Механіка, електрика, електромагнетизм

Формули та приклади розв’язання задач з кінематики, динаміки прямолінійного руху та гідростатики. Характеристика законів збереження енергії. Електричне поле у вакуумі та діелектриках. Провідники в електричному полі. Енергія електричного поля та струму.

Рубрика Физика и энергетика
Вид учебное пособие
Язык украинский
Дата добавления 07.07.2017
Размер файла 1,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Відповідь: нДж (е - діелектрична проникність фарфору).

206. Ізольована металева сфера електроємністю С = 10 пФ заряджена до потенціалу = 3 кВ. Визначити енергію W поля, яке розміщене в сферичному шарі, обмеженому сферою і концентричною з нею сферичною поверхнею, радіус якої у три рази більший, ніж радіус сфери.

Відповідь: 30 мкДж.

207. Парафінова куля радіусом R = 10см заряджена рівномірно за об'ємом з об'ємною густиною с = 10 нКл/м3. Визначити енергію W1 електричного поля, зосередженого у самій кулі, енергію W2 поза кулею.

Відповідь: нДж; нДж.

208. Визначити потенціальну енергію П системи чотирьох точкових зарядів, розміщених у вершинах квадрата зі стороною а = 10 см. Заряди однакові за абсолютним значенням Q = 10 нКл, але два з них негативні. Розглянути два можливих випадки розміщення зарядів.

Відповідь: мкДж, якщо однойменні заряди розміщені в протилежних вершинах квадрата; і мкДж, якщо різнойменні заряди розміщені в протилежних вершинах квадрата.

209. Відстань d між пластинами плоского конденсатора дорівнює 2 см, різниця потенціалів U = 6 кВ. Заряд Q кожної пластини дорівнює 10 нКл. Визначити енергію W поля конденсатора і силу F взаємного притягання пластин.

Відповідь: 30 мкДж; 15 мН.

210. Плоский повітряний конденсатор електроємністю С = 1,11 нФ заряджений до різниці потенціалів U = 300 В. Після вимикання від джерела струму відстань між пластинами конденсатора була збільшена у п'ять разів. Визначити: а) різницю потенціалів U на обкладинках конденсатора після їх розсування; б) роботу А зовнішніх сил з розсування пластин.

Відповідь: 1500 В; 0,2 мДж.

211. Електроємність С плоского конденсатора дорівнює 111 пФ. Діелектрик - фарфор. Конденсатор зарядили до різниці потенціалів U = 600 В і від'єднали від джерела напруги. Яку роботу А потрібно здійснити, щоб вийняти діелектрик із конденсатора? Тертям знехтувати.

Відповідь: 80 мкДж.

212. Електричне поле створено зарядженою (Q = 0,1 мкКл) сферою радіусом R = 10 см. Яка енергія W поля, що міститься в об'ємі, обмеженому сферою і концентричною з нею сферичною поверхнею, радіус якої в два рази більший, ніж радіус сфери.

Відповідь: Дж.

213. Знайти опір R графітового провідника, виготовленого у вигляді прямого колового зрізаного конуса висотою h = 20 см і радіусами основ r1 = 12 мм і r2 = 8 мм. Температура t провідника дорівнює 20°С.

Відповідь: 2,58 мОм.

214. До джерела струму з ЕРС = 1,5 В приєднали котушку з опором R = О,1 Ом. Амперметр показав силу струму, яка дорівнює I1 = 0,5 А. Коли до джерела струму приєднали послідовно ще одне джерело струму з тією ж ЕРС, сила струму I, у тій самій котушці стала дорівнювати 0,4 А. Визначити внутрішні опори r1 і r2 першого й другого джерел струму.

Відповідь: 2,9 Ом; 4,5 Ом.

215. Дві батареї акумуляторів ( = 10 В; r1 = 1 Ом; = 8 В; r2 = 2 Ом) і реостат (R = 6 Ом) з'єднані, як показано на рис.20. Знайти силу струму в батареях та реостаті.

Размещено на http://www.allbest.ru/

Рисунок 20

Відповідь: 6,4 А; 5,8 А; 0,6 А.

216. До батареї акумуляторів, ЕРС о якої дорівнює 2 В і внутрішній опір r = 0,5 Ом, приєднали провідник. Визначити: а) опір R провідника, при якому потужність, що виділяється на ньому, максимальна; б) потужність Р, яка при цьому виділяється у провіднику.

Відповідь: 0,5 Ом; 2 Вт.

217. Вздовж провідника опором R = 3 Ом тече струм, сила якого зростає. Кількість теплоти Q, що виділилась у провіднику за час t = 8 с, дорівнює 200 Дж. Визначити заряд q, що протікає за цей час вздовж провідника. В момент часу, взятий за початковий, сила струму у провіднику дорівнює нулю.

Відповідь: Кл.

218. У мідному провіднику об'ємом V= 6 см3 при протіканні по ньому постійного струму за час t = 1 хв виділилась кількість теплоти Q = 216 Дж. Визначити напруженість Е електричного поля у провіднику.

Відповідь: 0.1 В/м.

219. Визначити густину струму j у залізному провіднику довжиною

l = 10 м, якщо провід перебуває під напругою U = 6 В.

Відповідь: 6,1 МА/м2.

220. Дві групи із трьох послідовно з'єднаних елементів з'єднані паралельно. ЕРС кожного елемента дорівнює 1,2 В, внутрішній опір r = 0,2 Ом. Отримана батарея замкнена на зовнішній опір R = 1,5 Ом. Знайти силу струму І у зовнішньому колі.

Відповідь: 2 А.

221. Два елементи ( = 1,2 В; r1 = 0,1 Ом; =0,9 В; r2=0,3 Ом) з'єднані однойменними полюсами. Опір з'єднувальних провідників дорівнює 0,2 Ом. Визначити силу струму I у колі.

222. ЕРС батареї дорівнює 20 В. Опір R зовнішнього кола дорівнює 2 Ом, сила струму I = 4 А. Знайти ККД батареї. При якому значенні зовнішнього опору R ККД буде дорівнювати 99%?

Відповідь: 0,4; 297 Ом.

223. Обмотка електричного кип'ятильника має дві секції, Якщо ввімкнена тільки перша секція, то вода закипає через t1 =15 хв, якщо тільки друга, то через t2 = 30 хв. Через скільки хвилин закипає вода, якщо обидві секції ввімкнути послідовно, паралельно?

