Основи ядерної фізики
Опис основних характеристик атомних ядер та їх будови. Характеристика ядерних сил і їх природи, законів радіоактивного розпаду, закономірностей альфа- і бета–розпаду, а також порогу і механізмів ядерних реакцій. Основи використання ядерної енергії.
Рубрика | Физика и энергетика |
Вид | курсовая работа |
Язык | украинский |
Дата добавления | 09.07.2017 |
Размер файла | 167,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Основними правилами, які визначають характер захисту від г - випромінювання на забрудненій території є:
· Потужність дози г - випромінювання найбільш висока на початку після випадання радіоактивних опадів, тому захист від г - випромінювання необхідно здійснювати буквально з першої години, навіть з перших хвилин випадання радіоактивних опадів. Початок випадання виявляється різким підвищенням рівня радіації;
· Перебування в будь-якому будинку або споруді знижує дозу г - опромінення на величину коефіцієнта ослаблення г - випромінювання будинком або спорудою;
· Внаслідок того, що потужність дози г - випромінювання знижується швидше на початку забруднення, укриття людини в спорудах з відомим коефіцієнтом ослаблення має бути по можливості тривалим. У першу добу після випадання радіоактивних опадів укриття рятує людину від дії випромінювання в значно більшій мірі, ніж у другу і тим більше в наступну добу.
На підставі цих правил можна зробити важливий висновок:
для надійного захисту людини від зовнішнього г - випромінювання на забрудненій території доцільно знати, що найвища загроза опромінення існує лише в перші години після забруднення території. Ці перші години слід перебувати в приміщеннях з найвищим коефіцієнтом захисту.
7.4 Розрахунок захисту і захисні матеріали
Робота з радіоактивними речовинами повинна виконуватися в окремих спеціально обладнаних приміщеннях. Для роботи з газоподібними речовинами використовуються бокси (шафи) із вмонтованими в них гумовими рукавичками або механічними маніпуляторами. Такі бокси повинні мати закриту систему вентиляції. Роботи з відкритими джерелами (наприклад, радіоактивними пробами ґрунту і т.п.) також проводять у боксах, або використовують індивідуальні захисні засоби, такі як протигази, гумові рукавички і т.п. атомний ядро радіоактивний енергія
Джерела великої активності, рівні дози яких перевищують допустиму межу дози, закривають захисними екранами. Вибір матеріалу і товщини захисного екрана залежить від виду випромінювання, його енергії й активності джерела.
Найбільш розповсюдженим методом розрахунку захисту від зовнішнього опромінення є розрахунок необхідної кратності ослаблення.
Необхідна кратність ослаблення Кнеобх визначається відношенням дози випромінювання у відповідній точці до ліміту дози (ЛД) і показує у скільки разів необхідно понизити рівень радіації за допомогою захисних засобів, щоб забезпечити безпечні умови праці:
Кнеобх = , (3.7.4.1)
де Х - експозиційна доза, Р; ЛД - ліміт дози (задається НРБУ - 97), мЗв; f = 9.3 мЗв/Р - нормувальний коефіцієнт.
Знаючи необхідну кратність ослаблення, можна розрахувати необхідний захист. Зупинимося в першу чергу на розрахунку захисту від г-випромінювання, тому що закриті г - джерела знайшли широке застосування в науці і техніці. Ослаблення інтенсивності г-випромінювання (вузького пучка) у речовині відбувається за експонентним законом Бугера
Id = I0, (3.7.4.2)
де I0 - інтенсивність г-випромінювання, виміряна приладом при відсутності захисного екрана; Id - інтенсивність г - випромінювання при наявності захисного екрана товщиною d см., - лінійний коефіцієнт ослаблення г - променів, см-1, що характеризує відносну зміну інтенсивності випромінювання на одиницю товщини захисного екрана. Логарифмуючи вираз (3.7.4.2), одержуємо формулу для визначення лінійного коефіцієнта ослаблення.
. (3.7.4.3)
Відношення K = I0/Id називають кратністю ослаблення, що у даному випадку показує у скількох разів послабляється інтенсивність потоку г - випромінювання захисним матеріалом товщиною d.
Звичайно в довідниках приводять значення масових коефіцієнтів ослаблення різних речовин. Лінійний коефіцієнт ослаблення м пов'язаний з масовим коефіцієнтом ослаблення співвідношенням.
