Модификация поверхности чувствительного слоя сенсора газа электроискровой обработкой
Принцип действия полупроводниковых сенсоров газов. Физико-химические превращения, происходящие в процессе электроискровой обработки адсорбента. Исследование особенностей модификации состава и структуры поверхности кремния электроискровой обработкой.
Рубрика | Физика и энергетика |
Вид | статья |
Язык | русский |
Дата добавления | 30.05.2017 |
Размер файла | 820,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Технологический институт федерального государственного автономного образовательного учреждения высшего профессионального образования
«Южный федеральный университет»
Модификация поверхности чувствительного слоя сенсора газа электроискровой обработкой
С.А. Богданов, А.Г. Захаров, И.В. Писаренко
Принцип действия многих полупроводниковых сенсоров газов основан на изменении их электрофизических свойств и характеристик в результате физико-химических процессов (сорбционные процессы, окислительно-восстановительных реакции и др.) на границе раздела чувствительный слой (ЧС) сенсора - газовая среда с участием анализируемого газа. Важную роль при этом играет явление газовой адсорбции, при котором частицы (молекулы, атомы, ионы) газа преимущественно накапливаются на поверхности ЧС и вступают с ней в связь [1, 2].
Химически адсорбированная на поверхности адсорбента частица газа и адсорбент формируют единую квантовомеханическую систему. Помимо энергетических состояний, обусловленных хемосорбированными частицами, реальная поверхность адсорбента обладает также энергетическими состояниями «биографического» происхождения (поверхностные уровни Тамма и Шокли, структурные дефекты поверхности, примеси и др.), что вызывает локализацию заряда на поверхности адсорбента и при отсутствии хемосорбированных частиц.
В процессе электроискровой обработки (ЭИО) адсорбента могут происходить различные физико-химические превращения, обусловленные межэлектродной средой, режимами ЭИО и свойствами материала электродов. В частности, процессы, связанные с переносом материала электрода при электроискровом разряде на полупроводниковую подложку, а, следовательно, и появление обусловленных материалом электрода дополнительных глубоких энергетических уровней (ГУ) в запрещенной зоне полупроводника.
Появление анализируемого газа приводит к перераспределению свободных носителей заряда между разрешенными зонами и локальными поверхностными энергетическими уровнями и, как следствие, к изменению электрофизических свойств ЧС, по характеру изменения которых можно судить о концентрации анализируемого газа в среде [3, 4].
Решение задачи повышения адсорбционной чувствительности полупроводниковых сенсоров газа невозможно без интенсивного исследования методов управления свойствами поверхности полупроводников. Установлено, что образование гетероразмерных кластеров различного фазового состава и конфигураций на поверхности полупроводника существенно изменяет как его электронные, так и адсорбционные свойства [5, 6].
В качестве модельного материала, электрические свойства которого можно изменять в широких пределах, на этапе выяснения физико-химических особенностей адсорбционной чувствительности целесообразно использовать кремний.
Для изготовления полупроводниковых сенсоров газов используются различные технологические методы модификации поверхностных свойств: электрохимического травления, электроннолучевой обработки, ионной имплантации, поверхностного легирования и др.
Целью настоящей работы является исследование особенностей модификации состава и структуры поверхности кремния электроискровой обработкой.
Пластины кремния марки КЭФ - 4,5 были обработаны электроискровым разрядом на установке [7] с энергией 0,4 Дж с последующим предварительным отжигом в атмосфере азота при температуре 1000 0С в течении одного часа. Материалом обрабатывающего электрода являлся никель, который по данным [8, 9] обусловливает формирование в запрещенной зоне кремния акцепторных ГУ. Далее на этих пластинах в стандартном технологическом процессе были изготовлены МДП-структуры. Кроме того, были также изготовлены тестовые МДП-структуры на основе пластин кремния КЭФ-4,5 без проведения ЭИО. Толщина SiO2 составляла в обоих случаях нм.