Відповідь: 45 хв, 10 хв.

224. Сила струму у провіднику рівномірно зростає від І0 = 0 до деякого максимального значення протягом часу t = 10 с. За цей час у провіднику виділилась кількість теплоти Q = 1 кДж. Визначити швидкість наростання струму у провіднику, якщо опір R його дорівнює 3 Ом.

Відповідь: А/с.

225. Струм короткого замикання джерела струму з ЕРС 12 В дорівнює 40 А. Який зовнішній опір слід ввімкнути до цього джерела струму, щоб в ньому протікав струм 1 А.

Відповідь: R = 11,7 B.

226. Акумулятор із внутрішнім опором 1 Ом під'єднали для зарядки до мережі з напругою 12,5 В. Знайти величину ЕРС акумулятора, якщо при зарядці через нього проходить струм 0,5 А.

Відповідь: = 12 B.

227. Якщо до батареї гальванічних елементів ввімкнути зовнішній опір величиною 10 Ом, то струм у колі буде дорівнювати 3 А, а якщо замість першого опору ввімкнути опір 20 Ом, то струм стане рівним 1,6 А. Чому дорівнює ЕРС і внутрішній опір батареї?

Відповідь: = 34,29 B; r = 1,43 Ом.

228. Котушка й амперметр з'єднані послідовно і ввімкнені до джерела струму. До клем котушки приєднали вольтметр з опором 4 кОм. В цьому випадку амперметр показав силу струму 0,3 А, а вольтметр - напругу 120 В. Чому дорівнює опір котушки? Яка помилка буде допущена, якщо при визначенні опору котушки не буде врахований опір вольтметра?

Відповідь: R = 444 Oм; 10%.

229. Якщо до гальванічного елемента приєднати зовнішній опір в 4 Ом, то струм у колі дорівнює 0,2 А, а якщо приєднати зовнішній опір 7 Ом, то струм у колі - 0,14 А. Чому в цьому випадку буде дорівнювати струм короткого замикання?

Відповідь: Iкз. = 0,466 А.

230. ЕРС акумулятора дорівнює 15 В. Яку найбільшу потужність можна одержати на ввімкнутому до акумулятора резисторі із змінним опором, якщо сила струму при цьому дорівнює 5 А? Яка повна потужність цього акумулятора?

Відповідь: Nmax = 37,5 Вт; Nпов. = 75 Вт.

231. До затискачів батареї акумуляторів приєднали нагрівач. Е.р.с. батареї дорівнює 24 В, внутрішній опір дорівнює 1 Ом. Нагрівач, ввімкнений у коло, споживає потужність 80 Вт. Визначити силу струму в колі і к.к.д. нагрівача.

Відповідь: I = 20 A; = 16,6 %.

232. По провіднику опором 3 Ом тече струм, величина якого рівномірно зростає, починаючи від нуля. Кількість теплоти, що виділилася в провіднику за час 8 с, дорівнює 200 Дж. Визначити величину електричного заряду, який пройшов за цей час по провіднику.

Відповідь: q = 46,2 Кл.

233. При силі струму 10 А у зовнішньому колі генератора струму виділяється потужність 200 Вт, а при силі струму 15 А - виділяється потужність 240 Вт. Чому дорівнюють внутрішній опір, е.р.с. і сила струму короткого замикання генератора?

Відповідь: r = 0,82 Ом; = 28,2 В; Ікз = 34,5 А.

234. Джерело струму з ЕРС 240 В и внутрішнім опором 1 Ом замикають на зовнішній опір 25 Ом. Визначити корисну потужність і к.к.д. джерела.

Відповідь: Nк = 2,13 кВт; = 96%.

Магнетне поле у вакуумі і середовищі. Основні формули

1. Закон Біо-Савара-Лапласа

,

де dB - індукція магнетного поля, яку створює елемент провідника зі струмом;

- магнетна проникність;

- магнетна стала (0= 4 Гн/м);

- вектор, який дорівнює за модулем довжині dl провідника і збігається за напрямком зі струмом у провіднику);

I - сила струму;

- радіус-вектор, проведений від середини елемента провідника до точки, в якій визначається магнетна індукція.

2. Модуль вектора виражається формулою

,

де ц - кут між векторами і .

3. Магнетна індукція поля довгого прямого провідника з струмом

,

де r0 - відстань від осі провідника до точки, у якій визначається магнетна індукція (рис.21).

При симетричному розміщенні кінців провідника відносно точки, в якій визначається магнетна індукція (рис.22 а,б), - cos= cos= cos , а тому

.

4. Магнетна індукція поля безмежно довгого провідника з струмом виражається формулою

Рисунок 21 Рисунок 22

Позначення зрозумілі з рис. 21. Напрямок вектора збігається з дотичною до силової лінії, напрям якої визначається правилом правого гвинта.

5. Магнетна індукція В пов'язана з напруженістю H магнетного поля співвідношенням

або у вакуумі

.

6. Магнетна індукція у центрі колового провідника зі струмом

,

де R - радіус кривизни провідника.

7. Магнетна індукція поля, яку створює соленоїд у середній його частині (або на осі тороїда)

,

де n - кількість витків, які припадають на одиницю довжини соленоїда або тороїда;

I - сила струму в одному витку.

8. Принцип суперпозиції магнетних полів. Магнетна індукція В результуючого поля дорівнює векторній сумі магнетних індукцій B1 , В2,...., Вn полів, що існують у даній точці, тобто

.

У випадку накладання двох полів

а абсолютне значення вектора магнетної ідукції

де а - кут між векторами В1 і В2.

9. Закон Ампера. Сила, яка діє на провідник зі струмом в магнетному полі

,

де I - сила струму; - вектор, який дорівнює за модулем довжині l провідника і збігається за напрямком зі струмом.

Модуль вектора F визначається такою формулою:

,

де а - кут між векторами і .

Сила взаємодії двох прямих нескінченно довгих паралельних провідників зі струмами І1 і І2, розміщених на відстані d один від одного, що діють на відрізок провідника довжиною l, виражається формулою

.

10. Магнетний момент контуру зі струмом

,

де

- вектор, який дорівнює за модулем площі S, яку охоплює контур, і збігається за напрямком з нормаллю до його площини.

11. Механічний момент, який діє на контур зі струмом, розміщений в однорідному магнетному полі

.

Модуль механічного моменту

,

де а - кут між векторами і .

