Влияние электрического поля контакта с барьером Шоттки на перераспределение примесных атомов в полупроводнике
Формирование воспроизводимых профилей распределения легирующих примесей. Совершенствование и разработка новой элементной базы твердотельной электроники на основе наноразмерных гетероструктур. Изготовление контактов металл-полупроводник с барьером Шоттки.
Рубрика | Физика и энергетика |
Вид | статья |
Язык | русский |
Дата добавления | 30.05.2017 |
Размер файла | 186,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Технологический институт федерального государственного автономного образовательного учреждения высшего профессионального образования «Южный федеральный университет» в г. Таганроге.
Влияние электрического поля контакта с барьером Шоттки на перераспределение примесных атомов в полупроводнике
С.А. Богданов, А.Г. Захаров, И.В. Писаренко
Миниатюризация активных элементов современных интегральных схем (ИС) неразрывно связана с совершенствованием технологических операций их формирования. При переходе к топологическим размерам элементов ИС порядка десятков нанометров возникают задачи целенаправленного формирования воспроизводимых профилей распределения легирующих примесей, с целью совершенствования и разработки новой элементной базы твердотельной электроники на основе наноразмерных гетероструктур [1].
Развитие методов исследования структур твердотельной электроники, разработка и изготовление контактов металл-полупроводник с барьером Шоттки для терагерцовых применений - стимулируют исследователей к изучению и оптимизации свойств контактов металл-полупроводник малых размеров. Электрофизические свойства и характеристики контактов металл-полупроводник, такие как высота барьера Шоттки и контактная разность потенциалов, распределение потенциала в приповерхностной области полупроводника, напряжение пробоя и емкость, а также последовательное и дифференциальное сопротивления диода, частота отсечки и интенсивность отказов во многом определяются свойствами границы раздела металл-полупроводник, наличием в полупроводнике дефектов кристаллического строения [2]. полупроводник шоттки контакт металл
В приближении полного обеднения в работе [3] проведены расчеты распределения потенциала в полупроводнике вокруг сферических и цилиндрических наноконтактов. Показано, что наноконтакты имеют слабую зависимость емкости от напряжения, большее, чем в плоском случае, снижение высоты барьера Шоттки за счет сил изображений, а также малую инерционность отклика до частот терагерцового диапазона. В работе [4] рассмотрено влияние краевых эффектов, связанных в основном с конечными размерами металлического электрода, на распределение потенциала в контакте металл-полупроводник. Предложенная авторами методика определения электростатического потенциала в полупроводниковом материале контакта металл-полупроводник с барьером Шоттки, основана на численном решении уравнения Пуассона в трехмерной системе координат. Приведенная в [5] модель процесса деградации контактов металл-полупроводник с барьером Шоттки, основанная на совместном решении уравнений Пуассона и диффузии позволяет оценить время наработки на отказ при постепенном отказе диодов Шоттки.
В настоящее время существует ряд контролируемых методов изменения концентрации легирующих примесей в приповерхностной области полупроводника [6]: эпитаксиальное выращивание, диффузия, разделение примесей на границе полупроводник - внешняя фаза за счет геттерирования внешней фазой (испарения, термического окисления), ионная имплантация и др.
Целью настоящей работы является моделирование процесса перераспределения атомов электрически активных примесей в электрическом поле области пространственного заряда диода Шоттки, а также исследование возможности целенаправленного изменения их концентрации в приповерхностной наноразмерной области полупроводника.
Рассмотрим контакт металл-кремний n-типа проводимости. Как и в [5] будем считать, что на границах раздела полупроводник-среда отсутствуют зарядовые состояния, свойства полупроводника изотропны, между полупроводником и металлическим электродом отсутствует слой диэлектрика, а также не будем учитывать влияние электрических сил изображения на распределение потенциала в области пространственного заряда полупроводника. Тогда процесс перераспределения атомов однозарядных электрически активных примесей в электрическом поле области пространственного заряда (ОПЗ) контакта металл-полупроводник можно описать с помощью системы уравнений - уравнений диффузии в электрическом поле [7-9] и уравнения Пуассона:
(1)
где , - концентрации ионизированных атомов донорной и акцепторной примесей соответственно; , - их коэффициенты диффузии; - элементарный заряд; - абсолютная температура; - постоянная Больцмана; - распределение потенциала в ОПЗ контакта металл-полупроводник с барьером Шоттки; - электрическая постоянная; - диэлектрическая проницаемость полупроводника; , - концентрации свободных носителей заряда электронов и дырок соответственно.
