Сопротивление материалов

Определение задачи и методов сопротивления материалов. Рассмотрение закона Гука и принципа независимости действия сил. Оценка напряженного и деформированного состояния при растяжении и сжатии. Обзор геометрических характеристик поперечных сечений бруса.

Рубрика Физика и энергетика
Вид учебное пособие
Язык русский
Дата добавления 28.08.2017
Размер файла 1,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

1) z = 0, НC = 0; (2.29)

2) y = 0, Р + N1 + RC N2 N3 = 0; (2.30)

3) MC = 0, Р3 + N11 + N21 + N33 = 0. (2.31)

Рис. 2.12

Из уравнений равновесия видно, что система дважды статически неопределима, т.к. два уравнения равновесия (2.30) и (2.31) содержат в своем составе четыре неизвестных. Поэтому для решения задачи необходимо составить два дополнительных уравнения совместности деформаций, раскрывающих статическую неопределимость системы.

Для составления дополнительных уравнений рассмотрим деформированное состояние системы (рис. 2.12, в), имея в виду, что брус абсолютно жесткий и поэтому после деформации тяг останется прямолинейным.

Эти дополнительные уравнения совместности деформаций получим из подобия треугольников ВСВ1DCD1 и BCB1ECE1:

и .

Решая эти уравнения, получим:

(2.32)

. (2.33)

Выразив деформации тяг по формуле определения абсолютного удлинения:

и подставив эти значения в уравнения (2.32) и (2.33), получим:

(2.34)

. (2.35)

Подставив найденные значения N2 и N3 в уравнение (2.31) определяем величину N1 :

P3 + N11 + 0,5N11 + 2,5N13 = 0; N1=0,3333P.

Зная N1, из уравнений (2.34) и (2.35), находим N2 и N3:

.

Опорную реакцию RC определяем из уравнения (2.30), подставив найденные значения N1, N2 и N3:

-P + 0,333P + RC 0,167P 0,833P = 0; RC = 1,667P.

После определения величин усилий в тягах N1, N2, N3 и реакции RC необходимо проверить правильность их вычисления. Для этого составим уравнение равновесия статики МA = 0:

N1a RC (a + b) + N2 (a + b + c) + N3 (a + b + c + d) = 0;

0 = 0.

Следовательно, N1, N2, N3 и RC определены правильно.

Угловое смещение бруса (угол ), ввиду его малости, находим как тангенс угла наклона бруса АЕ :

[рад].

2. Определить в процессе увеличения нагрузки Р такую ее величину, при которой напряжение в одной из тяг достигнет предела текучести. Для вычисления величины Р, при которой напряжение в одной из тяг достигнет предела текучести T , определим нормальные напряжения, возникающие в тягах, учитывая то, что тяги работают на растяжение:

Полученные величины напряжений показывают, что в тяге 3 напряжение достигнет предела текучести раньше, чем в тягах 1 и 2, так как 3 1 и 3 2. Поэтому, приравняв напряжение 3 пределу текучести T, определим величину Р, при которой нормальное напряжение в тяге 3 достигнет предела текучести T :

кПа,

откуда кН.

3. Определить в процессе увеличения нагрузки Р ее предельную величину, при которой напряжения в трех тягах достигнут предела текучести, реакцию опоры С и соответствующий этому предельному состоянию угол. При исчерпании несущей способности всех тяг напряжения в них достигнут предела текучести T . В этом случае предельные усилия, которые возникнут в тягах, будут равны:

= F1T = 210-424104 = 48 кH;

= F2 T = 110-424104 = 24 кH;

= F3T = 210-424104 = 48 кH.

Предельную величину внешней нагрузки, соответствующую исчерпанию несущей способности, найдем из уравнения (2.31), подставив в него предельные значения , , :

PПР 3 + 481 + 241 + 483 = 0; PПР = кН.

Предельную величину реакции определяем из уравнения (2.30):

72 + 48 + 24 48 = 0; = 96 кН.

При определении наименьшего угла поворота бруса, соответствующего предельному состоянию системы, необходимо знать, в какой из тяг текучесть наступит позже.

Полученные величины напряжений (см. п. 2) показывают, что в тягах 1 и 2 напряжения достигнут предела текучести одновременно, но позже, чем в тяге 3. Поэтому предельный угол поворота бруса определяем для момента перехода материала тяг 1 и 2 в пластическое состояние:

рад,

или рад.

4. Найти несущую способность из расчетов по методам допускаемых напряжений и разрушающих нагрузок при одном и том же коэффициенте запаса прочности. Сопоставить результаты и сделать вывод. Из предыдущих расчетов (см. п. 2) видно, что текучесть материала раньше появится в тяге 3, т.к. 3 1 и 3 > 2. Поэтому для определения величины грузоподъемности из расчета по методу допускаемых напряжений приравниваем напряжение в этой тяге 3 = 0,417104 Р к допускаемому напряжению:

кПа, 0,417104 [P] = 16104 кПа,

[P] = кH.

Несущая способность конструкции из расчета по методу разрушающих нагрузок получим путем деления ранее полученного значения PПР = 72 кН на коэффициент запаса n1 = 1,5:

кH.

Сравнивая полученные величины, видим, что несущая способность из расчета по методу разрушающих нагрузок больше несущей способности из расчета по методу допускаемых напряжений на , что подтверждает известное положение о том, что метод допускаемых напряжений, в отличии от метода разрушающих нагрузок, не позволяет определить полную несущую способность системы. Это объясняется тем, что для статически неопределимых систем, переход одного элемента в пластическую стадию работы, как правило, не означает наступления предельного состояния. Переход системы в предельное состояние отождествляется с превращением ее из неизменяемой в геометрически изменяемую систему. Известно, что в статически неопределимой системе разрушение “лишних связей” не превращает ее в геометрически изменяемую. Так как реальные сооружения чаще всего представляют собой многократно статически неопределимые системы, материал которых обладает свойством пластичности, поэтому метод предельного равновесия имеет важное значение для раскрытия истинных резервов их несущей способности.

3. Геометрические характеристики поперечных сечений бруса

3.1 Статические моменты сечения

При решении практических задач возникает необходимость в использовании различных геометрических характеристик поперечных сечений бруса. Настоящий раздел посвящен методам их определения. Рассмотрим некоторое поперечное сечение в системе координат x, y (рис. 3.1) и рассмотрим два следующих интегральных выражения:

(3.1)

где нижний индекс у знака интеграла указывает на то, что интегрирование ведется по всей площади сечения F. Каждый из этих интегралов представляет собой сумму произведений элементарных площадок dF на расстояние до соответствующей оси (x или y). Первый интеграл называется статическим моментом сечения относительно оси x, а второй относительно оси y.

При выполнении практических расчетов важно знать, как меняются статические моменты сечения при параллельном переносе координатных осей (рис 3.2).

Очевидно, что

x = x1 + a; y = y1 + b. (3.2)

Подставляя (3.2) в (3.1) получим:

Рис. 3.1 Рис. 3.2

(3.3)

Величины а и b можно подобрать (причем единственным образом) так, чтобы выполнялись следующие равенства:

bF = Sx ; aF = Sy , (3.4)

тогда статические моменты .