12. Сила, що діє на контур зі струмом в магнетному полі (змінному вздовж осі х),

,

де - зміна магнетної індукції вздовж осі х, розрахована на одиницю довжини;

а - кут між напрямками векторів і .

13. Закон повного струму для струму провідності: циркуляція вектора напруженості Н магнетного поля вздовж замкненого контуру, що охоплюється струмом І, виражається формулою

,

де Нl - проекція вектора Н на напрямок дотичної до контуру, що містить елемент dl;

І - сила струму, яка охоплюється контуром.

Якщо контур охоплює n струмів, то

де

- алгебраїчна сума струмів, які охоплює контур.

14. Магнетний потік Ф через плоский контур площею S:

- у випадку однорідного поля

або

де а - кут між вектором нормалі до площини контуру і вектором магнетної індукції ;

Вn - проекція вектора на нормаль n =Bcosa);

- у випадку неоднорідного поля

,

де інтегрування ведеться через всію площу S.

15. Потокозчеплення, тобто повний магнітний потік, зчеплений зі всіма витками соленоїда або тороїда

,

де Ф - магнетний потік через один виток;

N - кількість витків соленоїда або тороїда.

16. Магнетна індукція на осьовій лінії тороїда

,

де І - сила струму в обмотці тороїда;

N - кількість витків в тороїді;

l - довжина середньої лінії сердечника тороїда;

- магнетна проникність речовини тороїда;

- магнетна стала;

17. Напруженість магнетного поля на осьовій лінії сердечника тороїда

;

- магнетний потік в сердечнику тороїда

;

- магнетний опір ділянки кола

.

18. Магнетна проникність феромагнетика, пов'язана з магнетною індукцією В поля в ньому і напруженістю H намагнечувального зовнішнього магнетного поля співвідношенням:

.

19. Зв'язок між магнетною індукцією поля В феромагнетика і напруженістю зовнішнього магнетного поля H, яке викликає намагнечування, виражається таким графіком.

Графік залежності магнетної індукції поля у магнетику від напруженості зовнішнього магнетного поля

Приклади розв'язання задач

Приклад 1. По двох нескінченно довгих паралельних провідниках у повітрі течуть в однаковому напрямку струми I1 й I2 (рис.23). Провідники розташовані на відстані 5 см один від одного. Знайти величину струму I1, якщо індукція магнетного поля у точці, рівновіддаленій від обох проводів на 3,5 см, дорівнює 3.10-5 Тл, а сила струму I2 дорівнює 2 А.

Размещено на http://www.allbest.ru/

Рисунок 23

Дано:

l = 5 см = 5.10-2 м

I2 = 2 А

r1 = r2 = 3,5 см = 3,5.10-2 м

В = 3.10-5 Тл

I1 - ?

Розв'язування. Використаємо принцип суперпозиції

, де

, .

Для розрахунку результуючого магнетного поля використаємо теорему косинусів

, ( 1)

де - кут між векторами і .

Вектори і спрямовані по дотичних до силових ліній у точках, що відстоять від струмів I1 і I2 на відстані r1 і r2, відповідно.

Оскільки кут між векторами і дорівнює такому ж куту між сторонами трикутника (рис.22), то

cos = або

cos = .

Підставляючи в (1) вирази для В1 і В2 з врахуванням того, що r1=r2, одержимо

( cos )1/2 . Звідки

сos?= і

= 0

Підставляючи дані з умови задачі, одержимо квадратне рівняння відносно І1

- 0,0816.I1 - 23,56 = 0 . Звідки

.

Оскільки від'ємне значення струму I1 відповідає протилежному відносно I2 напрямку протікання, то воно не може бути розв'язком задачі.

Таким чином

I1 = ( 9,79/2 ) А = 4,895 А.

Відповідь: I1 = 4,895 А.

Приклад 2. Напруженість магнетного поля у центрі квадратної рамки з струмом дорівнює 30 А/м. Знайти силу струму, що протікає по рамці, якщо довжина її сторін 10 см.

Дано: квадратна рамка

Н = 30 А/м

а = 10 см = 10-1 м

I - ?

Розв'язування. Відомо, що напруженість магнетного поля пов'язана з вектором магнетної індукції співвідношенням

.

Звідки

В = Тл.

У центрі рамки всі вектори магнетної індукції, що відповідають магнетному полю струмів, які протікають по різних сторонах рамки, однакові за величиною й напрямком. Тому В = 4В1, де В1 - магнетна індукція магнетного поля , створеного струмом однієї із сторін

де r0 - відстань від центра рамки до кожної із сторін;

r0 = a/2 = 5 см = 0,05 м.

Кут для квадратної рамки дорівнює 45о і сos45о .

Тому

або .

Виконаємо необхідні розрахунки, підставивши всі дані в системі СІ ,

В = 3,77.10-5 Тл; a = 0,1 м; = 1; 0 = 4.10-7 Гн/м.

Приклад 3. Індукція магнетного поля у центрі мідного дротяного кільця з струмом дорівнює 10-5 Тл. Який переріз має дріт цього кільця, якщо після увімкнення до його кінців різниці потенціалів в 0,2 В, по кільцю тече струм силою 2 А. Питомий опір міді = 1,7.10-8 Ом.м.

Дано:

В = 10-5 Тл

U = 0,2 В

I = 2 А

с = 1,7.10-8 Ом.м

S - ?

Розв'язування. Індукція магнетного поля у центрі кільця з струмом

. ( 1)

Із закону Ома для ділянки кола маємо

, ( 2)

де l = 2r - довжина кільця;

r - радіус кільця;

R - опір дроту кільця.

Підставляючи вираз для l в (2), одержимо

.

Звідки

і

З останньої формули знаходимо переріз

.

Підставимо числові дані:

= 0,134 мм2.

Приклад 4. Електрон, пройшовши прискорюючу різницю потенціалів 50 В, влітає в однорідне магнетне поле під кутом 30о до ліній індукції. Визначити величину вектора магнетної індукції, якщо радіус гвинтової лінії, по якій рухається електрон, дорівнює 10 см.

Дано:

U = 50 В

= 300

R = 10 см = 10-1 м

В - ?

Розв'язання. У магнетному полі електрон під дією сили Лоренца бере участь у двох рухах: рівномірному русі в напрямку силових ліній магнетного поля і русі по колу в площині, перпендикулярній до силових ліній.