После ЭИО и отжига проводилось исследование поверхности кремниевых пластин атомно-силовой микроскопией (рис. 1, 2).
Рис. 1. Морфология поверхности кремния прошедшего ЭИО
Рис. 2. Морфология поверхности кремния без ЭИО
Анализ результатов атомно-силовой микроскопии показал, что ЭИО существенно влияет на морфологию поверхности ЧС - высота неровности составляет величину порядка 400 нм. В свою очередь высота неровности для пластин, не проходивших ЭИО, составила величину порядка 50 нм.
Методом динамической спектроскопии глубоких уровней (ДСГУ) [10] исследовались параметры ГУ в кремнии после ЭИО. Объектом исследования являлись МДП-структуры. Полученные экспериментальные зависимости показали наличие глубоких энергетических уровней в запрещенной зоне кремния, проявивших себя на ДСГУ-спектре (рис. 3) в области температур от минус 100 0С до плюс 10 0С.
Рис. 3. ДСГУ-спектр МДП-структуры, сформированной на кремнии, обработанном электроискровым разрядом никелевым электродом
На рис. 3. видно наличие четырех пиков, соответствующих акцепторным ГУ с энергиями ионизации (, , , ) близкими к известным из литературы параметрам ГУ никеля в кремнии [8], а также ГУ обусловленных наличием в кремнии дислокаций [9]. Концентрации обнаруженных ГУ - см-3, см-3, см-3, см-3, соответственно.
Оценка плотности поверхностных состояний на границе раздела диэлектрик-полупроводник проводилась дифференциальным методом [10], основанным на сравнении экспериментальной высокочастотной емкости МДП-структуры с теоретической расчетной емкостью ее модели для двух случаев. полупроводниковый сенсор газ адсорбент
В первом случае при моделировании теоретической вольт-фарадной характеристики (ВФХ) глубокие энергетические уровни не учитывались, а во втором случае учитывалось влияние ГУ в соответствии с моделью, предложенной в [11].
Полученные распределения плотности поверхностных состояний от величины поверхностного потенциала показаны на рис. 4.
Размещено на http://www.allbest.ru/
Рис. 4 - Зависимость плотности поверхностных состояний от величины поверхностного потенциала: 1 - для МДП-структуры без ЭИО; 2, 3 - для МДП-структуры, сформированной на кремнии, обработанном электроискровым разрядом никелевым электродом (2 - модель не учитывает ГУ, 3 - модель учитывает ГУ)
Видно, что ЭИО приводит к увеличению плотности поверхностных состояний. При оценке пространственное распределение ГУ в полупроводнике принималось равномерным, что может в первом приближении объяснить появление минимума при величине поверхностного потенциала В на распределении рис. 4.
Таким образом, электроискровая обработка поверхности чувствительного слоя приводит к увеличению эффективной площади его поверхности, увеличению плотности поверхностных состояний, а также к образованию в запрещенной зоне полупроводника глубоких энергетических уровней, обусловленных атомами материала электрода и дислокациями, что в совокупности позволит варьировать чувствительность и селективность сенсоров газов.
Литература
1. Вашпанов Ю.О., Смынтына В.А. Адсорбционная чувствительность полупроводников [Текст] / Одесса: Астропринт, 2005. - 216 с.
2. Barsan N., Weimar U. Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity [Текст] // Journal of Physics: Condensed Matter. - 2003, Т. 15, № 20. - P. 813 - 839.
3. Barsan N., Weimar U. Conduction model of metal oxide gas sensors [Текст] // Journal of Electroceramics. - 2001, Т. 7, № 3. - P. 143-167.
4. Богданов С.А., Захаров А.Г., Лытюк А.А. Моделирование газовой чувствительности кондуктометрических сенсоров газов на основе оксидов металлов [Текст] // Нано- и микросистемная техника. - 2011., № 1. - С. 12 - 14.