Ось, относительно которой статический момент равен нулю, называется центральной. Точка С (xC , yC) пересечения центральных осей называется центром тяжести сечения в системе координат (x, y) и определяется из (3.4):

. (3.5)

Далее предположим, что брус имеет составное сечение (рис. 3.3) с общей площадью F. Обозначим через Fk (k = 1, 2, 3,..., n) площадь kой области, принадлежащей к составному сечению бруса. Тогда выражение (3.1) можно преобразовать в следующем виде:

, (3.6)

где статические моменты kтой области относительно осей x и y. Следовательно, статический момент составного сечения равен сумме статических моментов составляющих областей.

3.2 Моменты инерции сечения

Рис. 3.3

В дополнение к статическим моментам в системе координат x0y (рис. 3.1)рассмотрим три интегральных выражения:

(3.7)

Первые два интегральных выражения называются осевыми моментами инерции относительно осей x и y, а третье центробежным моментом инерции сечения относительно осей x, y.

Для сечений, состоящих из n-числа областей (рис. 3.3), формулы (3.7) по аналогии с (3.6) будут иметь вид:

Рассмотрим, как изменяются моменты инерции сечения при параллельном переносе координатных осей x и y (см. рис. 3.2). Преобразуя формулы (3.7) с учетом выражения (3.2), получим :

(3.8)

Если предположить, что оси x1 и y1 (см. рис. 3.2) являются центральными, тогда и выражения (3.8) упрощаются и принимают вид:

(3.9)

Рис. 3.4

Определим осевые моменты инерции прямоугольника относительно осей x и y , проходящих через его центр тяжести (рис. 3.4). В качестве элементарной площадки dF возьмем полоску шириной b и высотой dy (рис. 3.4). Тогда будем иметь:

Аналогичным образом можно установить, что .

Для систем, рассматриваемых в полярной системе координат (рис. 3.5, а), вводится также полярный момент инерции:

.

где радиусвектор точки тела в заданной полярной системе координат.

Рис. 3.5

Вычислим полярный момент инерции круга радиуса R. На рис. 3.5, a показана элементарная площадка, очерченная двумя радиусами и двумя концентрическими поверхностями, площадью

dF = d d .

Интегрирование по площади заменим двойным интегрированием:

.

Hайдем зависимость между полярным и осевыми моментами инерции для круга. Из геометрии видно (рис. 3.5, б), что

2 = x2 + y2,

следовательно, .

Так как оси x и y для круга равнозначны, то Ix = Iy = .

Полярный момент инерции кольца может быть найден как разность моментов инерции двух кругов: наружного (радиусом R) и внутреннего (радиусом r):

.

3.3 Главные оси и главные моменты инерции

Рассмотрим, как изменяются моменты инерции плоского сечения при повороте осей координат из положения x и y к положению u и v. Из рис. 3.5, б легко установить, что

u = y sin + x cos ; v = y cos x sin . (3.10)

Из выражений:

с учетом (3.10) после несложных преобразований получим:

(3.11)

Складывая первые два уравнения, получим:

Iu + Iv = Ix + Iy = I , (3.12)

где ; I полярный момент инерции сечения, величина которого, как видно, не зависит от угла поворота координатных осей.

Дифференцируя в (3.11) выражение Iu по и приравнивая его нулю, находим значение = 0 , при котором функция Iu принимает экстремальное значение:

. (3.13)

С учетом (3.12) можно утверждать, что при = 0 один из осевых моментов Iu или Iv будет наибольшим, а другой наименьшим. Одновременно при = 0 Iuv обращается в нуль, что легко установить из третьей формулы (3.11).

Декартовы оси координат, относительно которых осевые моменты инерции принимают экстремальные значения, называются главными осями инерции. Осевые моменты инерции относительно главных осей называются главными и определяются из (3.11) с учетом (3.13) и имеют вид:

. (3.14)

В заключение введем понятие радиуса инерции сечения относительно координатных осей x и y ix и iy , соответственно, которые определяются по формулам:

. (3.15)

3.4 Пример расчета (задача № 3)

Для сечения, составленного из швеллера №20 а, равнобокого уголка (80808)10-9 м3 и полосы (18010)10-6 м2 (рис. 3.6) требуется:

1. Найти общую площадь сечения;

2. Определить центр тяжести составного сечения;

3. Определить осевые и центробежный моменты инерции сечения относительно осей, проходящих через его центр тяжести;

4. Найти положение главных центральных осей инерции;

5. Определить величины главных центральных моментов инерции сечения и проверить правильность их вычисления;

6. Вычислить величины главных радиусов инерции.

Рис. 3.6

Решение

Из сортамента выписываем все необходимые геометрические характеристики для профилей, входящих в составное сечение. Швеллер № 20 а (ГОСТ 824072): hшв = 0,2 м, bшв = 0,08 м, Fшв = 25,210-4м2, = 167010-8м4, = 13910-8м4, = 0,0228 м.

Уголок (80808)10-9 м3 (ГОСТ 850972): bуг = 0,08 м, Fуг = = 12,310-4 м2, = 73,4108 м4, = 116108 м4, =30,310-8 м4, = 0,0227 м.

Полоса bПП = 18110-4 м2, FП = bПП = 18110-4 м2 = 1810-4 м2;

м4, = 486108 м4.

1. Определение общей площади составного сечения. Общая площадь составного сечения определяется по формуле:

F = Fшв + Fуг + FП, F = (25,2 + 12,3+18)10-4 = 55,510-4 м2.

2. Определить центр тяжести составного сечения. В качестве вспомогательных осей для определения положения центра тяжести примем горизонтальную и вертикальную оси xшв и yшв , проходящие через центр тяжести швеллера. Статические моменты площади всего сечения относительно этих осей будут равны:

Координаты центра тяжести вычисляем по формулам:

3. Определить осевые и центробежный моменты инерции сечения относительно осей, проходящих через его центр тяжести. Для определения указанных моментов инерции составного сечения воспользуемся формулами, выражающими зависимость между моментами инерции относительно параллельных осей:

(3.16)

(3.17)

(3.18)

В этих формулах расстояние между осями, проходящими через центр тяжести составного сечения, и осями, проходящими через центры тяжести каждой составной части фигуры, а и b (рис. 3.6), в рассматриваемом случае будут равны:

Подставив числовые значения величин в формулы (3.16) и (3.17), получим:

= [1670 + 25,2(1,7)2 + 73,4 + 12,3(9,43)2 + 1,5 + 18(8,8)2]108 = = 4305,410-8 м4.

= [139 + 25,2(1,42)2 + 73,4 + 12,3(3,13)2 + 486 +18(0,14)2)108 = = 870,110-8 м4.

При вычислении центробежного момента инерции составного сечения следует иметь в виду, что и равны 0, так как швеллер и полоса имеют оси симметрии, а

,

где угол между осью x и главной осью x0 уголка. Этот угол может быть положительным или отрицательным. В нашем примере = +45, поэтому:

Далее, подставив числовые значения в формулу (3.18), получим величину центробежного момента инерции составного сечения:

= [0 + 25,2 (1,7) 1,42 + 42,85 + 12,3 (9,43) (3,13) + 0 +

+ 18 8,8 0,14] 108 = 367,210-8 м4.