Рівномірний рух відбувається зі швидкістю сos, а рух по колу характеризується швидкістю sinб. Рух по колу відбувається під дією сили Лоренца, яка є доцентровою

,

де

R - радіус кола.

З урахуванням того, що сила Лоренца дорівнює , одержуємо співвідношення

B = . ( 1)

Величина швидкості електрона визначається пройденою різницею потенціалів

eU = . Звідки

й .

Тоді, відповідно до формули (1), знаходимо

.

Підставимо числові дані, переводячи величини в систему СІ

Тл.

Електромагнетна індукція. Основні формули

1. Робота переміщення замкнутого контура зі струмом в магнетному полі

,

де - зміна магнетного потоку, який пронизує поверхню, обмежену контуром;

І - сила струму у контурі.

2. Основний закон електромагнетної індукції (закон Фарадея)

,

де - електрорушійна сила індукції;

N - кількість витків контуру;

- потокозчеплення.

Окремі випадки застосування основного закону електромагнетної індукції:

- різниця потенціалів U на кінцях провідника довжиною l, який рухається зі швидкістю в однорідному магнетному полі

,

де а - кут між напрямками векторів швидкості та магнетної індукції В;

- електрорушійна сила індукції , яка виникає в рамці, що містить N витків площею S. При обертанні рамки з кутовою швидкістю в однорідному магнетному полі з індукцією В виникає електрорушійна сила

,

де - миттєве значення кута між вектором і вектором нормалі до площини рамки.

3. Заряд Q, який протікає в контурі

де R - опір контуру;

- зміна потокозчеплення

4. Електрорушійна сила самоіндукції , яка виникає у замкнутому контурі при зміні сили струму в ньому

або

де L - індуктивність контуру.

5. Потокозчеплення контуру

,

де L - індуктивність контуру.

6. Індуктивність соленоїда (тороїда):

де - кількість витків, які припадають на одиницю довжини соленоїда;

V - об'єм соленоїда.

У всіх випадках, для знаходження індуктивності соленоїда (тороїда) з сердечником з використанням наведеної формули для визначення магнетної проникності, слід користуватися графіком залежності В від Н, а потім формулою

.

7 . Миттєве значення сили струму І в колі, що має активний опір R та індуктивність L:

- після замикання кола

,

де - е.р.с. джерела струму;

t - час, що минув після замикання кола.

- після розмикання кола

,

де І0 - значення сили струму в колі при t = 0;

t - час, що минув з моменту розмикання кола.

Приклади розв'язання задач

Приклад 1. У центрі плоскої колової дротяної рамки, яка складається з 50 витків радіусом 20 см, перебуває маленька рамка, яка складається з 100 витків площею 1 см2. Маленька рамка обертається навколо одного з діаметрів великої рамки з постійною кутовою швидкістю 300 рад. Знайти максимальне значення ЕРС індукції, якщо в обмотці рамки тече струм силою 10 А.

Дано:

N1 = 50

N2 = 100

R = 20 см = 0,2 м

S =1 см2 = 10-4 м2

= 300 рад

I = 10 А

imax- ?

Розв'язання. При обертанні маленької рамки постійно змінюється кут між вектором і нормаллю до площини рамки й, отже, змінюється магнетний потік Ф, що пронизує маленьку рамку. У рамці виникає е.р.с. індукції, миттєве значення якої, за законом Фарадея, дорівнює

(1)

де = N2Ф - потокозчеплення.

Оскільки розміри маленької рамки малі в порівнянні з розмірами великої рамки, то поле в межах маленької рамки можна вважати однорідним. Магнетну індукцію В цього поля можна виразити через індукцію поля в центрі рамок

( 2)

Для однорідного поля магнетний потік, який пронизує маленьку рамку, дорівнює Ф = ВScos. З урахуванням того, що при обертанні рамки з постійною кутовою швидкістю миттєве значення кута = t, одержимо

Ф = ВS cos = BS cost.

Підставляючи у формулу (1) вираз для Ф і диференціюючи його за часом, знайдемо миттєве значення ЕРС індукції

оi = N2BS sint.

Максимальне значення ЕРС індукції дорівнює (sint=1)

о i max = N2BS.

З урахуванням (2), одержимо

.

Виразимо всі величини в одиницях СІ: R = 0,2 м; S = 10-4 м2; I = 10 А; = 300 рад/с; 0 = 4.10-7 Гн/м; = 1.

Виконавши обчислення, одержимо

Приклад 2. Контур у вигляді квадрата (рис.24) зі стороною 10 см перебуває в однорідному магнетному полі з індукцією 0,5 мТл так, що його площина становить кут 30o з силовими лініями поля. Який заряд протече по контуру при вимиканні магнетного поля? Опір контуру 1 мОм.

Дано:

а = 10 см = 10-1 м

В = 0,5 мТл = 5.10-4 Тл

б= 30o

R =1 мОм = 1.10-3 Ом.

q - ?

Розв'язання. При вимиканні магнетного поля магнетний потік Ф, що пронизує контур, змінюється. У контурі виникає е.р.с. індукції, миттєве значення якої за законом Фарадея дорівнює

Размещено на http://www.allbest.ru/

Рисунок 24

.

Миттєве значення сили індукційного струму визначається за законом Ома

За час dt по контуру протече заряд

Інтегруючи цей вираз, знайдемо повний заряд

.

Для однорідного магнетного поля початковий магнетний потік дорівнює

Ф1 = BS cos,

де

- кут між вектором магнетної індукції і нормаллю до площини контура;

S = а2 - площа квадрата.

З рисунка 23 видно, що = 90o - . Отже, cos = sin. Кінцевий магнетний потік Ф2 = 0. Таким чином,

Виконавши необхідні обчислення, одержимо

Кл.

Приклад 3. Соленоїд із сердечником із немагнетного матеріалу містить 1200 витків, які щільно прилягають один до одного. При силі струму магнетний потік, який створюється в соленоїді, дорівнює 4мкВб. Визначити індуктивність соленоїда й енергію його магнетного поля.

Дано:

N = 1200

I = 4 А

Ф = 4 мкВб = 4.10-6 Вб

L - ? W - ?

Розв'язування: Індуктивність соленоїда L пов'язана з потокозчепленням і силою струму I співвідношенням

= LI . ( 1)

У свою чергу, потокозчеплення можна знайти через потік Ф и число витків N (якщо витки щільно прилягають один до одного)

= NФ . ( 2)

З формул (1) і (2) знаходимо індуктивність соленоїда

. ( 3)

Енергія магнетного поля соленоїда

.