, (3.7.4.4)
Врахувавши всі ці зауваження легко розрахувати товщину захисту для вибраного матеріалу
(м). (3.7.4.5)
Користаючись виразом (3.7.4.5), можна визначити товщину матеріалу, що забезпечує ослаблення інтенсивності вдвічі - шар половинного ослаблення:
(м), (3.7.4.6)
і в десять разів - товщина шару десятикратного ослаблення
(м). (3.7.4.7)
Якщо виходити з довжини максимального пробігу заряджених частинок в тому або іншому матеріалі, то товщина шару поглинання може виявитись дещо більшою за розраховану. Так шар матеріалу товщиною 0,2 мм повністю затримує - випромінювання.
Пробіг a - частинок у будь-якій речовині розраховується за такою емпіричною формулою
(см) (3.7.4.8)
де Ареч.- атомна маса речовини; - густина речовини, г/см3; Е - енергія альфа - випромінювання в МеВ.
Для захисту від a - випромінювання достатній шар повітря в кілька сантиметрів або екран з плексигласу чи скла товщиною в кілька міліметрів.
Пробіг a - частинок у повітрі розраховується за емпіричною формулою:
(см), (3.7.4.9)
де К1 - коефіцієнт, що залежить від температури і тиску; К2 - коефіцієнт, рівний 9,67.10-28; Е - енергія a - частинок, МеВ; V - швидкість a - частинок, см/с.
Для поглинання - випромінювання необхідний шар води або пластмаси товщиною не менше 15 мм. Якщо ж в якості поглинаючої речовини використовується речовина з вищим атомним номером, то товщина шару поглинання зменшується.
Для роботи з в - випромінюванням необхідно передбачити захист безпосередньо від в - частинок і захист від гальмового випромінювання, яке виникає при гальмуванні в - частинок у захисному екрані. Гальмівне випромінювання є квантами енергії, аналогічними до г- квантів.
Захист від в - частинок здійснюється з допомогою комбінованих екранів. У такому екрані з боку джерела розташовують шар матеріалу з малою атомною масою (плексиглас, карболіт і ін.); це дає можливість знизити енергію квантів гальмівного випромінювання. Товщина цього шару повинна відповідати довжині максимального пробігу в - частинок у даному матеріалі. За ним розміщується шар матеріалу з великою атомною масою, що забезпечує ослаблення наведеного гальмівного випромінювання.
Дані про максимальний пробіг в - частинок різної енергії в повітрі, воді (або біологічній тканині) і алюмінії.
Максимальний пробіг в - частинок з максимальною енергією в межах від 0.5 до 20 МеВ розраховують за емпіричною формулою:
, (3.7.4.9)
де Еmax - максимальна енергія в - частинок, МеВ; - густина речовини, г/см3. В першому наближенні можна вважати, що в повітрі максимальний пробіг в - частинок L = 0,41Емакс [см], у воді (або біологічній тканині) - L = 5Емакс [мм], в алюмінії - L = 2Емакс [мм]. Ослаблення потоку в - частинок на більшій частині пробігу в речовині має експонентний характер
Id = I0, (3.7.4.10)
де I0 - потік в - частинок при відсутності захисного екрана, частинок/с; Id - потік в - частинок при наявності захисного екрана товщиною d см; м - лінійний коефіцієнт ослаблення в - випромінювання в речовині захисного екрана, см-1.
Нейтрони й г- випромінювання не мають певної довжини вільного пробігу. Залежність між товщиною шару поглинання й інтенсивністю випромінювання тут має логарифмічний характер. При будь-якій товщині поглинання у цьому випадку досягається лише часткове зниження інтенсивності.
Для захисту від нейтронного випромінювання застосовують різні матеріали в залежності від його енергії. Нейтрони із енергією більшою за 0.5 МеВ добре поглинаються в результаті процесів непружного розсіювання залізом. Нейтрони з енергією меншою 0.5 МеВ ефективно поглинаються захисним екраном , що містить водень (вода, парафін), а також берилій або графіт. Найбільш ефективно поглинають теплові нейтрони - кадмій, бор і залізо. Процес захоплення теплових нейтронів супроводжується випущенням г - випромінювання. Для комбінованого захисту від нейтронного і г- випромінювання застосовують шарові екрани з важких і легких матеріалів.
