Мониторинг тепловой эффективности регенеративного воздухоподогревателя РВП-54
Методика проведения оценки технического состояния регенеративного воздухоподогревателя РВП-54, установленного на энергетических котлах филиала АО "Татэнерго" Набережно-Челнинской ТЭЦ. Температурные напоры газовой и воздушной стороны водоподогревателя.
Рубрика | Физика и энергетика |
Вид | статья |
Язык | русский |
Дата добавления | 30.07.2017 |
Размер файла | 443,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru//
Размещено на http://www.allbest.ru//
Казанский государственный энергетический университет
Мониторинг тепловой эффективности регенеративного воздухоподогревателя РВП-54
Р.Н. Валиев
Аннотация
В статье рассматривается методика проведения оценки технического состояния регенеративного воздухоподогревателя РВП-54 установленного на энергетических котлах филиала АО «Татэнерго» Набережно-Челнинской ТЭЦ на основе результатов мониторинга тепловой эффективности.
Ключевые слова: Набережно - Челнинская ТЭЦ, энергетический котел, регенеративный воздухоподогреватель РВП-54, оценка технического состояния, наладка и настройка, тепловой расчет, температурный напор, поверхность нагрева, тепловая эффективность, тепловые потери.
Актуальность темы
Современное состояние энергетического рынка, потребность в обновлении парка основного оборудования и повсеместное внедрение парогазовых установок по программе договоров на поставку мощности, требует от энергогенерирующих компаний все больших материальных и финансовых затрат 1, 2. Заключая договор на реализацию энергетической продукции на конкурентном оптовом рынке электроэнергии и мощности энергогенерирующая компания должна быть готова к соблюдению жестких правил и иметь рентабельное производство. В этой связи актуальными являются мероприятия, направленные на улучшение показателей эксплуатации энергетических котлов на основе правильной и своевременной оценки тепловой эффективности регенеративных воздухоподогревателей.
Постановка задачи
В технологической схеме Набережно-Челнинской ТЭЦ для получения «острого пара» применяются энергетические котлы П-образной компоновки, в которых к газомазутным горелкам подается природный газ с предварительно подогретым воздухом. В топках котлов, в процессе горения топлива, образуются высокотемпературные продукты сгорания (далее по тексту дымовые газы), которые, отдав основную часть теплоты в радиационных и конвективных поверхностях нагрева, поступают во вращающиеся регенеративные воздухоподогреватели, откуда дымососами удаляются в атмосферу через дымовую трубу. В регенеративных воздухоподогревателях, дымовые газы, через теплообменную поверхность в виде вращающегося ротора, состоящего из 24 пакетов с набивкой из металлических листов (см. рис. 1), передают теплоту движущемуся параллельно и противотоком холодному воздуху. Из-за разности давлений между потоками горячих дымовых газов и холодного воздуха, через неплотности в районе нижних и верхних секторных плит, возникают перетоки (присосы) воздуха из воздушного тракта в газовый тракт, что снижает эффективность работы вращающегося регенеративного воздухоподогревателя. Переток (присос) воздуха в газовый тракт у регенеративного воздухоподогревателя РВП-54, по данным 3, составляет 20-25%.
Рис. 1 - Воздухоподогреватель регенеративный вращающийся РВП-54:
1- опора нижняя; 2 - редуктор; 3 - привод; 4 - опора верхняя; 5 - патрубок; 6 - крышка; 7 - пакет нагревательной набивки; 8 - ротор; 9 - обод цевочный.
В процессе эксплуатации энергетических котлов типа ТГМ - 84 Б на Набережно-Челнинской ТЭЦ при проведении планового осмотра была выявлена пониженная герметичность уплотнений регенеративных воздухоподогревателей РВП - 54 М (далее по тексту РВП). Проблеме пониженной герметичности посвящено большое количество исследований, по ней уже давно ведутся разработки и имеются запатентованные решения, как у нас, так и за рубежом 4, 5. Для того чтобы обеспечить нормальный режим горения и теплообмена в энергетическом котле при пониженной герметичности уплотнений РВП, приходится увеличивать нагрузку на дымососы и дутьевые вентиляторы. В результате ухудшаются контрольные показатели по присосам воздуха и удельному расходу электроэнергии на тягу и дутье, и как следствие возникает задача о том, как своевременно выявить и устранить неисправность в работе РВП. Решению этой задачи и посвящено расчетное исследование.