Концентрации свободных носителей зарядов, а также ионизированных атомов однозарядных донорной и акцепторной примесей определяются известным образом [10, 11]. При наличии в полупроводнике многозарядных примесных центров, формирующих в запрещенной зоне полупроводника несколько глубоких энергетических уровней (ГУ), для определения их степени ионизации следует использовать методику, рассмотренную в [2], определив положение уровня Ферми в объеме полупроводника из условия электронейтральности
. (2)
При моделировании в широком диапазоне температур необходимо учитывать температурные зависимости коэффициентов диффузии примесей и ширины запрещенной зоны полупроводника , которая для кремния описывается следующей эмпирической зависимостью [10]:
, (3)
где: , - коэффициенты; - ширина запрещенной зоны при 0 К.
Моделирование перераспределения атомов электрически активных примесей в электрическом поле области пространственного заряда контакта металл-полупроводник с барьером Шоттки проведем для случая электродиффузии атомов фосфора в кремнии. Будем считать, что распределение фосфора в кремнии описывается функцией Гаусса [12], которой часто аппроксимируют распределение примеси при ионной имплантации:
, (4)
где: - доза легирования; - средний проективный пробег ионов; - стандартное отклонение; - первоначальная концентрация примеси. Примем , , , .
Концентрационные профили распределения фосфора в кремнии приведены на рис. 1., на рис. 2 они же в приповерхностной наноразмерной области полупроводника. На рисунках: кривая 1 - исходное распределение атомов фосфора, рассчитанное по (6); кривая 2 - распределение атомов фосфора, полученное на основе решения (1), для температуры полупроводника , времени диффузии 15 минут при величине потенциала на поверхности полупроводника ; кривая 3 - распределение атомов фосфора, полученное на основе решения (1), для температуры полупроводника , времени диффузии 30 минут при величине потенциала на поверхности полупроводника ; кривая 4 -
Рис. 1 Концентрационные профили распределения фосфора в кремнии
Рис. 2 Концентрационные профили распределения фосфора в кремнии в приповерхностной наноразмерной области полупроводника
распределение атомов фосфора в результате 30 минутной термической диффузии при температуре полупроводника , без учета электрического поля ОПЗ диода Шоттки; кривая 5 - распределение атомов фосфора, полученное на основе решения (1), для температуры полупроводника , времени диффузии 15 минут при величине потенциала на поверхности полупроводника .
Анализ результатов моделирования указывает на возможность контролируемого перераспределения легирующих примесей на глубинах порядка десятков нанометров, обусловленного диффузией электрически активных атомов в электрическом поле ОПЗ диода Шоттки. Представляется целесообразным исследовать возможность формирования концентрационных профилей сложной формы в наноразмерном приконтактном слое, модулируя напряженность электрического поля у поверхности полупроводника по определенному закону.
Предложенная модель перераспределения атомов электрически активных примесей в ОПЗ полупроводника контакта металл-полупроводник с барьером Шоттки может быть использована при проектировании элементов ИС с улучшенными значениями отдельных параметров, а также при разработке новой элементной базы твердотельной электроники на основе наноразмерных гетероструктур.
Литература
1. Иващенко С.Н. Энергетическая структура и применение сверхрешеток [Электронный ресурс] // «Инженерный вестник Дона», 2010, № 2. Режим доступа: http://www.ivdon.ru/magazine/archive/n2y2010/189 (доступ свободный). Загл. с экрана. Яз. рус.
2. Богданов С.А., Захаров А.Г., Писаренко И.В. Влияние многозарядных примесных центров на распределение потенциала в приповерхностной области полупроводника [Электронный ресурс] // «Инженерный вестник Дона», 2013, № 1. Режим доступа: http://www.ivdon.ru/magazine/archive/n1y2013/1530 (доступ свободный). Загл. с экрана. Яз. рус.