На підставі розрахункових і експериментальних даних створені таблиці для визначення товщини захисту від г - випромінювання з різних матеріалів.
Для захисту від г - випромінювання використовують свинець, бетон, залізо, воду, вольфрам, збіднений уран і осмій. Захист із бетону ( = 2,3 г/см3) міцний, дешевий, але дуже громіздкий і важкий. Свинець ( = 11,34 г/см3) ефективний, але має погані механічні властивості. Свинець використовують для виготовлення контейнерів (в комбінації із залізом) для транспортування різних ізотопів. Вольфрам ( = 19.3 г/см3) і збіднений уран ( = 18.7 г/см3) використовують в особливо відповідальних пристроях для забезпечення мінімальної ваги захисту.
Більшість джерел г - випромінювання, маючи дискретний лінійчастий характер г - спектра , випромінюють від одної до кількох десятків окремих ліній. Так в г - спектрі , який перебуває у радіоактивній рівновазі з продуктами свого розпаду, нараховується біля 50 характерних ліній, із них відмічається шість найбільш інтенсивних з інтервалом енергії від 0,3 до 1,76 МеВ. Гамма-джерела мають як правило невеликі розміри d. На відстанях r>4d будь яке гамма - джерело можна вважати точковим. Крім того, точкові гамма - джерела відносяться до ізотропних джерел, які випускають гамма - кванти з однаковою імовірністю у всіх напрямках. Радіоактивні речовини розміщують у герметичні металеві ампули, стінки яких певним чином змінюють спектр гамма-випромінювання. Стінки ампул, а також матеріали, які використовуються для ампул поглинають частину гамма-ліній і тому називаються фільтрами. Потужність експозиційної дози в повітрі від точкового ізотропного джерела характеризується іонізаційною гамма-сталою Кг . Вона чисельно дорівнює потужності експозиційної дози (Р/год) нефільтрованого гамма-випромінювання від точкового ізотропного джерела активністю 1 мКі на відстані 1 см від нього. Величину Кг виражають в одиницях . Її величину вимірюють експериментально і приводять в довідниках. Іонізаційні г - сталі й г - еквіваленти для деяких радіоактивних речовин. Фільтрація г-випромінювання зменшує Кг до Кг(д), де д - товщина фільтра. В розрахунках зміна величини Кг враховується за допомогою коефіцієнта ч, меншого за одиницю, тобто Кг(д) =ч Кг.
Для свинцевих, залізних і алюмінієвих ампул товщиною 0,1 - 0,3 см значення ч перебуває в межах від 0,85 до 0,98 для енергій гамма-квантів більших за 1 МеВ.
Величина Кг значно спрощує розрахунки експозиційної потужності дози Р( R ) на відстані R від незахищеного точкового гамма-джерела. Оскільки інтенсивність гамма - джерела пропорційна 1/R, то
Р( R) = АМКг/R2, (3.7.4.11)
де Р ( R ) -експозиційна доза , Р/год; А - активність гамма - джерела, мКі; R - відстань до гамма - джерела, см.
В дозиметрії гамма - джерела часто порівнюють за іонізацією повітря. Дві радіоактивні речовини, які при однакових умовах створюють однакові потужності експозиційної дози, мають однаковий г-еквівалент. Гамма - еквівалент вимірюють в міліграм - еквівалентах радію (мг-екв Ra). Ця одиниця дорівнює такій кількості радіоактивної речовини, г - випромінювання якої при даній фільтрації і тотожних умовах створює таку ж потужність експозиційної дози, що й 1 мг-екв радію. Потужність експозиційної дози в 1 мг-екв. Ra на відстані 1 см дорівнює 8,4 Р/год.
Гамма - еквівалент речовини m (мг-екв Ra) пов'язаний з її активністю А (мКі) і величиною Кг (РМсм2 /(год.мКі)) співвідношенням
m = AМKг /8,4. (З.7.4.12)
Замінимо у формулі (3.7.4.11) АМКг на 8,4m, одержимо
Р( R ) = 8,4m/R2 , (3.7.4.13)
де Р( R ) - потужність експозиційної дози , Р/год; m - гамма - еквівалент речовини, мг-екв Ra; R - відстань до джерела , см.