Виразивши L згідно з (3), одержимо

.

Підставимо у формули значення фізичних величин і зробимо обчислення:

Дж = 14,4 мДж.

Рух заряджених частинок в електромагнетному полі. Основні формули

1. Сила F, що діє на заряд, який рухається зі швидкістю в магнетному полі з індукцією В (сила Лоренца), виражається формулою

або

де а - кут, який утворений вектором швидкості руху частинки та вектором індукції магнетного поля.

Задачі

235. Напруженість Н магнетного поля в центрі колового витка радіусом r = 8 см дорівнює 30 А/м. Визначити напруженість Н1 на осі витка в точці, розміщеній на відстані d = 6 см від центра витка.

Відповідь: 15,4 A/м.

236. По двох нескінченно довгих прямих провідниках, схрещених під прямим кутом, протікають струми силою І1 = З0 А та I2 = 40 А. Відстань d між проводами дорівнює 20 см. Визначити магнетну індукцію В у точці С (рис.25), що однаково віддалена від обох проводів на відстань, яка дорівнює d.

Відповідь: 50 мкТл.

237. По тонкому кільцю з дроту протікає струм. Не змінюючи сили струму в провіднику, йому надали форму квадрата. У скільки разів змінилася сила магнетної індукції у центрі контуру?

Відповідь:

Размещено на http://www.allbest.ru/

Рисунок 25

238. По трьох паралельних прямих провідниках, які розміщені на однаковій відстані а = 10 см один від одного, протікають однакові струми силою I = 100 А. У двох провідниках напрямки струмів збігаються.

Визначити силу F, яка діє на відрізок довжиною l = 1 м від кожного проводу.

Відповідь: мН; мН.

239. По тонкому стрижню довжиною l = 20 см рівномірно розподілений заряд Q = 240 нКл. Стрижень обертається зі сталою кутовою швидкістю = 10 рад/с відносно осі, перпендикулярної до стрижня, і яка проходить через його середину. Визначити: а) магнетний момент pm що обумовлений обертанням зарядженого стрижня; б) відношення магнетного моменту до моменту імпульсу ( рт /L), якщо стрижень має масу т = 12 г.

Відповідь: 1) нАм2; 2) мкКл/кг.

240. Тонке кільце радіусом R = 10 см має заряд Q = 10 нКл. Кільце рівномірно обертається з частотою п = 10с-1 відносно осі, перпендикулярної до площини кільця, і яка проходить через її центр. Знайти: а) магнетний момент рт колового струму,що створює кільце; б) відношення магнетного моменту до моменту імпульсу (pm/L ), якщо маса кільця дорівнює 10 г.

Відповідь: 1) нАм2; 2) 500 нКл/кг.

Размещено на http://www.allbest.ru/

Рисунок 26

241. По соленоїду довжиною l = 1 м без сердечника, який має N = 103 витків, протікає струм силою І = 20 А. Визначити циркуляцію вектора магнетної індукції вздовж контуру, зображеному на рис.26 а, б.

Відповідь: мТл.м.

241. Замкнений соленоїд (тороїд) зі стальним сердечником має n = 10 витків на кожний сантиметр довжини. По соленоїду протікає струм силою І = 2 А. Визначити магнетний потік Ф в сердечнику, якщо його переріз S = 4 см2.

Відповідь: 0,52 мВб.

Примітка. Для визначення магнетної проникності в цій задачі скористатися графіком, який показує зв'язок між магнетною індукцією В поля у феромагнетику і напруженістю Н намагнечувального поля. Явище гістерезису не враховувати.

242. По тонкому провідному кільцю радіусом R = 10 см протікає струм силою I = 80 А. Знайти магнетну індукцію В у точці, рівновіддаленій від всіх точок кільця на r = 20 см.

Відповідь: мкТл.

243. Нескінченно довгий прямий провід зігнутий під прямим кутом. По провіднику протікає струм силою І = 20 А. Яка магнетна індукція В в точці А (рис. 27), якщо r = 5 см?

Відповідь: 40 мкТл.

244. По провіднику, зігнутому у вигляді правильного шестикутника зі стороною а, яка дорівнює 20 см, протікає струм силою I = 100 А. Знайти напруженість H магнетного поля в центрі шестикутника.

Размещено на http://www.allbest.ru/

Рисунок 27

Для порівняння визначити напруженість Н0 в центрі колового провідника, який збігається з колом, описаним біля цього шестикутника.

Відповідь: 275 А/м.

245. По двох однакових квадратних плоских контурах зі стороною а = 20 см протікають однакові струми силою I = 10 А. Визначити силу F взаємодії контурів, якщо відстань d між сторонами контурів дорівнює 2 мм.

Відповідь: = 8мН.

246. Диск радіусом R = 10 см несе рівномірно розподілений по поверхні заряд Q = 0,2 мкКл. Він рівномірно обертається з частотою n = 20 с-1 відносно осі, яка перпендикулярна до площини диска і проходить через його центр. Знайти: а) магнетний момент рт колового струму, що створює диск; б) відношення магнетного моменту до моменту імпульсу (pm /L), якщо маса диска дорівнює 100г.

Відповідь: pm= 62,8 нАм2;

247. Визначити циркуляцію вектора індукції вздовж контуру, що охоплює струми I1 = 10 А, І2 = 15 А, які протікають в одному напрямку, та струм Із = 20 А, який тече в протилежному напрямку.

Відповідь: 6,28 мкТл.м.

248. Залізне кільце має обмотку в один шар з N= 500 витків проводу. Середній діаметр d кільця дорівнює 25 см. Визначити магнетну індукцію В в залізі і магнетну проникність заліза, якщо сила струму І в обмотці: а) 0,5 А; б) 2,5 А.

Відповідь: а) 1 Тл, б) 1,4 Тл, 700.

Примітка. Для знаходження магнетної проникності в цій задачі скористатися графіком, який показує зв'язок між магнетною індукцією В поля у феромагнетику і напруженістю Н намагнечувального поля. Явище гістерезису не враховувати.