4. Найти положение главных центральных осей инерции. Угол наклона главных осей инерции, проходящих через центр тяжести составного сечения, к центральным осям инерции xC и yC определим по формуле:

.

Так как угол получился отрицательным, то для отыскания положения главной оси максимального момента инерции u следует ось x0, осевой момент инерции относительно которой имеет наибольшее значение, повернуть на угол по ходу часовой стрелки. Вторая ось минимального момента инерции v будет перпендикулярна оси u.

5. Определить величины главных центральных моментов инерции сечения и проверить правильность их вычисления. Величины главных центральных моментов инерции составного сечения вычисляем по формуле:

Для контроля правильности вычисления величины моментов инерции составного сечения производим проверки.

1ая проверка: Imax + Imin == const;

Imax + Imin = (4344,55 + 830,95)10-8 = (5175,5)10-8 м4;

= (4305,4 + 870,1)10-8 = (5175,5)10-8 м4.

2ая проверка: Imax >>> 0;

4344,55 10-8 > 4305,410-8 > 870,110-8 > 830,9510-8 м4.

Проверки удовлетворяются, что говорит о правильности вычисления моментов инерции составного сечения.

6. Вычислить величины главных радиусов инерции. Величины главных радиусов инерции вычисляем по известным формулам:

4. Кручение

4.1 Кручение бруса с круглым поперечным сечением

Здесь под кручением понимается такой вид нагружения, при котором в поперечных сечениях бруса возникает только крутящий момент. Прочие силовые факторы, т.е. Nz , Qx , Qy , Mx , My равны нулю.

Для крутящего момента, независимо от формы поперечного сечения бруса, принято следующее правило знаков. Если наблюдатель смотрит на поперечное сечение со стороны внешней нормали и видит момент Mz направленным по часовой стрелке, то момент считается положительным. При противоположном направлении моменту приписывается отрицательный знак.

При расчете бруса на кручение (вала) требуется решить две основные задачи. Вопервых, необходимо определить напряжения, возникающие в брусе, и, вовторых, надо найти угловые перемещения сечений бруса в зависимости от величин внешних моментов.

Наиболее просто можно получить решение для вала с круглым поперечным сечением (рис. 4.1 а). Механизм деформирования бруса с круглым поперечным сечением можно представить в виде. Предполагая, что каждое поперечное сечение бруса в результате действия внешних моментов поворачивается в своей плоскости на некоторый угол как жесткое целое. Данное предположение, заложенное в основу теории кручения, носит название гипотезы плоских сечений.

Рис. 4.1

Для построения эпюры крутящих моментов Mz применим традиционный метод сечений на расстоянии z от начала координат рассечем брус на две части и правую отбросим (рис. 4.1, б). Для оставшейся части бруса, изображенной на рис. 4.1, б, составляя уравнение равенства нулю суммы крутящих моментов Mz = 0, получим:

Mz = M. (4.1)

Поскольку сечение было выбрано произвольно, то можно сделать вывод, что уравнение (4.1) верно для любого сечения вала крутящий момент Mz в данном случае постоянен по всей длине бруса.

Далее двумя поперечными сечениями, как это показано на рис. 4.1, а, из состава бруса выделим элемент длиной dz, а из него свою очередь двумя цилиндрическими поверхностями с радиусами и + d выделим элементарное кольцо, показанное на рис. 4.1, в. В результате кручения правое торцевое сечение кольца повернется на угол d. При этом образующая цилиндра АВ повернется на угол и займет положение АВ . Дуга BВ равна с одной стороны, d, а с другой стороны dz. Следовательно,

. (4.2)

Если разрезать образовавшуюся фигуру по образующей и развернуть (рис. 4.1, г), то можно видеть, что угол представляет собой не что иное, как угол сдвига данной цилиндрической поверхности под действием касательных напряжений , вызванных действием крутящего момента. Обозначая

, (4.3)

где относительный угол закручивания. Этот угол представляет собой угол взаимного поворота двух сечений, отнесенный к расстоянию между ними. Величина аналогична относительному удлинению при простом растяжении или сжатии стержня.

Из совместного рассмотрения (4.2) и (4.3) и после некоторых преобразований, получим:

= . (4.4)

Подставляя выражение (4.4) в выражение закона Гука для сдвига (2.23), в данном случае выражение касательных напряжений принимает следующий вид:

= G , (4.5)

где касательные напряжения в поперечном сечении бруса. Парные им напряжения возникают в продольных плоскостях в осевых сечениях. Величину крутящего момента Mz можно определить через с помощью следующих рассуждений. Момент относительно оси z от действия касательных напряжений на элементарной площадке dF равен (рис. 4.2):

dM = dF.

Рис. 4.2

Проинтегрировав это выражение по площади поперечного сечения вала, получим:

. (4.6)

Из совместного рассмотрения (4.5) и (4.6) получим:

. (4.7)

Откуда . (4.8)

Величина G I называется жесткостью бруса при кручении.

Из (4.8), с учетом (4.3), интегрируя полученное выражение по параметру z, получим:

. (4.9)

Если крутящий момент Mz и жесткость G I по длине бруса постоянны, то из (4.9) получим:

, (4.10)

где (0) угол закручивания сечения в начале системы отсчета.

Для определения выражения напряжений, возвращаясь к формуле (4.5) и исключая из него , согласно (4.8), получим:

()=. (4.11)

Величина называется полярным моментом сопротивления поперечного сечения бруса в форме сплошного круга радиусом R. Определяется эта величина из следующих соображений:

(4.12)

Если же в брусе имеется внутренняя центральная полость радиусом r = , то для кольца

, (4.13)

где с = .

4.2 Кручение бруса с некруглым поперечным сечением

Определение напряжений в брусе с некруглым поперечным сечением представляет собой сложную задачу, которая не может быть решена методами сопротивления материалов. Причина заключается в том, что для некруглого поперечного сечения упрощающая гипотеза плоских сечений, оказывается неприемлимой. В данном случае поперечные сечения существенно искривляются, в результате чего заметно меняется картина распределения напряжений.

Таким образом, при определении углов сдвига, в данном случае, необходимо учитывать не только взаимный поворот сечений, но и деформации сечений в своей плоскости, связанная с искривлением сечений.

Задача резко усложняется тем, что для некруглого сечения, напряжения должны определяться как функции уже не одного независимого переменного , а двух x и y.

Отметим некоторые особенности законов распределения напряжений в поперечных сечениях некруглой формы. Если поперечное сечение имеет внешние углы, то в них касательные напряжения должны обращаться в нуль. Если наружная поверхность бруса при кручении свободна, то касательные напряжения в поперечном сечении, направленные по нормали к контуру также будут равны нулю.

Рис. 4.3

На рис. 4.3 показана, полученная методом теории упругости, эпюра касательных напряжений для бруса прямоугольного сечения. В углах, как видно, напряжения равны нулю, а наибольшие их значения возникают по серединам больших сторон:

в точке А A max =, (4.14)

где WК = b3 аналог полярного момента сопротивления поперечного сечения прямоугольного бруса;

в точке В B max , (4.15)

здесь необходимо учесть, что b малая сторона прямоугольника.