5. Моисеева Т. А., Мясоедова Т.Н., Петров В.В., Кошелева Н.Н. Разработка газочувствительного элемента на основе пленок оксидов меди для датчика аммиака [Электронный ресурс] // «Инженерный вестник Дона», 2012, № 4. - Режим доступа: http://www.ivdon.ru/magazine/archive/n4p2y2012/1347 (доступ свободный) - Загл. с экрана. - Яз. рус.
6. Надда М.З., Петров В.В., Шихабудинов А.А. Исследование свойств нанокомпозитного материала для высокочувствительных сенсоров диоксида азота [Электронный ресурс] // «Инженерный вестник Дона», 2012, № 4. - Режим доступа: http://www.ivdon.ru/magazine/archive/n4p2y2012/1349 (доступ свободный) - Загл. с экрана. - Яз. рус.
7. Сеченов Д.А., Захаров А.Г, Беспятов В.В. Формирование в кремнии локальных дислокационных областей электроискровым разрядом [Текст] // Электронная обработка материалов. - 1975, № 2. - С. 14- 17.
8. Абдурахманов К.П., Куликов Г.С., Лебедев А.А. и др. Исследования поведения примесей марганца и никеля при диффузионном легировании кремния [Текст] // Физика и техника полупроводников. -1991. - Т. 25, № 6. - С. 1075 - 1078.
9. Сеченов Д.А., Захаров А.Г., Набоков Г.М. Электрофизические свойства МДП-структур, сформированных на кремнии с высокой плотностью дислокаций [Текст] // Известия вузов. Физика. - 1977., № 9. - С. 137 - 138.
10. Богданов С.А., Захаров А.Г., Набоков Г.М. Определение свойств структур твердотельной электроники методами емкостных характеристик [Текст]: Учебное пособие / Таганрог: Изд-во ТТИ ЮФУ, 2009. - 108 c.
11. Богданов С.А., Захаров А.Г. Вольт-фарадные характеристики МДП-структур с учетом однозарядного глубокого энергетического уровня [Текст] // Известия вузов. Северо-Кавказский регион. - 2007., № 5. - С. 22 - 24.
Размещено на Allbest.ru
...Подобные документы
Дифракция быстрых электронов на отражение как метод анализа структуры поверхности пленок в процессе молекулярно-лучевой эпитаксии. Анализ температурной зависимости толщины пленки кремния и германия на слабо разориентированой поверхности кремния.
курсовая работа [1,0 M], добавлен 07.06.2011Анализ противоречий в механизмах протекания электрического тока в проводниках. Обзор изменения состава и структуры поверхности многокомпонентных систем, механизма диффузии и адсорбции. Исследование поверхности электродов кислотных аккумуляторных батарей.
контрольная работа [25,0 K], добавлен 14.11.2011Исследование особенностей технологических путей создания микрорельефа на фронтальной поверхности солнечных элементов на основе монокристаллического кремния. Основные фотоэлектрические параметры полученных структур, их анализ и направления изучения.
статья [114,6 K], добавлен 22.06.2015Сущность технологических приемов химического травления и контроля качества поверхности пластин кремния. Особенности термического вакуумного напыления алюминия на полупроводниковую подложку. Фотолитография в производстве полупроводниковых приборов.
методичка [588,6 K], добавлен 13.06.2013Достижения современной планарной технологии и значение в них физики поверхностей. Трехслойная система как базовая структура микроэлектроники. Влияние поверхности на работу полупроводниковых приборов: оптоэлектронные приборы, сверхпроводящие пленки.
курсовая работа [1,0 M], добавлен 17.05.2009Особенности частичного насыщения поверхностных атомов кремния метильными группами и методов моделирования кластера минимального размера. Иммобилизация метильных групп на поверхность димеризованного гидрогенизированного кластера в различных соотношениях.
доклад [1,1 M], добавлен 26.01.2011Анализ качественного и количественного состава поверхности. Первичный и вторичный фотоэффекты, структура спектров. Компенсация статической зарядки исследуемой поверхности. Принципы работы сканирующих зондовых микроскопов. Формирование СЗМ изображений.
