммированное меню позволяет использовать дилатометр в различных режимах.

Для определения чувствительности были произведены измерения стабильности показания ЦЕД. Измерения проводились при закрепленном штоке. Частота поступления данных с ПК составляет 3 Гц. Они представляют собой измеряемую емкость с микросхемы AD7745 в относительных единицах (С0 - динамический диапазон преобразователя 4 пФ). Мгновенная нестабильность, характеризуемая среднеквадратичным отклонением результатов составила 1,1•10-6. Долговременная нестабильность, измеренная в течение часа, равна 4•10-6.

Микросхема AD7745 имеет встроенный термодатчик, который может быть использован для термокомпенсации показаний емкости. Наличие температурного дрейфа объясняется как температурным дрейфом самой микросхемы-преобразователя, так и измерением диэлектрической проницаемости керамики, используемой в емкостном датчике. На рис. 3 показана зависимость показаний ЦЕД от температуры при фиксированном положении штока. Используя линейную аппроксимацию зависимости, можно улучшить характеристики долговременной стабильности ЦЕД.

Рис. 3. Зависимость показаний ЦЕД от температуры микросхемы-преобразователя

График калибровочной характеристики размещен на рис. 4. Перемещение производилось при помощи микрометра, неподвижная часть которого была прикреплена к корпусу датчика. Отсчеты калибровочной характеристики получены при смещении 0,05 мм. Если принять за деление минимально различимое изменение емкости соответствующее двум среднеквадратичным отклонениям, т.е. 2•10-6, то предельная чувствительность равна 10 нм.

Разработка датчика перемещения с меньшим динамическим диапазоном, но большей чувствительностью возможна, однако и сейчас созданный дилатометр превосходит аналоги, работающие на оптическом принципе, и может быть использован в системах, где необходимо контролировать перемещение с высокой точностью, например, для позиционирования датчика Холла при магнитной дефектоскопии материалов [5].

Рис. 4. Калибровочная характеристика ЦЕД

Работа выполнена по Государственному контракту № 14.740.11.0830 ФЦП «Научные и научно педагогические кадры инновационной России».

Литература

1. Ацюковский В.А. Емкостные дифференциальные датчики перемещения - Библиотека по автоматике - выпуск 12. - М., Л.: Государственное Энергетическое издательство, 1960. - 105с.

2. Программирование на языке С для AVR и PIC микроконтроллеров/ Сост. Ю.А. Шпак - Киев: «МКПресс», 2006г. - 400с.

3. Орлов А.А. Система поиска микродефектов в ферромагнитных материалах // Микроэлектронные информационно-управляющие системы и комплексы: сборник тезисов и статей Всероссийской научной школы/ Юж.-Рос. гос. техн. ун-т (НПИ).- Новочерскасск: ЛИК, 2011. - 192 с.

Размещено на Allbest.ru

...

Подобные документы

  • Определение максимальной в заданном диапазоне температуры погрешность нелинейности характеристики, необходимость линеаризации. Определение разрядности аналого-цифрового преобразования термопары ТХА(К), принцип его работы, функциональная схема прибора.

    курсовая работа [126,3 K], добавлен 30.11.2009

  • Разработка цифрового частотомера с источником питания от сети переменного тока напряжением 220 В и частотой 50 Гц. Обоснование структурной схемы. Выбор элементной базы. Преобразование аналогового сигнала в цифровой с помощью усилителя-ограничителя.

    курсовая работа [1,4 M], добавлен 23.12.2011

  • Устройство, управляющее полупроводниковыми ключами и содержащий в своем составе цифровой автомат. Описание функциональной схемы. Разработка принципиальной схемы и конструкции цифрового управляющего устройства. Входные и выходные сигналы устройства.

    курсовая работа [1,2 M], добавлен 16.07.2009

  • Анализ бесконтактного трансформаторного датчика. Электромагнитные поля, изучаемые в электроразведке. Электромагнитные зондирования и профилирования. Подземные методы электроразведки. Выбор и обоснование материала бесконтактного трансформаторного датчика.

    курсовая работа [56,7 K], добавлен 11.10.2012

  • Классификация аналоговых измерительных механизмов. Магнитоэлектрическая, электромагнитная, электродинамическая, электростатическая, ферродинамическая, тепловая и индукционная системы. Действие цифровых приборов и аналого-цифрового преобразователя.