Значения угла закручивания определяется по формуле:

, (4.16)

где IK = b4 аналог полярного момента инерции поперечного сечения бруса.

Коэффициенты , и зависят от отношения сторон m = h/b, и их значения приведены в табл. 3.

Таблица 3

m

1

1,5

2,0

3,0

6,0

10

0,141

0,294

0,457

0,790

1,789

3,123

0,208

0,346

0,493

0,801

1,789

3,123

1,000

0,859

0,795

0,753

0,743

0,742

Геометрические характеристики наиболее представительных форм сечений обобщены в табл. 4.

4.3 Пример расчета (задача № 4)

Стальной валик переменного сечения, испытывающего кручение, закручивается крутящими моментами, действующими в двух крайних и двух пролетных сечениях. Расчетная схема валика, ее геометрические размеры, величины и точки приложения внешних крутящих моментов указаны на рис. 4.4, а.

Требуется:

1. Построить эпюру крутящих моментов;

2. Найти допускаемую величину момента М;

3. Построить эпюры касательных напряжений по сечениям вала, отметив на сечениях опасные точки;

4. Построить эпюру углов закручивания;

Модуль упругости при сдвиге материала вала G = 8107 кН/м2. Расчетное сопротивление материала вала срезу RC = 105 кН/м2.

Решение

Построить эпюру крутящих моментов. Для определения величины крутящих моментов используется метод сечений. Согласно расчетной схемы (рис. 4.5, а) для I участка (0 z 0,5 м):

откуда .

Согласно расчетной схемы (рис. 4.5, б) для участка II (0,5 м z 1,0 м):

откуда .

Согласно расчетной схемы (рис. 4.5, в) для участка III (1,0 м z 1,8 м):

откуда .

По полученным данным строим эпюру крутящих моментов (рис. 4.4, б).

2. Найти допускаемую величину момента М. Допускаемая величина момента МP определяется из условия прочности:

.

Рис. 4.4

Сначала определим моменты сопротивления сечения валика для каждого участка.

I участок (трубчатое сечение) согласно (4.13):

где ;

м3.

II участок (круглое сечение):

Рис. 4.5

м3.

III участок (прямоугольное сечение):

,

где коэффициент, зависящий от отношения сторон прямоугольного сечения h/b (h > b). В данном случае , тогда

м3.

Подсчитаем теперь напряжения по участкам в зависимости от момента М:

.

Из сравнения результатов видно, что наиболее напряженным является участок II, поэтому допускаемая величина момента M определяется из зависимости:

откуда

кНм.

4. Построить эпюры касательных напряжений по сечениям вала, отметив на сечениях опасные точки. Касательные напряжения в точках поперечного сечения валика определяются по формулам:

для круглого сечения при , ;

для трубчатого сечения при , ;

для прямоугольного сечения (в середине большей стороны) и 1 = max (в середине меньшей стороны).

Подсчитаем моменты инерции сечений валика относительно центра их кручения.

Участок I (трубчатое сечение):

м4.

Участок II (круглое сечение):

м4.

Участок III (прямоугольное сечение):

м4,

где = 0,243 при h/b = 1/33.

Определим значения напряжений в характерных точках сечений.

Участок I (0 z 0,5 м):

при кН/м2 = 77,5 МПа;

при кН/м2 =97,0МПа.

Участок II ( 0,5 м z 1,5 м):

при

при кН/м2 = 100,0 Мпа.

Участок III (1,0 м z 1,8 м): в середине большей стороны

кН/м2 = 86,8 МПа,

в середине меньшей стороны

3 = max = 0,90686,7 = 78,6 МПа.

где = 0,906 при h/b = 1,33.

По полученным данным строятся эпюры напряжений, приведенные на рис. 4.6.

4. Построить эпюру углов закручивания. Угол закручивания на iом участке вала в соответствии с (4.10) определяется:

,

где угол закручивания на правом конце (i1)го участка (для первого участка начальный угол закручивания вала); li координата начала iго участка.

Рис. 4.6

Так как, в данном случае в пределах каждого из трех участков крутящие моменты и жесткости на кручение GI постоянны, то эпюры углов закручивания на каждом из участков будут линейны. В связи с этим, достаточно подсчитать их значения лишь на границах участков. Приняв, что левый конец вала защемлен от поворота, т.е. (0) = 0, получим:

рад;

рад;

рад.

По полученным данным строим эпюру углов закручивания (рис. 4.4, в). Сравнивая эпюры и , можно отметить очевидную закономерность их изменения по оси z, вытекающую из расчетных формул.

5. Консольная балка

5.1 Схема III. Плоская рама (задача № 8)

Заданная плоская стержневая система (рис. 5.17, а), элементы которой представляют собой прямолинейные стержни, жестко соединенных между собой, называется рамой. При произвольном характере нагружения, в поперечных сечениях элементов заданной системы возникают следующие три силовых фактора: поперечная сила Q, изгибающий момент M и продольная сила N. Главной отличительной особенностью рамной системы от других стержневых систем является то, что в деформированной состоянии угол сопряжения между различными элементами равен углам сопряжения элементов до нагружения системы.

Правило знаков для Qy , Mx и Nz и порядок построения их эпюр для таких систем остаются прежними.

Так как заданная система имеет только три внешние связи (вертикальную и горизонтальную в т. D и горизонтальную в т. А), следовательно, при общем характере нагружения возникает всего три опорные реакции. Как нам уже известно, для плоских систем можно воспользоваться только тремя уравнениями равновесия статики для определения опорных реакций, поэтому заданная система является статически определимой.

Рис. 5.17

Построить эпюры Qy, Mx и Nz.

Определение опорных реакций. Составив уравнения равновесия для всей рамы и решив их, получим:

y = 0, RD = 0;

MD = 0, HA 8 + Р4 + q42 = 0, кН;

MA = 0, HD 8 Р4 q46 = 0, кН.

Проверка: x = 0; HA + HD Р q4 = 0;

4 + 8 4 24 = 0; 12 12 = 0; 0 = 0.

Уравнение равновесия превращается в тождество, что говорит о правильности вычисления опорных реакций.

Определение количества участков

Так как, в рамах границами участков являются точки приложения сил и точки изменения направления оси элементов системы, то заданная система имеет три участка: участок I АВ, участок II ВС, участок III СD (рис. 5.13, б).

Составление аналитических выражений Qy, Mx и Nz и определение их значений в характерных сечениях каждого участка

Определение внутренних силовых факторов в сечениях рам производится также с помощью метода сечений. Однако при выполнении разрезов всегда следует выяснить, какую из частей рамы считать левой, а какую правой. Для этого предполагают, что обход рамы ведется слева направо, т.е. от А к В, от В к С, от С к D. При этом наблюдение ведут с нижней стороны участков, находясь лицом к оси участков.

Участок I (0 z1 4 м) (рис. 5.18).

Рис. 5.18

Проведя сечение в пределах этого участка, рассмотрим равновесие левой отсеченной части длиной z1 . Составив уравнение равновесия y = 0 и и z = 0 для этой части и решив их относительно , и , получим аналитические выражения изменения Qy , Mx и Nz на участке I:

y = 0, HA =0, = HA const;

, HAz1 = 0, = HAz1 уравнение прямой;

z = 0, = 0 нормальная сила отсутствует.