Предлагаемое решение
Наладка, настройка и испытание РВП занимают важное место в общем комплексе наладочных работ 6, 7. Согласно требованиям нормативных документов 8, 9, после проведения ежемесячных контрольных испытаний энергетических котлов и оборудования котельного цеха, перед проведением и после окончания текущих и капитальных ремонтных работ, производится анализ и оценка эффективности работы, как котельного агрегата в целом, так и элементов его технологической схемы. Анализ и оценка осуществляется по результатам проведенных испытаний, на основании составленных отчетов по работе оборудования за текущий месяц работы, ведомостей основных параметров технического состояния котельной установки.
В настоящее время на Набережно-Челнинской ТЭЦ для оценки тепловой эффективности работы оборудования в целом и котельной установки в частности, применяется метод оценки с помощью специализированного программного обеспечения АСОПР (Автоматизированная система мониторинга технико-экономических показателей) и TWM АСКУ (оперативный расчет КПД котлов). Перечисленные программно-технические комплексы позволяют по окончании суток производить расчеты и генерировать отчеты по различным категориям параметров оборудования ТЭЦ. Сопоставление фактических показателей работы котлов и результатов их инструментального обследования с нормативными значениями, определение конкретных причин отклонений от нормативных характеристик, проводится на основе сравнительного анализа по следующим показателям 8, 9: температуре уходящих газов за последней поверхностью нагрева (дымососом); коэффициенту избытка воздуха в режимном сечении; присосам воздуха в топку и конвективную шахту; потерям тепла с механической и химической неполнотой сгорания; расходам электроэнергии на механизмы собственных нужд (дутьевые вентиляторы, дымососы, мельницы, питательные насосы); расходам тепла на собственные нужды (отопление и вентиляцию, мазутное хозяйство, размораживающее устройство, калориферы, обдувку поверхностей нагрева, потери с продувкой, водоподготовительную установку).
Для оперативной оценки показателей тепловой эффективности работы РВП на Набережно-Челнинской ТЭЦ предлагается производить расчет температурных напоров и коэффициентов тепловой экономичности по показаниям приборов, измеряющих температуру потоков дымовых газов и воздуха. Текущий температурный напор в набивке РВП характеризует чистоту поверхности набивки: чем чище поверхность набивки, тем меньше температурный напор и больше коэффициент теплопередачи, при прочих равных условиях (см. рис. 2, 3) 10.
Рис. 2. Температурные напоры газовой и воздушной стороны РВП
Рис. 3. Схема движения потоков дымовых газов и воздуха
Для определения тепловой эффективности РВП составлена методика, по которой произведен расчет температурных напоров и коэффициентов тепловой экономичности по текущим показателям температур дымовых газов и воздуха на примере котельного агрегата ст. № 9. В качестве примера для сравнения эксплуатационных характеристик котельного агрегата использованы оперативные исходные данные по котельному агрегату ст. № 9 (см. табл. 1), взятые из программного обеспечения «Автоматизированная система мониторинга технико-экономических показателей» на даты 02.02.17 г. и 22.05.17 г.
Методика выполнения расчета
1. Заполняем таблицу оперативных исходных даных (см. табл. 1).
Таблица 1
Оперативные исходные данные по котлу ст. № 9
Станционный номер котла |
9 |
||||
Место установки РВП |
нитка «А» |
нитка «Б» |
|||
Дата снятия данных |
02.02.17 |
22.05.17 |
02.02.17 |
22.05.17 |
|
Нагрузка котлоагрегата, т/ч |
252 |
260 |
|||
Температура воздуха до РВП, С |
12,80 |
18,3 |
14,65 |
19,5 |
|
Температура воздуха за РВП, С |
229,5 |
224 |
231,5 |
232,7 |
|
Температура газов до РВП, С |
294,5 |
290,9 |
308,5 |
312,6 |
|
Температура газов за РВП, С |
93,6 |
101,2 |
97,4 |
103,7 |
2. Рассчитываем эффективность работы РВП по воздушной стороне по формуле:
(1)
где: Eвс - эффективность по воздушной стороне; tдг - температура дымовых газов; tуг - температура уходящих газов; tгв - температура горячего воздуха; tхв - температура холодного воздуха.