ПРИКЛАД. На якій відстані R від точкового джерела масою 10-6 г за шестигодинний робочий день доза опромінення не перевищить гранично допустимої дози (ГДП)? Розрахувати також гамма - еквівалент цього джерела.
Кількість атомів у 10-6 г буде дорівнювати
N =
Активність кобальту, період піврозпаду якого дорівнює T1/2= 5,27 років розраховується так
,
враховано, що 3,7.107 відповідає розмірності 1 мКі.
Гранично допустима потужність дози при шестигодинному робочому дні для кобальту - 60 Рг.д = 2,8.10-3 бер/год. Для
Використана література
1. Международные основные нормы безопасности для защиты от ионизирующих излечений и безопасного обращения с источниками излучения. Серия изданий по безопасности N 115.- Вена: МАГАТЭ, 1997.- 382 с.
2. Норми радіаційної безпеки України НРБУ - 97, Київ, 1998. - 127с.
3. Иванов В.И. Курс дозиметрии, -М,: Атомиздат, 1978, -392 с.
4. А.В.Носовский и др. Славутич: Вопросы радиационной эеологии.-Киев.: Высшая школа. 2001. - 263с.: ил.
5. Н.П.Мажренова, Радиационная экология, УМП, Алма-Ата, Каз.НУ,1999,-67 с.
6. Справочник в формате WWW создан на основе справочного пособия, составленного Смоленской Государственной Медицинской Академией (СГМА) под редакцией Литвинова А.В.
7. Допустимі рівні вмісту радіонуклідів Cs-137 і Sr-90 у продуктах харчування та питній воді (ДР - 97), -Київ, 1997.
8. Г.Чоппин Я Ридберг, Ядерная химия, М,: Энергоатомиздат, 1984,-304 с.
9. В.Е.Левин, Ядерная физика и ядерные реакторы, М,: Атомиздат, 1975, -284 с.
Размещено на Allbest.ru
...Подобные документы
Використання ядерної енергії у діяльності людини. Стан ядерної енергетики України. Енергетична стратегія України на період до 2030 р. Проблема виводу з експлуатації ядерних енергоблоків та утилізації ядерних відходів. Розробка міні-ядерного реактору.
реферат [488,7 K], добавлен 09.12.2010Використання ядерної енергії у діяльності людини. Стан ядерної енергетики України. Позитивні та негативні аспекти ядерної енергетики. Переваги атомних електростанцій перед тепловими і гідроелектростанціями. Екологічні проблеми атомних електростанцій.
презентация [1,7 M], добавлен 29.04.2015Природа ядерних реакцій, їх поріг і механізм. Штучне перетворення ядер одних хімічних елементів в ядра інших. Реакції ділення та ланцюгова реакція. Використання ядерної енергії. Термоядерні реакції та енергія зірок. Керований термоядерний синтез.
реферат [61,2 K], добавлен 12.04.2009Поняття радіоактивності. Різниця між радіоактивністю і розпадом "компаунд"-ядер, утворених дією деяких елементарних частинок на стабільні ядра. Закономірності "альфа" і "бета" розпаду. Гамма-випромінювання ядер не є самостійним видом радіоактивності.
реферат [154,4 K], добавлен 12.04.2009Ядерна енергетика як галузь науки і техніки. Діяльність державного підприємства НАЕК "Енергоатом" та атомних електростанцій України. Процес перетворення ядерної енергії на теплову і електричну. Альтернативні джерела: Сонце, вітер, земля, Світовий океан.
презентация [2,2 M], добавлен 30.01.2011Схема будови спектрографа. Види оптичних спектрів. Ядерна модель атома. Енергетичні рівні атома. Схема досліду Д. Франка і Г. Герца. Склад атомного ядра. Мезонна теорія ядерних сил. Енергетичний вихід ядерної реакції. Схема ядерної електростанції.
презентация [1,6 M], добавлен 12.05.2011Вивчення фізичної сутності поняття атомного ядра. Енергія зв’язку і маса ядра. Електричні і магнітні моменти ядер. Квантові характеристики ядер. Оболонкова та ротаційні моделі ядер. Надтекучість ядерної речовини. Опис явищ, що протікають в атомних ядрах.