Величины Qy , Mx и Nz в граничных сечениях участка будут равны:

при z1 = 0 = 4 кН, = 0, = 0;

при z1 = 4 м = 4 кН, = 44 = 16кНм, = 0.

Участок II (0 z2 4 м) (рис. 5.19).

Рис. 5.19

Сделав сечение в пределах этого участка, составим уравнения равновесия для левой части:

y = 0, = 0;

, HA4 = 0,

= HA4 = 44 = 16 кНм;

z = 0, HA + = 0, = HA = 4 кH.

Знак “минус” перед говорит о том, что элемент ВС сжат, а не растянут. Из полученных уравнений видно, что на участке II поперечная сила равна нулю, а изгибающий момент и нормальная сила постоянны.

Участок III (0 z3 4 м) (рис. 5.20). Приняв начало координат в сечении D и сделав разрез в пределах этого участка, рассмотрим равновесие правой отсеченной части длиной z3 . Составив уравнения равновесия y = 0; = 0 и z = 0 и решив их, получим:

Рис. 5.20

y = 0, HD + qz3 = 0,

= HD qz3 уравнение прямой.

, + HD z3 ,

= HD z3 + уравнение квадратной параболы;

z = 0, Nz = 0.

Ординаты эпюр найдем из полученных выражений, подставив в них значения z3 , соответствующие граничным сечениям участка:

при z3 = 0 = 8 кН, = 0, = 0;

при z3 = 4 м = 8 24 =0, = 84 += 16 кНм, = 0.

Для уточнения очертания квадратной параболы определим величину при z3 = 2 м:

кНм.

Построение эпюр Qy , Mx и Nz для бруса с ломанной осью (рамы)

Отложив в масштабе перпендикулярно к оси каждого элемента рамы полученные значения Qy , Mx , Nz в граничных и промежуточных сечениях участка и соединяя концы ординат линиями, соответствующими выражениям Qy , Mx и Nz , строим их эпюры (рис. 5.17, в, г, д).

Правильность построения эпюр внутренних усилий подтверждается на основе статической проверки, заключающейся в том, что условия равновесия рамы (x 0; y 0; M 0;), как в целом, так и любой ее отсеченной части, под воздействием внешних нагрузок и усилий, возникающих в проведенных сечениях, соблюдаются тождественно.

5.2 Касательные напряжения при поперечном изгибе. Главные напряжения при изгибе

В случае поперечного изгиба в сечениях балки возникают не только изгибающий момент, но и поперечная сила. Следовательно, в этом случае в поперечных сечениях бруса возникают не только нормальные, но и касательные напряжения.

Так как касательные напряжения в общем случае распределены по сечению неравномерно, то при поперечном изгибе поперечные сечения балки строго говоря не остаются плоскими. Однако при (где h высота поперечного сечения, l длина балки) оказывается, что эти искажения заметным образом не сказываются на работе балки на изгиб. В данном случае гипотеза плоских сечений и в случае чистого изгиба с достаточной точностью приемлема. Поэтому для расчета нормальных напряжений применяют ту же формулу (5.10).

Рассмотрим вывод расчетных формул для касательных напряжений. Выделим из бруса, испытывающего поперечный изгиб, элемент длиной dz (рис. 5.21, а).

Рис. 5.21

Продольным горизонтальным сечением, проведенным на расстоянии y от нейтральной оси, разделим элемент на две части (рис. 5.21, в) и рассмотрим равновесие верхней части, имеющей основание шириной b. При этом с учетом закона парности касательных напряжений, получим, что касательные напряжения в поперечном сечении равны касательным напряжениям, возникающим в продольных сечениях (рис. 5.21, б). С учетом данного обстоятельства и из допущения о том, что касательные напряжения по площади bdz распределены равномерно, используя условие z = 0, получим:

N N d N + bdz = 0 ,

откуда . (5.12)

где N равнодействующая нормальных сил dF в левом поперечном сечении элемента dz в пределах заштрихованной площади F (рис. 5.20, г):

. (5.13)

С учетом (5.10) последнее выражение можно представить в виде

, (5.14)

где статический момент части поперечного сечения, расположенной выше координаты y (на рис. 5.21,б эта область заштрихована). Следовательно, (5.14) можно переписать в виде

,

откуда . (5.15)

В результате совместного рассмотрения (5.12) и (5.15) получим

,

или окончательно . (5.16)

Полученная формула (5.16) носит имя русского ученого Д.И. Журавского.

Для исследования напряженного состояния в произвольной точке балки, испытывающей поперечный изгиб, выделим из состава балки вокруг исследуемой точки элементарную призму (рис. 5.21, г), таким образом, чтобы вертикальная площадка являлась частью поперечного сечения балки, а наклонная площадка составляла произвольный угол относительно горизонта. Принимаем, что выделенный элемент имеет следующие размеры по координатным осям: по продольно оси dz, т.е. по оси z; по вертикальной оси dy, т.е. по оси у; по оси х равный ширине балки.

Так как вертикальная площадка выделенного элемента принадлежит поперечному сечению балки, испытывающему поперечный изгиб, то нормальные напряжения на этой площадке определяются по формуле (5.10), а касательные напряжения по формуле Д.И. Журавского (5.16). С учетом закона парности касательных напряжений, легко установить, что касательные напряжения на горизонтальной площадке также равны . Нормальные же напряжения на этой площадке равны нулю, согласно уже известной нам гипотезе теории изгиба о том, что продольные слои не оказывают давления друг на друга.

Обозначим величины нормальных и касательных напряжений на наклонной площадке через и , соответственно. Принимая площадь наклонной площадки dF, для вертикальной и горизонтальной площадок будем иметь dF sin и dF cos , соответственно.

Составляя уравнения равновесия для элементарной вырезанной призмы (рис. 5.21, г), получим:

,

откуда будем иметь:

;

.

Следовательно, окончательные выражения напряжений на наклонной площадке принимают вид:

Определим ориентацию площадки, т.е. значение = 0 , при котором напряжение принимает экстремальное значение. Согласно правилу определения экстремумов функций из математического анализа, возьмем производную функции от и приравняем ее нулю:

.

Предполагая = 0 , получим:

.

Откуда окончательно будем иметь:

.

Согласно последнему выражению, экстремальные напряжения возникают на двух взаимно перпендикулярных площадках, называемых главными, а сами напряжения главными напряжениями.

Сопоставляя выражения и , имеем:

,

откуда и следует, что касательные напряжения на главных площадках всегда равны нулю.

В заключение, с учетом известных тригонометрических тождеств:

и формулы ,

определим главные напряжения, выражая из через и :

.

Полученное выражение имеет важное значение в теории прочности изгибаемых элементов, позволяющее производить расчеты их прочности, с учетом сложного напряженного состояния, присущее поперечному изгибу.