3. Рассчитываем эффективность работы РВП по газовой стороне по формуле:
(2)
где: Eгс - эффективность по газовой стороне; tдг - температура дымовых газов; tуг - температура уходящих газов; tхв - температура холодного воздуха.
4. Определяем коэффициент тепловой эффективности РВП по формуле:
(3)
где: Kтэ - коэффициент тепловой эффективности; Eвс - эффективность по воздушной стороне; Eгс - эффективность по газовой стороне.
5. Сводим полученные с использованием данной методики результаты в табл. 2
6. Анализируем полученные результаты, делаем выводы, принимаем решения.
Таблица 2
Результаты расчетов по котлу ст. № 9
Станционный номер котла |
9 |
||||
Место установки РВП |
нитка «А» |
нитка «Б» |
|||
Дата снятия оперативных исходных данных |
02.02.17 |
22.05.17 |
02.02.17 |
22.05.17 |
|
Эффективность работы РВП по газовой стороне по формуле (2) |
71.32 |
69.59 |
71.84 |
71.27 |
|
Эффективность работы РВП по воздушной стороне по формуле (1) |
76.93 |
75.46 |
73.80 |
72.74 |
|
Коэффициент тепловой эффективности по формуле (3) |
92.71 |
92.22 |
97.35 |
97.98 |
Выводы
По результатам проведенного анализа по котлу ст. № 9 (табл. 2), сделаны следующие выводы.
1. Выявлено различие между показателями тепловой эффективности РВП установленного на нитке «А» и РВП установленного на нитке «Б» (в 4.64 % на дату 02.02.17 и в 5.76 % на дату 22.05.17), что указывает на необходимость проведения работ по устранению ненормативных присосов и неплотностей и настройке системы уплотнений РВП на нитке «А».
2. По каждому РВП в отдельности коэфициент тепловой эффективности также изменился, но не так значительно и однозначно, как в первом пункте (ухудшился на 0,49 % для РВП на нитке «А» и улучшился на 0,63 % для РВП на нитке «Б»).
3. При равенстве температурных напоров на горячем (tдг-tгв) и холодном (tуг-tхв) концах РВП коэффициент Ктэ = 100 %. Если температурный напор на горячем конце больше чем на холодном, то Ктэ 100 %. Если (tдг-tгв) (tуг-tхв), то Ктэ 100 %. Отклонение коэффициента Ктэ от значения, достигнутого в ходе наладки, настройки и испытаний энергетического котла указывает на изменение условий работы или неисправность РВП.
4. Показатели тепловой эффективности по газовой (Егс) и воздушной (Евс) сторонам позволяют определить направление для поиска причин снижения тепловой эффективности РВП. Причинами могут быть: изменение расхода и теплосодержания греющего или нагреваемого потоков; изменение сопротивления элементов по газовому или воздушному тракту; сверхнормативные перетоки; ухудшение тепловосприятия набивки из-за загрязнения или деформации.
5. Приведенный в статье алгоритм мониторинга тепловой эффективности, при его включении в программу автоматизированной системы мониторинга технико-экономических показателей работы котлов, позволяет в режиме реального времени проводить оперативную оценку работы РВП, сопоставлять фактические показатели работы с их предыдущими значениями и на основе анализа результатов выявлять и устранять непроизводительные потери.
Литература
регенеративный воздухоподогреватель энергетический котел
1. Страхова Н.А., Горлова Н.Ю. Концепция энергоресурсосберегающей деятельности в промышленности. Инженерный вестник Дона, 2011, №1. URL: ivdon.ru/magazine/archive/n1y2011/359.