3. Востоков Н.В., Шашкин В.И. Электрические свойства наноконтактов металл-полупроводник [Текст] // Физика и техника полупроводников. 2004, том 38, № 9. С. 1084 - 1089.
4. Богданов С.А., Захаров А.Г., Лытюк А.А. Моделирование распределения потенциала в барьерах Шоттки с учетом краевых эффектов [Текст] // Нано - и микросистемная техника. 2011, № 5. С. 12-15.
5. Богданов С.А., Захаров А.Г., Лытюк А.А. Диффузионная модель процесса деградации контактов металл-полупроводник с барьером Шоттки [Текст] // Известия ЮФУ. Технические науки. 2012, № 1. С. 53 - 58.
6. Стриха В.И., Бузанева Е.В. Физические основы надежности контактов металл-полупроводник в интегральной электронике [Текст] / М.: Радио и связь. 1987. 256 с.
7. Абдуллаев Г.Б., Джафаров Т.Д. Атомная диффузия в полупроводниковых структурах [Текст] / М.: Атомиздат, 1980. 280 с.
8. Jansson F., Цsterbacka R., Nenashev A.V., Baranovskii S.D., Gebhard F. Effect of electric field on diffusion in disordered materials [Текст] // Annalen der Physik (Leipzig).2009. Т. 18. № 12. P. 856 - 862.
9. Lipovskii A.A., Omelchenko A.V., Petrov M.I. Modeling charge transfer dynamics and electric field distribution in glasses during poling and electrostimulated diffusion [Текст] // Technical Physics Letters. 2010. Т. 36. № 11. P. 1028 - 1031.
10. Зи С.М. Физика полупроводниковых приборов [Текст]/М.: Энергия, 1973. 656 с.
11. Милнс А. Примеси с глубокими уровнями в полупроводниках [Текст] / М.: Мир. 1977. 562 с.
12. МОП-СБИС. Моделирование элементов и технологических процессов [Текст] / Под. ред. П. Антонетти, Д. Антониадиса, Р. Даттона, У. Оулдхема: Пер. с англ. М.: Радио и связь, 1988. 496 с.: ил.
Размещено на Allbest.ru
...Подобные документы
Сущность механизма электропроводности. Волновая функция электрона в кристалле. Квазиимпульс и эффективная масса носителей заряда. Статистика электронов и дырок в полупроводнике. Структуры металл-диэлектрик-полупроводник. Энергонезависимые элементы памяти.
курсовая работа [697,7 K], добавлен 14.02.2016Способ определения к.п.д. светочувствительных систем полупроводник-металл. Формула и реферат описания изобретения. Характеристика современных светодиодов, их устройство и работа. Разработка голубых светодиодов. Получение белого света с их помощью.
курсовая работа [709,9 K], добавлен 23.07.2010Изучение свойств карбида кремния. Понятие омического контакта. Разработка и оптимизация технологии воспроизводимого получения омических контактов к карбиду кремния n- и р-типа проводимости на основе выявления факторов, влияющих на его формирование.
курсовая работа [165,7 K], добавлен 10.05.2014Электромагнитное поле. Система дифференциальных уравнений Максвелла. Распределение потенциала электрического поля. Распределения потенциала и составляющих напряженности электрического поля и построение графиков для каждого расстояния. Закон Кулона.
курсовая работа [1,1 M], добавлен 12.05.2016Изучение понятия и свойств полупроводников. Квантовый размерный эффект электронов и дырок. Классификация многократно повторяющихся квантовых ям и сверхрешеток. Электрический транспорт: резонансное туннелирование через квантовую яму с двойным барьером.
реферат [602,0 K], добавлен 06.06.2012Природа и виды ионизирующих излучений. Взаимодействие электронов с веществом. Торможение атомных ядер. Зависимость линейного коэффициента ослабления гамма-излучения в свинце от энергии фотонов. Диффузия в структуре полупроводник-металл-диэлектрик.