учебное пособие [4,5 M], добавлен 14.03.2011Структурное строение молекул воды в трех ее агрегатных состояниях. Разновидности воды, её аномалии, фазовые превращения и диаграмма состояния. Модели структуры воды и льда а также агрегатные виды льда. Терпературные модификации льда и его молекул.
курсовая работа [276,5 K], добавлен 12.12.2009Описание реальных газов в модели идеального газа. Особенности расположения молекул в газах. Описание идеального газа уравнением Клапейрона-Менделеева. Анализ уравнения Ван-дер-Ваальса. Строение твердых тел. Фазовые превращения. Диаграмма состояния.
реферат [1,1 M], добавлен 21.03.2014Изучение микроструктуры гексаферритов стронция, морфологии зерен, характера распределения микродобавок, особенностей их химического и электронного состояния на поверхности кристаллитов спектральными и структурными методами анализа строения веществ.
контрольная работа [29,9 K], добавлен 13.06.2010Создание технических средств метрологического обеспечения контроля качества полупроводниковых материалов. Анализ установки по измерению удельного электрического сопротивления четырехзондовым методом. Измерение сопротивления кремния монокристаллического.
дипломная работа [1,2 M], добавлен 24.07.2012Химический состав и формирование химического состава газов в газовых и нефтяных залежах. Классификация газов: по условиям нахождения в природе, по генезису газов, по химическому составу, по их ценности. Методы определения состава природных газов.
курсовая работа [1,3 M], добавлен 30.10.2011Эффективное излучение, радиационный и тепловой баланс земной поверхности. Закономерности распространения тепла вглубь почвы. Пожарная опасность леса. Расчет температуры поверхности различных фоновых образований на основе радиационного баланса Земли.
дипломная работа [1,9 M], добавлен 01.03.2013Изучение корпускулярной концепции описания природы, сущность которой в том, что все вещества состоят из молекул - минимальных частиц вещества, сохраняющих его химические свойства. Анализ молекулярно-кинетической теории газа. Законы для идеальных газов.
контрольная работа [112,2 K], добавлен 19.10.2010Исследование растворов глюкозы, малахитового зеленого, метилового красного и фуксина с добавлением нанопорошка железа. Изучение процесса снижения концентрации указанных веществ за счет адсорбции на поверхности наночастиц и их осаждением в магнитном поле.
дипломная работа [3,8 M], добавлен 05.09.2012Физика полупроводников. Примесная проводимость. Устройство и принцип действия полупроводниковых приборов. Способы экспериментального определения основных характеристик полупроводниковых приборов. Выпрямление тока. Стабилизация тока.
реферат [703,1 K], добавлен 09.03.2007Принцип действия пиролизных котлов. Обугливание и выделение древесного газа. Процессы, происходящие в пиролизном котле. Сжигание древесины на принципе генераторной газификации с применением отсасывающего вентилятора. Плюсы и минусы пиролизных котлов.
реферат [207,2 K], добавлен 20.12.2012Принцип действия и классификация машин для сжатия и перемещения газов. Степень сжатия, принципы и критерии ее измерения. Порядок составления индикаторной диаграммы. Объемный коэффициент полезного действия и производительность. Многоступенчатое сжатие.
презентация [318,2 K], добавлен 28.09.2013Упругость водяного пара. Удаление адсорбированного вещества с поверхности адсорбента. Зависимость между влажностью материала и относительной упругостью водяного пара. Диффузия водяного пара через ограждение. Коэффициент паропроницаемости материала.
контрольная работа [286,6 K], добавлен 26.01.2012Понятие об электроемкости. Распределение зарядов на поверхности проводника. Конструкция и принцип действия электрофорной машины. Демонстрация экспериментов электрических законов с применением электрофорной машины Вимшурста. Электрический ток в газах.
курсовая работа [1,6 M], добавлен 21.02.2014