2. Страхова Н.А., Лебединский П.А. Анализ энергетической эффективности экономики России. Инженерный вестник Дона, 2012, №3. URL: ivdon.ru/magazine/archive/n3y2012/999.
3. Боткачик И.А. Регенеративные воздухоподогреватели парогенераторов. М.: Машиностроение, 1978. - 175 с.
4. US Patent App. US 005915340A, США, F23L 15/02. Variable sector plate quad sector air preheater. James P. Cronin (Wellsville, NY), Thomas Gary Merger (Bolivar, NY).
5. US Patent App. US 005456310A, США, F23L 15/02. Rotary regenerative heat exchanger. Mark E. Brophy (Wellsville, NY), Wayne S. Counterman; (Wellsville, NY).
6. Трембовля В.И., Фигнер Е.Д., Авдеева А.А. Теплотехнические испытания котельных установок. - М.: Энергия, 1977. - 296 с.
7. Янкелевич В.И. Наладка газомазутных промышленных котельных. - М.: Энергоатомиздат, 1988. - 216 с.
8. Методика оценки технического состояния котельных установок до и после ремонта: РД 34.26.617-97. - М.: СПО ОРГРЭС, 1998. - 12 с.
9. Воздухоподогреватели регенеративные вращающиеся РВП-54, РВП-68, РВП-9,8. Групповые технические условия на капитальный ремонт. Нормы и требования: СТО 70238424.27.060.01.008 - 2009. - М.: ЦКБ Энергоремонт, 2010. - 129 с.
10. Равич Р.Б. Эффективность использования топлива. - М.: Наука, 1971. - 358 с.
Размещено на Allbest.ru
...Подобные документы
Технические характеристики котла ТГМ-151. Расчёт теплового баланса котельного агрегата. Конструкция топочной камеры. Схема внутрибарабанных устройств. Назначение регенеративного воздухоподогревателя и пароохладителя. Устройство водяного экономайзера.
курсовая работа [1,5 M], добавлен 31.03.2018Термодинамические основы регенеративного подогрева питательной воды на тепловой электростанции (ТЭС). Основные преимущества многоступенчатого регенеративного подогрева основного конденсата и питательной воды. Технические особенности системы регенерации.
реферат [1,2 M], добавлен 24.03.2010Анализ действительных теплоперепадов и внутренних мощностей отсеков турбины. Сущность тепловой системы регенеративного подогрева питательной воды турбоустановки. Понятие регенеративной и конденсационной установок. Конструкция и принципы работы турбины.
курсовая работа [1,4 M], добавлен 09.09.2014Тепловой баланс котельного агрегата, расчет теплообмена в топке и теплообмена пароперегревателя. Теплосодержание газов на входе и выходе, коэффициент теплоотдачи конвекцией. Расчет водяного экономайзера, воздухоподогревателя, уточнение теплового баланса.
практическая работа [270,8 K], добавлен 20.06.2010Тепловая схема котельного агрегата Е-50-14-194 Г. Расчёт энтальпий газов и воздуха. Поверочный расчёт топочной камеры, котельного пучка, пароперегревателя. Распределение тепловосприятий по пароводяному тракту. Тепловой баланс воздухоподогревателя.
курсовая работа [987,7 K], добавлен 11.03.2015Расчет принципиальной тепловой схемы энергоблока К-330 ТЭС. Выбор основного и вспомогательного оборудования. Расчет подогревателя ПН-1000-29-7-III низкого давления с охладителем пара. Сравнение схем включения ПНД в систему регенеративного подогрева.
дипломная работа [1,8 M], добавлен 07.08.2012Предварительное построение общего теплового процесса турбины в h-S диаграмме. Расчет системы регенеративного подогрева питательной воды турбоустановки. Определение основных диаметров нерегулируемых ступеней с распределением теплоперепадов по ступеням.
курсовая работа [219,8 K], добавлен 27.02.2015Расчет объемов и энтальпий продуктов сгорания твердого топлива. Распределение тепловосприятий по поверхностям нагрева котла. Распределение по пароводяному тракту. Расчет трубчатого воздухоподогревателя. Тепловой баланс котла. Поверочный расчет ширм.