5.3 Пример расчета (задача № 9)

Для составной балки, имеющей поперечное сечение, показанное на рис. 5.22, требуется:

1. Определить расчетные параметры поперечного сечения балки;

2. Вычислить нормальные напряжения по заданному изгибающему моменту и построить их эпюру;

3. Определить значения касательных напряжений в точке 3;

4. Определить значения главных напряжений в точке 3 и указать их направления (показать главные площадки), имея в виду, что сечение относится к левой части балки.

Дано: расчетные значения изгибающего момента и поперечной силы в сечении МP = 156 кНм, QP = 104 кН; hCT = 0,34 м; b1/hCT = 0,7; b2/hCT = 0,9; 1/hCT = 0,1; 2/hCT = 0,07; /1 = 0,4. Нормативное значение сопротивления материалу при изгибе RH = = 217100 кН/м2, коэффициент запаса по прочности n = 1,3.

Решение

1. Определение расчетных параметров поперечного сечения балки (рис. 5.22, а). Ширина верхней полки b1 = = 0,7hCT = 0,70,34 = 0,238 м, принимаем b1 = 0,24 м; толщина верхней полки 1 = 0,1hCT = 0,10,34 = 0,034 м; площадь сечения верхней полки м2, ширина нижней полки b2 = 0,9hCT = 0,90,34 = 0,306 м, принимаем b2 = 0,3 м; толщина нижней полки 2 = 0,07hCT = 0,070,34 = 0,0238 м, принимаем 2 = 0,024 м; площадь сечения нижней полки = 0,30,024 = =0,0072 м2, толщина стенки = 0,41 = 0,40,034 = 0,0136 м, принимаем = 0,014 м; площадь сечения стенки FCT = 0,340,014 = = 0,00476 м2; высота балки h = hCT + 1 + 2 = 0,34 + 0,034 + + 0,024 = 0,398 м.

Определение площади поперечного сечения балки.

м2.

Определение центра тяжести поперечного сечения балки. Ось y является осью симметрии сечения балки, следовательно, центр его тяжести находится на этой оси. За вспомогательную ось для определения координаты центра тяжести сечения на оси y принимаем ось x1 (рис. 5.22, а). Заметим, что поперечное сечение балки является составным, и включает в себя три прямоугольника (верхняя и нижняя полки, а также стенка). С учетом данного обстоятельства и воспользовавшись выражением (3.6), вычислим статический момент площади поперечного сечения балки относительно оси x1 :

Тогда положение центра тяжести на оси у определится ординатой

м.

Определение момента инерции поперечного сечения балки относительно центральной оси (рис. 5.22). Значение момента инерции вычислим, пользуясь зависимостью между моментами инерции относительно параллельных осей:

где , и моменты инерции верхней и нижней полки и стенки, соответственно, относительно собственных горизонтальных осей, проходящих через их центры тяжести (см. п. 3.2),

2. Вычислить нормальные напряжения по заданному изгибающему моменту и построить их эпюру.

Момент сопротивления Wx для точек 1 и 2 определим по формулам:

для точки 1 м3;

для точки 2 м3,

где y1 = h - yc = 0,398 0,205 = 0,193 м, y2 = yC = 0,205 м.

Вычислим напряжения в точке 1 (рис. 5.22, а):

кН/м2 53000 МПа < 167000 кН/м2

Вычислим напряжения в точке 2 (рис. 5.22, а):

кН/м2 56000 МПа < 167000 кН/м2

Найдем значение нормальных напряжений в точке 3 по (5.10):

кН/м2 .

По полученным значениям строим эпюру нормальных напряжений (рис. 5.22, б).

Проверку прочности производим по формуле

,

где MP расчетный изгибающий момент; Wx момент сопротивления при изгибе; RИ допускаемое напряжение при изгибе.

Допускаемое напряжение при изгибе равно:

кН/м2.

Как видно, балка имеет значительное недонапряжение.

3. Определить значения касательных напряжений в точке 3.

Касательное напряжение определим по формуле Журавского:

,

где расчетная поперечная сила, ширина сечения на уровне точки 3.

Вычислим статический момент отсеченной части в точке 3 части сечения :

= 0,0072(0,205 0,50,024)+

+ 0,00119(0,096 + 0,1250,34) = 1,54410-3 м3,

где = 0,25hCT = 0,250,340,014 = 0,00119 м2.

Вычислим касательное напряжение в точке 3:

кН/м2.

4. Определить значения главных напряжений в т. 3 и указать их направления (показать главные площадки), имея в виду, что сечение относится к левой части балки.

Главные напряжения в точке 3 определяем по формуле:

.

Подставив в данную формулу значения 3 и 3 , получим:

кН/м2;

кН/м2.

В заключение найдем положение главных площадок и направление главных напряжений (рис. 5.22, в).

При отрицательном угле 0 откладываем его от нормали к сечению (площадке) по часовой стрелке и показываем положение главных площадок и направление главных напряжений (рис. 5.22).

5.4 Перемещения при изгибе. Метод начальных параметров

Изгиб балки сопровождается искривлением ее оси. При поперечном изгибе ось балки принимает вид кривой, расположенной в плоскости действия поперечных нагрузок. При этом точки оси получают поперечные перемещения, а поперечные сечения совершают повороты относительно своих нейтральных осей. Углы поворота поперечных сечений принимаются равными углам наклона , касательной к изогнутой оси балки (рис. 5.23).

Рис. 5.23

Прогибы и углы поворотов в балках являются функциями координаты z и их определение необходимо для расчета жесткости. Рассмотрим изгиб стержня в одной из главных плоскостей например, в плоскости yz. Как показывает практика, в составе реальных сооружений стержни испытывают весьма малые искривления (ymax/l = 102 103, где ymax максимальный прогиб; l пролет балки).

В этом случае неизвестными функциями, определяющими положение точек поперечных сечений балки являются y(z) и (z) = = (z) (рис.5.23). Совокупность значений этих параметров по длине балки образуют две функции от координаты z функцию перемещений y (z) и функцию углов поворота (z). Из геометрических построений (рис. 5.23) наглядно видно, что угол наклона касательной к оси z и угол поворота поворота поперечных сечений при произвольном z равны между собой. В силу малости углов поворота можно записать:

. (5.17)

Из курса математического анализа известно, что кривизна плоской кривой y (z) выражается следующей формулой:

.

Если рассмотреть совместно соотношение (5.9) и последнее выражение, то получим нелинейное дифференциальное уравнение изогнутой оси балки, точное решение которого, как правило, затруднительно. В связи с малостью величины по сравнению с единицей последнее выражение можно существенно упростить, и тогда

. (5.18)

Учитывая (5.9), из (5.18) получим следующее важное дифференциальное соотношение

, (5.19)

где Ix момент инерции поперечного сечния балки, относительно ее нейтральной оси; Е модуль упругости материала; E Ix изгибная жесткость балки.

Уравнение (5.19), строго говоря, справедливо для случая чистого изгиба балки, т.е. когда изгибающий момент Mx (z) имеет постоянное значение, а поперечная сила равна нулю. Однако это уравнение используется и в случае поперечного изгиба, что равносильно пренебрежению искривлений поперечных сечений за счет сдвигов, на основании гипотезы плоских сечений.