курсовая работа [1,2 M], добавлен 12.04.2012Работа сил электрического поля при перемещении заряда. Циркуляция вектора напряжённости электрического поля. Потенциал поля точечного заряда и системы зарядов. Связь между напряжённостью и потенциалом электрического поля. Эквипотенциальные поверхности.
реферат [56,7 K], добавлен 15.02.2008Эффект поля в Германии при высоких частотах, применение эффекта поля. Дрейфовый и диффузный токи в полупроводниках. Образование обедненных, инверсионных, обогащенных слоев в полупроводнике. Характеристики полевого транзистора, приборы с зарядовой связью.
курсовая работа [4,4 M], добавлен 24.07.2010Распределение примеси и носителей заряда в полупроводнике при изменении типа проводимости. Определение дебаевской длины в собственном полупроводнике. Знаки нормальных и касательных напряжений. Градировочная таблица термопары платинородий-платина.
контрольная работа [499,5 K], добавлен 29.06.2012Исследование формирования катодолюминесцентного излучения, генерации, движения и рекомбинации неравновесных носителей заряда. Характеристика кинетики процессов возгорания и гашения люминесценции, концентрации легирующих примесей в ряде полупроводников.
курсовая работа [1,6 M], добавлен 10.06.2011Силовые линии напряженности электрического поля для однородного электрического поля и точечных зарядов. Поток вектора напряженности. Закон Гаусса в интегральной форме, его применение для полей, созданных телами, обладающими геометрической симметрией.
презентация [342,6 K], добавлен 19.03.2013Понятие электрического заряда, единица его измерения. Закон сохранения алгебраической суммы заряда в замкнутой системе. Перераспределение зарядов между телами при их электризации. Особенности взаимодействия зарядов. Основные свойства электрического поля.
презентация [185,5 K], добавлен 07.02.2015Расчёт компоновки загрузки из полупроводникового и металлургического кремния для выращивания мультикремния. Количественный химический анализ слитков мультикремния. Анализ профилей распределения примесей в слитках в приближении перемешивания расплава.
дипломная работа [1,1 M], добавлен 08.06.2017Спинтроника - перспективное направление твердотельной электроники. Синтез новых ферромагнетиков, совместимых с "кремниевой технологией", имеющих высокую температуру Кюри и способных инжектировать высокоподвижные поляризованные по спину носители тока.
реферат [5,6 M], добавлен 21.06.2010История открытия электричества. Заряды как основа электрического поля, создание магнитного поля через их движение по проводнику. Характеристика величины электрического поля. Длина электромагнитной волны. Международная классификация электромагнитных волн.
реферат [173,9 K], добавлен 30.08.2012Появление вихревого электрического поля - следствие переменного магнитного поля. Магнитное поле как следствие переменного электрического поля. Природа электромагнитного поля, способ его существования и конкретные проявления - радиоволны, свет, гамма-лучи.
презентация [779,8 K], добавлен 25.07.2015Понятие и свойства полупроводника. Наклон энергетических зон в электрическом поле. Отступление от закона Ома. Влияние напряженности поля на подвижность носителей заряда. Влияние напряжённости поля на концентрацию заряда. Ударная ионизация. Эффект Ганна.
реферат [199,1 K], добавлен 14.04.2011Квантовый перенос в мезоскопических системах. Рассеяние на примесных атомах. Резонансное туннелирование электронов. Электрон-фононное рассеяние. Рассеяние на шероховатостях границы раздела. Межподзонное рассеяние. Эффект всплеска дрейфовой скорости.
контрольная работа [2,4 M], добавлен 26.08.2015Сущность внутреннего фотоэффекта. Фотопроводимость при наличии поверхностной рекомбинации и диффузии носителей заряда. Эффект Дембера. Измерение фотоэлектромагнитного эффекта. Особенности p-n переходов в полупроводниках, барьер Шоттки для электронов.
курсовая работа [788,8 K], добавлен 27.11.2013Сущность магнетизма, поле прямого бесконечно длинного тока. Форма правильных окружностей, описываемых силовыми линиями электрического поля элемента тока. Структура латентного поля тока. Закон Био-Савара, получение "магнитного" поля из электрического.
реферат [2,2 M], добавлен 04.09.2013