249. До джерела струму з ЕРС = 0,5 В і мізерно малим внутрішнім опором приєднані два металевих стрижня, які розміщені горизонтально і паралельно один до одного. Відстань l між стрижнями дорівнює 20 см. Стрижні знаходяться в однорідному магнетному полі, напрямленому вертикально. Магнетна індукція В = 1,5 Тл. По стрижнях під дією сил поля ковзає зі швидкістю =1 м/с прямолінійний провідник з опором R = 0,02 Ом. Опором стрижнів можна знехтувати. Визначити: а) е.р.с. індукції ; б) силу F, яка діє на провідник з боку поля; в) силу струму I в колі; г) потужність Р1, яка витрачається на рух провідника; д) потужність Р2, яка витрачається на нагрівання провідника; е) потужність Р3, яка передається в коло джерелом струму.

Відповідь: а) 0,3 В; б) 3 Н; в) 10 А; г) 3 Вт; д) 2 Вт; е) 5 Вт.

250. В однорідному магнетному полі з індукцією В = 0,4 Тл у площині, яка перпендикулярна до ліній індукції поля, обертається стрижень довжиною l = 10 см. Вісь обертання проходить через один із кінців стрижня. Визначити різницю потенціалів U на кінцях стрижня при частоті обертання п = 16 с-1.

Відповідь: мВ.

251. Дротяне кільце радіусом r = 10 см лежить на столі. Який заряд Q протече по кільцю, якщо його повернути з одного боку на інший? Опір кільця R дорівнює 1 Ом. Вертикальна складова індукції В магнетного поля Землі дорівнює 50 мкТл.

Відповідь: 3,14 мкКл.

252. По нескінченно довгому прямому дроті, зігнутому під кутом б = 120о, проходить струм I = 50 А. Знайти магнетну індукцію поля В в точці, яка лежить на бісектрисі кута на відстані r = 50 мм від його вершини.

Відповідь: В = 3,46.10-4 Тл.

253. По контуру, який має вигляд рівностороннього трикутника, проходить струм I = 40 А. Сторони трикутника а = 30 см. Знайти магнетну індукцію В поля в точці перетину висот.

Відповідь: В = 24.10-5 Тл.

254. Нескінченно довгий дріт зігнутий під прямим кутом. По дроту проходить струм I = 50 А. Обчислити магнетну індукцію В поля в точці, яка лежать на бісектрисі кута і віддалена від вершини кута на відстань r = 100 мм.

Відповідь: В =10-4 Тл.

255. Прямий довгий провідник на одній із ділянок переходить в коло (плоска мертва петля) радіусом R = 10 см. По провіднику тече струм I = 2 А. Визначити індукцію магнетного поля в центрі кола, утвореного довгим прямим провідником із струмом.

Відповідь: В = 1,656.10-5 Тл.

256. Визначити магнетну індукцію В поля в центрі квадратної рамки зі сторонами а = 100 мм, якщо по рамці тече струм I = 2 А.

Відповідь: В = 2,26.10-5 Тл.

257. По тонкому дроті, вигнутому у вигляді прямокутника, проходить струм I = 30 А. Сторони прямокутника а = 30 см, b = 40 см. Знайти магнеетну індукцію В поля в точці перетину діагоналей.

Відповідь: В =10-4 Тл.

258. По тонкому дроту, вигнутому у вигляді правильного шестикутника, проходить струм I = 1 А. Сторона шестикутника а = 10 см. Знайти магнетну індукцію В поля в центрі шестикутника.

Відповідь: В = 6,93.10-6 Тл.

259. Два рівнобіжних нескінченно довгих дроти, по яких в одному напрямі течуть струми по I = 6 А кожний, розташовані на відстані а = 100 мм один від одного. Знайти магнетну індукцію В поля в точці, яка відстоїть від одного дроту на відстані r1 = 75 мм, а від іншого - на відстані r2 = 125 мм.

Відповідь: В = 2,24.10-5 Тл.

260. По трьох рівнобіжних прямих дротах, які знаходяться на однаковій відстані 20 см один від одного, течуть однакові струми по 80 А. У двох дротах напрямки струмів збігаються. Обчислити силу, що діє на одиницю довжини кожного дроту.

Відповідь: F1 = 0,011 Н; F2 = 0,0064 Н.

261. По тонкому дротяному кільцю тече струм. Не змінюючи сили струму, кільцю надали форму квадрата. У скільки разів змінилася магнетна індукція в центрі квадрата.

Відповідь: Вкв.ко. = 0,86.

262. Рамка із дроту опором R = 0,01 Ом рівномірно обертається в однорідному магнетному полі з індукцією В = 0,05 Тл. Вісь обертання лежить в площині рамки і перпендикулярна до ліній індукції. Площа S рамки дорівнює 100 см2. Знайти, який заряд Q протече через рамку за час повороту її на кут а = 30° в таких трьох випадках: а) від до 30°; б) від 30° до 60°; в) від 60о до 90°.

Відповідь: а) 6,27 мКл; б)мКл; в) мКл.

263. Котушка, яка намотана на немагнетний циліндричний каркас, має N1 = 750 витків та індуктивність L1 = 25 мГн. Щоб збільшити індуктивність котушки до L2 = 36 мГн, обмотку з котушки зняли і замінили обмоткою з більш тонкого дроту з таким розрахунком, щоб довжина котушки залишалася такою самою. Визначити число витків у котушці після перемотки.

Відповідь: 900.

264. Джерело струму замкнули на котушку опором R = 10 Ом та індуктивністю L = 1 Гн. Через який час сила струму замикання досягне 0,9 максимального значення?

Відповідь: 0,23 с.

265. В однорідному магнетному полі з індукцією В = 0,35 Тл рівномірно з частотою п = 480 хв-1 обертається рамка, яка містить N = 1500 витків площею S = 50 см2. Вісь обертання лежить у площині рамки і перпендикулярна до ліній індукції. Визначити максимальну ЕРС індукції , яка виникає у рамці.

Відповідь: В.

266. Коротка котушка, яка містить N = 1000 витків, рівномірно обертається в однорідному магнетному полі з індукцією В = 0,4 Тл з кутовою швидкістю = 5 рад/с відносно осі, яка збігається з діаметром котушки і перпендикулярна до ліній індукції поля. Визначити миттєве значення ЕРС індукції і для тих моментів часу, в які площина котушки складає кут а = 60° з лініями індукції поля. Площа S котушки дорівнює 100см2.

Відповідь: В.

267. У кільце з дроту, яке приєднане до балістичного гальванометра, вставили прямий магніт. По колу пройшов заряд Q = 10 мкКл. Визначити магнетний потік Ф, який пересікається кільцем, якщо опір R кола гальванометра дорівнює 30 Ом.