    реферат [714,2 K], добавлен 24.07.2012

  • Возникновение и развитие нанонауки. Виды искусственных наноструктур, их уникальные свойства, связанные с размером. Получение искусственных наноматериалов, прикладная нанотехнология. Сферы применения нанотехнологий, их будущее - проблемы и перспективы.

    курсовая работа [4,2 M], добавлен 16.09.2009

  • С ростом температуры кристалла за счет теплового расширения постоянная решетки увеличивается. Поэтому при повышении температуры у полупроводников, как правило, запрещенная зона уменьшается.

    реферат [10,8 K], добавлен 22.04.2006

  • Порядок построения кинематической схемы рычажного механизма по структурной схеме, коэффициенту изменения скорости выходного звена и величине его полного перемещения. Число подвижных звеньев механизма, построение диаграммы перемещения и плана скоростей.

    курсовая работа [63,4 K], добавлен 11.11.2010

  • Понятие простого механизма. "Золотое правило" механики. Блок и рычаг как простейшие механические устройства. Неподвижный и подвижный блоки. Механизм "ворот" как разновидность простого механизма "рычаг". Применение наклонной плоскости, клина, винта.

    презентация [1,7 M], добавлен 03.10.2012

  • Обратное преобразование Лапласа и теорема разложения Хевисайда. Операторные схемы замещения элементов: резистивного, индуктивного и емкостного. Законы Кирхгофа для изображений. Построение операторной схемы для цепи с учетом независимых начальных условий.

    презентация [187,3 K], добавлен 20.02.2014

  • Проектирование электропривода механизма основного и резервного центробежных водяных насосов. Основные типы регулирования производительности насосов и системы электропривода. Технические характеристики датчика расхода воды. Выбор преобразователя частоты.

    курсовая работа [1,0 M], добавлен 18.12.2014

  • Основные характеристики и свойства металлических наноматериалов, изучение химических и физических способов их получения. Особенности применения нанотехнологий в электронике, строительстве, медицинской науке, растениеводстве, животноводстве и ветеринарии.

    реферат [1,4 M], добавлен 06.02.2011

  • Определение назначения и характеристика трансформатора напряжения НКФ-110 как масштабного измерительного преобразователя. Изучение его конструкции и описание принципа действия. Разработка технологии монтажа трансформаторов НКФ-110 различной комплектации.

    курсовая работа [359,6 K], добавлен 27.12.2012

  • Емкостной высокочастотный разряд: общие сведения, типы, способы возбуждения, построение простейшей модели, формы существования. Краткая теория метода зондов Ленгмюра. Система уравнений для определения параметров разряда. Измерение разрядного тока.

    дипломная работа [2,6 M], добавлен 30.04.2011

  • Определение цветовой температуры кинопроекционной лампы, напряжение на которой меняется с помощью переменного резистора. Снятие показаний фотоэлемента для синего и красного фильтров. Построение зависимости цветовой температуры лампы от напряжения.

    лабораторная работа [241,0 K], добавлен 10.10.2013

  • Структурная схема емкостного уровнемера. Данные наблюдений и расчетов. Определение уровня жидкости аналоговым емкостным измерителем. Определение чувствительности измерителя к изменению уровня жидкости. Оценка погрешностей измерения уровня жидкости.

    лабораторная работа [482,7 K], добавлен 28.02.2012

  • Структура датчика газового состава. Система автоматического моделирования интегральных схем Synopsys TCAD. Расчет температуры рабочей области датчика при импульсном питании нагревателя. Тепловые характеристики для материалов чувствительного элемента.

    дипломная работа [2,1 M], добавлен 27.10.2013

  • Применение полупроводникового кремния. Характерные значения и методы определения ширины запрещенной зоны в полупроводниках, ее зависимость от температуры в кремнии. Экспериментальные и теоретические методы исследования зонной структуры твердых тел.

    контрольная работа [301,6 K], добавлен 11.02.2014

  • Функциональная схема и принцип работы электрического прибора для измерения отклонения толщины диэлектрической ленты от образцового значения. Емкостный датчик по типу плоскопараллельного конденсатора. Возникновение погрешностей и способы их устранения.

    реферат [154,6 K], добавлен 14.12.2012

  • Исследование функциональной полупроводниковой электроники, работающей в тепловом диапазоне. Оценка динамики температурного режима и влагосодержания тестовых материалов. Валидация метода оценки температуры по результатам подспутниковых экспериментов.

    дипломная работа [1,4 M], добавлен 01.05.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.