Введем еще одно упрощение, связанное с углом поворота поперечного сечения. Если изогнутая ось балки является достаточно пологой кривой, то углы поворота сечений с высокой степенью точности можно принимать равными первой производной от прогибов. Отсюда следует, что прогиб балки принимает экстремальные значения в тех сечениях, где поворот равен нулю.

В общем случае, для того, чтобы найти функции прогибов y (z) и углов поворота (z), необходимо решить уравнение (5.19), с учетом граничных условий между смежными участками.

Для балки, имеющей несколько участков, определение формы упругой линии является достаточно сложной задачей. Уравнение (5.19), записанное для каждого участка, после интегрирования, содержит две произвольные постоянные.

На границах соседних участков прогибы и углы поворота являются непрерывными функциями. Данное обстоятельство позволяет определить необходимое число граничных условий для вычисления произвольных постоянных интегрирования.

Если балка имеет n конечное число участков, из 2n числа граничных условий получим 2n алгебраических уравнений относительно 2n постоянных интегрирования.

Если момент и жесткость являются непрерывными по всей длине балки функциями Mx (z) и E Ix (z), то решение может быть получено, как результат последовательного интегрирования уравнения (5.19) по всей длине балки:

интегрируя один раз, получаем закон изменения углов поворота

,

интегрируя еще раз, получаем функцию прогибов

.

Здесь C1 и С2 произвольные постоянные интегрирования должны быть определены из граничных условий.

Если балка имеет постоянное поперечное сечение по длине, то для определения функций прогибов и углов поворота удобно применить метод начальных параметров, суть которого в следующем.

Рис. 5.24

Рассмотрим балку (рис. 5.24) с постоянным поперечным сечением, нагруженную взаимоуравновешенной системой положительных силовых факторов (т.е., вызывающих вертикальные перемещения сечений балки в положительном направлении оси y). Начало системы координат поместим на левом конце балки так, чтобы ось z проходила вдоль оси балки, а ось y была бы направлена вверх. На балку действуют: момент М, сосредоточенная сила Р и равномерно распределенная на участке бруса нагрузка интенсивностью q (рис. 5.24).

Задача заключается в том, чтобы выявить особенности, вносимые в уравнение упругой линии, различными типами внешних силовых факторов. Для этого составим выражение изгибающих моментов для каждого из пяти участков заданной системы.

Участок I ( 0 z l1 ) Mx (z) = 0.

Участок II (l1 z l2 ) Mx (z) = M.

Участок III (l2 z l3 ) Mx (z) = M + P (z l2).

Участок IV (l3 z l4) Mx (z) = M + P (z l2) + .

Учток V(l4 z l5) Mx (z) = M + P (z l2) + .

На участке V, где распределенная нагрузка отсутствует, при выводе выражения для изгибающего момента, с целью сохранения рекуррентности формул для разных участков была приложена взаимоуравновешенная распределенная нагрузка.

Для вывода обобщенного выражения изгибающего момента введем следующий оператор , означающий, что члены выражения, стоящее перед ним следует учитывать при z > li и игнорировать при z li . На основании этого, обобщенное выражение момента Mx (z) для произвольного сечения z может быть записано единой формулой:

Mx (z) = M+ P (z l2) +

. (5.20)

Подставляя (5.20) в (5.19) и дважды интегрируя, получим выражение для прогибов:

E Ix y (z) = C0 + C1 z ++

+. (5.21)

Постоянные интегрирования C0 и C1 по своей сути означают:

C0 = E Ix y (0) , C1 = (5.22)

и определяются из граничных условий на левом конце балки. Тогда формула для прогибов примет следующий окончательный вид:

E Ix y (z) = E Ix y0 + z +++

+. (5.23)

Соответственно, формула для углов поворотов сечений балки определяется из (5.23) простым дифференцированием:

E Ix (z) = ++

+. (5.24)

Как видно, для определения прогибов и углов поворота балок данным методом начальных параметров достаточно знание лишь значений прогиба y0 , угла поворота 0 в начале системы координат, т.е. так называемых начальных параметров. Поэтому данный метод и называется методом начальных параметров.

5.5 Пример расчета (задача № 10)

Для схем стальных балок I и II, изображенных на рис. 5.25 и 5.26, определить методом начальных параметров углы поворота сечения и прогиб в точке D. Модуль упругости Е = 2108 кН/м2. Поперечные сечения балок: схема I круглое диаметром d = 0,24 м, схема II квадратное со стороной a = 0,2 м.

Решение

Схема I.

1. Определение опорных реакций балки (рис. 5.25)

y = 0, R0 + qc P = 0, R0 = qc + P = 101,4 + 12 = 2 кН;

M0 =0, ,

M0 = q c (b + 0,5 c) M P (b + c + e) = 101,4(1,8 + 0,51,4)

20 12(1,8 + 1,4 + 1,2) = 37,8 кНм.

Рис. 5.25

Для проверки правильности определения опорных реакций составим уравнения равновесия:

MD = 0, M0 + R04,4 + qc(0,5c + e) + M = 37,8 24,4 +

+ 101,44(0,5 1,4 + 1,2) + 20 = 46,6 46,6 = 0.

Реакции найдены верно.

2. Применение метода начальных параметров. Используя уравнение (5.23), для нашего случая запишем:

E Ix y (z) = E Ix y0 + z +

+.

Здесь M0 и Q0 момент и реакция в заделке (т.е. в начале координат). Знак z > a означает, что слагаемое, после которого он стоит, нужно учитывать при z > a и не надо при z a. Начальные параметры имеют значения: y0 = 0; 0 = 0; M0 = 37,8 кНм, R0 =

= 2 кН (знак реакций определяется по знаку перемещения вызванного этими усилиями). Тогда выражение для определения прогибов будет иметь вид:

E I y (z) = -+

+.

Соответственно выражение для определения углов поворота будет:

=-37,8z z2 ++

+ 20(z 3,2).

С помощью этих выражений определяем yD и D:

кНм3.

кНм2.

Жесткость сечения при Е = 2108 кН/м2 равна:

кНм2.

Тогда, окончательно:

Прогиб точки D происходит вниз, а сечение поворачивается по часовой стрелке.

Схема II.

Рис. 5.26

1. Определение опорных реакций балки (рис. 5.26).

M0 =0, RB (b + c + e) q(c + e)b + 0,5(c + e) + M + P b = 0,

=кН;

MB =0, R0 (b + c + e) 0,5q(c + e)2 M + P(c + e) = 0,

кН.

Для проверки правильности определения опорных реакций составим уравнение равновесия сил по оси y:

y =0; R0 + RB + P q (c + e) = 7,86 + 14,14 + 8 103 = 30 30 = 0.

Реакции найдены верно.

2. Применение метода начальных параметров. Используя метод начальных параметров, для рассматриваемой балки запишем:

Из условий закрепления балки при z = 0 имеем: y0 = 0; М0=0.

Подставляя числовые значения, получим:

.

В данном выражении неизвестно 0. Из условия закрепления балки при z = b + c + e имеем, что y = 0. Вычисляя прогиб на правом конце балки и приравнивая его к нулю, получим уравнение для определения 0:

.

Отсюда E I 0 = 20,84 кНм2. Теперь выражение для определения прогибов будет иметь вид:

.