курсовая работа [50,2 K], добавлен 07.12.2014Будова та принцип дії атомної електричної станції. Характеристика Південноукраїнської, Хмельницької, Рівненської, Запорізької, Чорнобильської та Кримської атомних електростанцій. Гарні якості та проблеми ядерної енергетики. Причини вибуху на ЧАЕС.
презентация [631,7 K], добавлен 15.04.2014Характеристика основних понять з області квантової, ядерної та атомної фізики. Відкриття атомного ядра та перша атомна реакція. Особливості будови ядра, його поділ. Електромагнітні та механічні коливання та хвилі. Геометрична та хвильова оптика.
презентация [530,6 K], добавлен 07.04.2011Основні характеристики та пов’язані з ними властивості атомних ядер: лінійні розміри, заряд, магнітний момент. Експериментальне визначення форми електричного поля ядра. Структурна будова ядра, його елементи та характеристика. Природа ядерних сил.
реферат [293,1 K], добавлен 12.04.2009Шляхи становлення сучасної фізичної картини світу та мікросвіту. Єдині теорії фундаментальних взаємодій. Фізичні закони збереження високих енергій. Основи кваліфікації суб’ядерних частинок; кварковий рівень матерії. Зв’язок фізики частинок і космології.
курсовая работа [936,1 K], добавлен 06.05.2014Виды бета-распад ядер и его характеристики. Баланс энергии при данном процессе. Массы исходного и конечного атомов, их связь с массами их ядер. Энергетический спектр бета-частиц, роль нейтрино. Кулоновское взаимодействие между конечным ядром и электроном.
контрольная работа [133,4 K], добавлен 22.04.2014Аналіз програми в випускному класі при вивченні ядерної фізики. Основні поняття дозиметрії. Доза випромінювання, види поглинутої дози випромінювання. Біологічна дія іонізуючого випромінювання. Методика вивчення біологічної дії іонізуючого випромінювання.
курсовая работа [2,6 M], добавлен 24.06.2008Загальна характеристика основних видів альтернативних джерел енергії. Аналіз можливостей та перспектив використання сонячної енергії як енергетичного ресурсу. Особливості практичного використання "червоного вугілля" або ж енергії внутрішнього тепла Землі.
доклад [13,2 K], добавлен 08.12.2010Поняття ядерної моделі атома, її сутність і особливості, історія розробок і розвитку, сучасний стан і значення. Нездоланні суперечки, пов’язані з існуючою теорією атомних часток, спроби їх усунення Н. Бором. Розробка гіпотези та формули де Бройля.
реферат [215,8 K], добавлен 06.04.2009Вивчення законів, на яких ґрунтується молекулярна динаміка. Аналіз властивостей та закономірностей системи багатьох частинок. Огляд основних понять кінетичної теорії рідин. Розрахунок сумарної кінетичної енергії та температури для макроскопічної системи.
реферат [122,5 K], добавлен 27.05.2013Визначення кінетичної та потенціальної енергії точки. Вирішення рівняння коливання математичного маятника. Визначення сили світла прожектора, відстані предмета і зображення від лінзи. Вираження енергії розсіяного фотона, а також швидкості протона.
контрольная работа [299,7 K], добавлен 22.04.2015Вивчення основних закономірностей тліючого розряду. Дослідження основних властивостей внутрішнього фотоефекту. Експериментальне вивчення ємнісних властивостей p–n переходів. Дослідження впливу електричного поля на електропровідність напівпровідників.
методичка [389,4 K], добавлен 20.03.2009Система Pb-S. Константи рівноваги квазіхімічних реакцій утворення власних атомних дефектів Френзеля у кристалах Pb-S. Константи рівноваги квазіхімічних реакцій утворення власних атомних дефектів у халькогенідах свинцю на основі експериментальних даних.
дипломная работа [1,4 M], добавлен 09.06.2008Роль фізики в розвитку техніки, житті суспільства, обороні держави і підготовці офіцерів військ зв’язку України. Наукові та методичні основи. Внесок вітчизняних вчених в розвиток фізики. Порядок вивчення фізики. Кінематика і динаміка матеріальної точки.
курс лекций [487,9 K], добавлен 23.01.2010