Відповідь: 0,3 мВб.

268. Тонкий мідний дріт масою m = 1 г зігнутий у вигляді квадрата. Квадрат поміщений в однорідне магнітне поле (В = 0,1 Тл) так, що його площина перпендикулярна до ліній індукції поля. Визначити заряд Q, який протече по провіднику, якщо квадрат, потягнувши за протилежні вершини, витягнути в лінію.

Відповідь: мКл (D - густина міді).

269. Довгий прямий соленоїд, намотаний на немагнетний каркас має N = 1000 витків та індуктивність L = 3 мГн. Який магнітний потік Ф і яке потокозчеплення W створює соленоїд при струмі силою = 1 А?

Відповідь: 3 мкВб; 3 мВб.

270. Коло складається із котушки індуктивністю L = 1 Гн і опором R = 10 Ом. Джерело струму можна вимикати, не розриваючи коло. Визначити час t, після проходження якого сила струму зменшиться до 0,001 початкового значення.

Відповідь: 0,69 с.

271. Визначити радіус R дуги кола, яку описує протон в магнетному полі з індукцією В = 15 мТл, якщо швидкість протона дорівнює 2 Мм/с.

Відповідь: 1,38 м.

272. Протон, який пройшов прискорюючу різницю потенціалів U = 600 В, влетів в однорідне магнетне поле з індукцією В = 0,3 Тл і почав рухатися по колу. Визначте його радіус R.

Відповідь: 12 мм.

273. Електрон, прискорений різницею потенціалів 1000 В, влітає в однорідне магнетне поле, перпендикулярно до напрямку силових ліній. Індукція магнетного поля дорівнює 2,38·10-3 Тл. Знайти: а) радіус кривизни траєкторії електрона; б) період обертання його по колу; в) момент імпульсу електрона.

Відповідь: R = 0,0446 м; Т =; L = 8,12.10-27 кг.м2/с.

274. Електрон влітає в однорідне магнетне поле перпендикулярно до напрямку силових ліній. Швидкість електрона = 2·107 м/с, індукція магнетного поля дорівнює 4·10-3 Тл. Чому дорівнює тангенціальне і нормальне прискорення електрона в магнетному полі.

Відповідь:

275. Протон, який має швидкість 104 м/с, влітає в однорідне магнетне поле з індукцією 0,01 Тл. Вектор швидкості протона спрямований під кутом 60° до ліній індукції магнетного поля. Визначити радіус витка гвинтової лінії і її крок.

Відповідь: R = 9,02.10-3 м; h = 32,7.10-6 м.

276. Електрон, прискорений різницею потенціалів 300 В, рухається на відстані 9 мм паралельно до довгого прямолінійного провідника. Яка сила буде діяти на електрон, якщо по провіднику пустити струм 10 А?

Відповідь: F = 1,15.10-15 H.

277. В однорідному магнетному полі з індукцією 0,4 Тл заряджена частинка рухається по колу радіусом 2 см. Паралельно до напрямку силових ліній магнетного поля створюють електричне поле з напруженістю 200 В/м. Через скільки часу кінетична енергія частинки зросте вдвічі?

Відповідь:

278. Протон і електрон, прискорені однаковою різницею потенціалів, влітають в однорідне магнетне поле. В скільки разів радіус кривизни траєкторії протона більший радіуса кривизни траєкторії електрона?

Відповідь: Rn /Re = 42,8.

279. Електрон влітає в однорідне магнетне поле під кутом 30° до напрямку силових ліній і рухається вздовж гвинтової лінії, радіус якої дорівнює 1,5 см. Індукція магнетного поля В = 0,1 мТл. Знайти кінетичну енергію електрона.

Відповідь: K=1,26.10-19 Дж.

280. Електрон, прискорений різницею потенціалів 3000 В, влітає в магнетне поле соленоїда під кутом 30° до його осі. Число ампер-витків соленоїда дорівнює 5000. Довжина соленоїда 25 см. Знайти крок гвинтової траєкторії електрона в магнетному полі соленоїда.

Відповідь: h = 0,04 м.

281. Заряджена частинка рухається в магнетному полі по колу зі швидкістю = 106 м/с. Індукція магнетного поля В = 0,3 Тл. Радіус кола R = 4 см. Знайти заряд частинки, якщо відомо, що її енергія дорівнює Wк = 12 кеВ.

Відповідь: q = 3,2.10-19 Кл.

282. Електрон, прискорений різницею потенціалів 6 кВ, влітає в однорідне магнетне поле під кутом б = 30° до напрямку силових ліній поля і починає рухатися вздовж гвинтової лінії. Індукція магнетного поля дорівнює В = 1,3·10-2 Тл. Знайти радіус кривизни витка і крок гвинтової лінії.

Відповідь: R=0,01м; h = 0,11м.

283. Заряджена частинка, яка пройшла прискорюючу різницю потенціалів U = 2 кВ, рухається в однорідному магнетному полі з індукцією В = 15,1 мТл по колу радіусом R = 1 см. Визначити відношення заряду частинки до її маси і швидкість частинки.

Відповідь: 175 ГКл/кг; 26,5 Мм/с.

284. Електрон рухається в однорідному магнетному полі напруженістю Н = 16 кА/м зі швидкістю = 8 Мм/с. Вектор швидкості складає кут а = 60° з напрямком ліній індукції поля. Визначити радіус R і крок h гвинтової лінії, по якій буде рухатися електрон в магнетному полі. Визначити також крок гвинтової лінії для електрона, який летить під малим кутом до ліній індукції.

Відповідь: 1,96 мм; 7,1 мм; 14,2мм.

285. Перпендикулярно до магнетного поля з індукцією В = 0,1 Тл збуджено електричне поле напруженістю Е = 100 кВ/м. Перпендикулярно до обох полів рухається, не відхиляючись від прямолінійної траєкторії, заряджена частинка. Визначити швидкість частинки.

Відповідь: м/с.

286. Протон зі швидкістю = 100 км/с влітає в область простору, де є електричне (Е = 210 В/м) і магнетне (В = 3,3 мТл) поля. Напруженість Е електричного поля та магнетна індукція В збігаються за напрямком. Визначити прискорення протона для початкового моменту руху в полі, якщо напрямок вектора його швидкості : а) збігається за загальним напрямком векторів і ; б) перпендикулярний до цього напрямку.