курсовая работа [334,5 K], добавлен 23.11.2012Параметры и тепловая схема блока электростанции. Определение энтальпии в отборах и суть процесса расширения пара. Расчёт схемы регенеративного подогрева питательной воды. Проектирование топливного хозяйства. Тепловой баланс сушильно-мельничной системы.
курсовая работа [1,1 M], добавлен 31.01.2013Расчетные характеристики топлива. Расчёт объема воздуха и продуктов сгорания, КПД, топочной камеры, фестона, пароперегревателя I и II ступеней, экономайзера, воздухоподогревателя. Тепловой баланс котельного агрегата. Расчёт энтальпий по газоходам.
курсовая работа [1,9 M], добавлен 27.01.2016Тепловой расчёт котла, системы пылеприготовления, топочной камеры. Расчёт ступеней экономайзера и воздухоподогревателя. Выбор тягодутьевых машин. Определение себестоимости энергии и прибыли по нескольким вариантам до и после реконструкции предприятия.
дипломная работа [2,8 M], добавлен 03.11.2013Расчетные характеристики топлива. Материальный баланс рабочих веществ в котле. Тепловой баланс котельного агрегата. Характеристики и тепловой расчет топочной камеры. Расчет фестона, пароперегревателя, воздухоподогревателя. Характеристики топочной камеры.
курсовая работа [1,2 M], добавлен 21.06.2015Описание производственных котлоагрегатов. Расчет процесса горения котельного агрегата. Тепловой и упрощённый эксергетический баланс. Расчёт газотрубного котла-утилизатора. Описание работы горелки, пароперегревателя, экономайзера и воздухоподогревателя.
курсовая работа [2,0 M], добавлен 09.06.2011Составление расчётно-технологической схемы трактов парового котла. Определение расчётного расхода топлива. Выбор схемы его сжигания. Конструкторский расчет пароперегревателя, экономайзера, воздухоподогревателя и сведение теплового баланса парогенератора.
курсовая работа [316,3 K], добавлен 12.01.2011Объем и энтальпия продуктов сгорания воздуха. Тепловой баланс, коэффициент полезного действия и расход топлива котельного агрегата. Тепловой расчет топочной камеры. Расчет пароперегревателя, котельного пучка, воздухоподогревателя и водяного экономайзера.
курсовая работа [341,2 K], добавлен 30.05.2013Состав комплектующего оборудования турбоустановки. Мощности отсеков турбины. Предварительное построение теплового процесса турбины в h,s-диаграмме и оценка расхода пара. Тепловой расчет системы регенеративного подогрева питательной воды турбоустановки.
курсовая работа [375,7 K], добавлен 11.04.2012Основные цели поверочного расчета. Предназначение котельного агрегата БКЗ 210-140. Тепловой расчет парогенератора: анализ пароперегревателя, фестона, перегревателя, сущность конструктивных размеров воздухоподогревателя. Анализ дымососа и вентилятора.
курсовая работа [207,7 K], добавлен 12.03.2012Расчёт принципиальной схемы ТЭС. Распределение регенеративного подогрева по ступеням. Выбор основного и вспомогательного оборудования. Схема включения, конструкция и принцип действия. Определение основных геометрических характеристик, тепловой схемы.
курсовая работа [1,0 M], добавлен 02.10.2008Конструкция и характеристики котла. Расчет объёмов и энтальпий воздуха и продуктов сгорания. Определение расхода топлива. Поверочный тепловой расчет водяного чугунного экономайзера, воздухоподогревателя, котельного пучка, камеры дожигания, фестона, топки.
курсовая работа [2,9 M], добавлен 28.02.2015Турбина К-1200-240, конструкция проточной части ЦВД. Предварительное построение теплового процесса турбины в h-S диаграмме. Процесс расширения пара в турбине. Основные параметры воды и пара для расчета системы регенеративного подогрева питательной воды.
контрольная работа [1,6 M], добавлен 03.03.2011