...

Подобные документы

  • Електричні заряди: закон збереження, закон Кулона. Напруженість електричного поля. Провідники і діелектрики в електростатичному полі. Різниця потенціалів. Зв’язок між напруженістю та напругою. Електроємність конденсатора та енергія електричного поля.

    задача [337,9 K], добавлен 05.09.2013

  • Види симетрії: геометрична та динамічна. Розкриття сутності, властивостей законів збереження та їх ролі у сучасній механіці. Вивчення законів збереження імпульсу, моменту кількості руху та енергії; дослідження їх зв'язку з симетрією простору і часу.

    курсовая работа [231,7 K], добавлен 24.09.2014

  • Експериментальна перевірка законів кінематики й динаміки поступального руху. Головне призначення та функції машини Атвуда. Виведення формули для шляху при довільному русі. Визначення натягу нитки при рівноприскореному русі. Розрахунки маси і ваги тіла.

    лабораторная работа [71,6 K], добавлен 29.09.2011

  • Поняття та методика виміряння потоку вектора електричного зміщення. Сутність теореми Гауса-Остроградського і її застосування для розрахунку електричних полів. Потенціальний характер електростатичного поля. Діелектрики в електричному полі, їх види.

    лекция [2,4 M], добавлен 23.01.2010

  • Закон збереження імпульсу, робота сили та потужність. Кінетична та потенціальна енергія, закон збереження механічної енергії. Елементи кінематики обертового руху та його динаміка. Моменти сили, інерції, імпульсу. Поняття про гіроскопічний ефект.

    курс лекций [837,7 K], добавлен 23.01.2010

  • Напруга як різниця потенціалів між двома точками в електричному полі. Електроємність системи із двох провідників. Сферичний конденсатор із двох концентричних провідних сфер радіусів, його обкладинка. Формули для паралельного й послідовного з'єднання.

    презентация [332,9 K], добавлен 13.02.2014

  • Поняття та загальна характеристика індукційного електричного поля як такого поля, що виникає завдяки змінному магнітному полю (Максвел). Відмінні особливості та властивості індукційного та електростатичного поля. Напрямок струму. Енергія магнітного поля.

    презентация [419,2 K], добавлен 05.09.2015

  • Явище електризації тіл і закон збереження заряду, взаємодії заряджених тіл і закон Кулона, електричного струму і закон Ома, теплової дії електричного струму і закон Ленца–Джоуля. Електричне коло і його елементи. Розрахункова схема електричного кола.

    лекция [224,0 K], добавлен 25.02.2011

  • Рух електрона в однорідному, неоднорідному аксіально-симетричному магнітному полі. Визначення індукції магнітного поля на основі закону Біо-Савара-Лапласа. Траєкторія електрона у полі соленоїда при зміні струму котушки, величини прискорюючого напруження.

    курсовая работа [922,3 K], добавлен 10.05.2013

  • Поняття електростатиці, електричного поля, електричного струму та кола, ємністі, магнетизму та електромагнітній індукції. Закон електромагнітної індукції Фарадея. Кола змінного струму. Послідовне та паралельне з’єднання R-, C-, L- компонентів.

    анализ книги [74,2 K], добавлен 24.06.2008

  • Поділ речовин постійного струму в залежності від величини питомого опору, що вони чинять, на провідники, напівпровідники та діелектрики. Процеси, що відбуваються з провідником та діелектриком в електростатичному полі. Механізм поляризації діелектриків.

    лекция [409,5 K], добавлен 15.04.2014

  • Явище термоелектронної емісії – випромінювання електронів твердими та рідкими тілами при їх нагріванні. Робота виходу електронів. Особливості проходження та приклади електричного струму у вакуумі. Властивості електронних пучків та їх застосування.

    презентация [321,1 K], добавлен 28.11.2014

  • Потенціальна та власна енергія зарядів. Еквіпотенціальні поверхні. Зв’язок напруженості поля та потенціалу. Залежність роботи електростатичного поля над зарядом від форми і довжини шляху. Закон збереження енергії. "Мінімальні" розміри електронів.

    лекция [358,5 K], добавлен 15.04.2014

  • Суть методів аналізу перехідних процесів шляхом розв‘язку задач по визначенню реакції лінійного електричного кола при навантаженні. Поведінка кола при дії на вході періодичного прямокутного сигналу, його амплітудно-частотна і фазочастотна характеристика.

    курсовая работа [461,9 K], добавлен 30.03.2011

  • Розрахунок символічним методом напруги і струму електричного кола в режимі синусоїдального струму, а також повну потужність електричного кола та коефіцієнт потужності. Використання методу комплексних амплітуд для розрахунку електричного кола (ЕК).

    контрольная работа [275,3 K], добавлен 23.06.2010

  • Закон збереження механічної енергії. Порівняння зменшення потенціальної енергії прикріпленого до пружини тіла при його падінні зі збільшенням потенціальної енергії розтягнутої пружини. Пояснення деякій розбіжності результатів теорії і експерименту.

    лабораторная работа [791,6 K], добавлен 20.09.2008

  • Енергетична взаємодія системи перетворювального обладнання тягової підстанції постійного струму із системою зовнішнього електропостачання. Фізичне та комп’ютерне моделювання випрямлення електричної енергії у несиметричних режимах, зіставлення результатів.

    дипломная работа [10,0 M], добавлен 18.05.2015

  • Енергія - універсальна міра руху форм матерії. Механічна робота як міра зміни енергії. Потужність, кінетична енергія. Сили з боку інших фізичних тіл, що викликають зміни механічного руху. Випадок руху матеріальної точки уздовж криволінійної траєкторії.

    реферат [137,3 K], добавлен 22.03.2009

  • Світ шукає енергію. Скільки потрібно енергії. Альтернативні джерела енергії. Вітрова енергія. Енергія річок. Енергія світового океану. Енергія морських течій. Енергія сонця. Атомна енергія. Воднева енергетика. Сучасні методи виробництва водню.

    дипломная работа [40,8 K], добавлен 29.05.2008

  • Розрахунок символічним методом напруги і струму заданого електричного кола (ЕК) в режимі синусоїдального струму на частотах f1 та f2. Розрахунок повної, активної, реактивної потужності. Зображення схеми електричного кола та графіка трикутника потужностей.

    задача [671,7 K], добавлен 23.06.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.