Соответственно, выражение для определения углов поворота будет:

.

С помощью этих выражений определяем yD и D:

кHм3.

кНм2.

Вычисляем жесткость сечения (Е = 2108 кН/м2):

кНм2.

Тогда, окончательно,

рад.

Перемещение точки D происходит вниз, а сечение поворачивается по часовой стрелке.

5.6 Косой изгиб

Под косым изгибом понимается такой случай изгиба, при котором плоскость изгибающего момента не совпадает ни с одной из главных осей поперечного сечения (рис. 5.27, а). Косой изгиб удобнее всего рассмотреть как одновременный изгиб бруса относительно главных осей x и y поперечного сечения бруса. Для этого общий вектор изгибающего момента М, действующего в поперечном сечении бруса, раскладывается на составляющие момента относительно этих осей (рис. 5.27, б):

Mx = Msin; My = Mcos . (5.25)

Введем следующее правило знаков для моментов Mx и My момент считается положительным, если в первой четверти координатной плоскости (там, где координаты x и y обе положительны) он вызывает сжимающие напряжения.

Рис. 5.27

На основании принципа независимости действия сил нормальное напряжение в произвольной точке, принадлежащей к поперечному сечению бруса и имеющей координаты x, y, определяется суммой напряжений, обусловленных моментами Mx и My , т.е.

. (5.26)

Подставляя выражения Mx и My из (5.25) в (5.26), получим:

.

Из курса аналитической геометрии известно, что последнее выражение представляет собой уравнение плоскости. Следовательно, если в каждой точке сечения отложить по нормали вектор напряжения , то концы векторов образуют геометрическое место точек, принадлежащих одной плоскости, как и при поперечном изгибе.

Уравнение нейтральной линии, т.е. геометрического места точек, где нормальное напряжение принимает нулевые значения, найдем, полагая в (5.26) = 0:

.

Откуда определяется: . (5.27)

Поскольку свободный член в (5.27) равен нулю нейтральная линия всегда проходит через начало координат. Как видно из выражения (5.26), эпюра напряжений в поперечных сечениях бруса линейна, следовательно, максимальные напряжения в сечении возникают в точках наиболее удаленных от нейтральной линии. В том случае, когда сечение имеет простую форму (прямоугольник, круг), положение наиболее опасных точек легко определяется визуально. Для сечений, имеющих сложную форму, необходимо применить графический подход.

Далее покажем, что при косом изгибе нейтральная линия не перпендикулярна к плоскости действия изгибающего момента, как это всегда выполнялось при поперечном изгибе. Действительно угловой коэффициент K1 следа момента (рис. 5.27, б) равен:

K1 = tg . (5.28)

Угловой же коэффициент нейтральной линии, как это следует из (5.27), определяется выражением:

tg = K2 . (5.29)

Так как в общем случае Ix Iy, то условие перпендикулярности прямых, известное из аналитической геометрии, не соблюдается, поскольку K1 . Брус, образно выражаясь, предпочитает изгибаться не в плоскости изгибающего момента, а в некоторой другой плоскости, где жесткость на изгиб будет минимальной.

5.7 Пример расчета (задача № 11)

Стальная балка АВ, расчетная схема и поперечное сечение которой показаны на рис. 5.28, а, (c = 0,03 м) нагружена силами Р1 и Р2. Требуется:

1. Построить эпюры изгибающих моментов в главных плоскостях инерции;

2. Установить по эпюрам изгибающих моментов опасное сечение балки. Найти для опасного сечения положение нулевой линии;

3. Вычислить наибольшие растягивающие и сжимающие нормальные напряжения;

4. Определить значение полного прогиба в середине пролета балки и указать его направление.

Решение

1. Построить эпюры изгибающих моментов в главных плоскостях инерции. Ввиду симметричности сечения балки относительно осей x и y (рис. 5.28, а), можно сделать вывод, что эти оси главные. Для построения эпюр изгибающих моментов, используя принцип независимости действия сил, представим косой изгиб как изгиб в двух главных плоскостях инерции бруса (рис. 5.28, б, г). Определив опорные реакции, составим аналитические выражения изгибающих моментов и вычислим их значения в характерных сечениях. Построим эпюры изгибающих моментов Mx и My (рис. 5.28, в, г), откладывая ординаты со стороны растянутых волокон. В соответствии с принятым правилом знаков (п. 5.9), Mx < 0, My > 0.

...

Подобные документы

  • Особенности и суть метода сопротивления материалов. Понятие растяжения и сжатия, сущность метода сечения. Испытания механических свойств материалов. Основы теории напряженного состояния. Теории прочности, определение и построение эпюр крутящих моментов.

    курс лекций [1,3 M], добавлен 23.05.2010

  • Гипотезы сопротивления материалов, схематизация сил. Эпюры внутренних силовых факторов, особенности. Три типа задач сопротивления материалов. Деформированное состояние в точке тела. Расчёт на прочность бруса с ломаной осью. Устойчивость сжатых стержней.

    курс лекций [4,1 M], добавлен 04.05.2012

  • Определение напряжений при растяжении–сжатии. Деформации при растяжении-сжатии и закон Гука. Напряженное состояние и закон парности касательных напряжений. Допускаемые напряжения, коэффициент запаса и расчеты на прочность при растяжении-сжатии.

    контрольная работа [364,5 K], добавлен 11.10.2013

  • Методические указания и задания по дисциплине "Сопротивление материалов" для студентов-заочников по темам: растяжение и сжатие стержня, сдвиг, кручение, теория напряженного состояния и теория прочности, изгиб прямых стержней, сложное сопротивление.

    методичка [1,4 M], добавлен 22.01.2012

  • Методическое указание по вопросам расчётов на прочность при различных нагрузках и видах деформации. Определение напряжения при растяжении (сжатии), определение деформации. Расчеты на прочность при изгибе, кручении. Расчетно-графические работы, задачи.

    контрольная работа [2,8 M], добавлен 15.03.2010

  • Понятие растяжения как вида нагружения, особенности действия сил и основные характеристики. Различия между сжатием и растяжением. Сущность напряжения, возникающего в поперечном сечении растянутого стержня, понятие относительного удлинения стержня.

    реферат [857,3 K], добавлен 23.06.2010

  • Задача сопротивления материалов как науки об инженерных методах расчета на прочность, жесткость и устойчивость элементов конструкций. Внешние силы и перемещения. Классификация нагрузки по характеру действия. Понятие расчетной схемы, схематизация нагрузок.

    презентация [5,5 M], добавлен 27.10.2013

  • Внецентренное растяжение (сжатие). Ядро сечения при сжатии. Определение наибольшего растягивающего и сжимающего напряжения в поперечном сечении короткого стержня, главные моменты инерции. Эюры изгибающих моментов и поперечных сил консольной балки.

    курсовая работа [2,1 M], добавлен 13.05.2013

  • Понятие мощности как физической величины, ее виды. Соотношения между единицами мощности. Основное содержание и методы сопротивления материалов. Физические свойства машиностроительных материалов: чугуна, быстрорежущей стали и магниевых сплавов.

    контрольная работа [29,1 K], добавлен 21.12.2010

  • Вычисление реакций опор в рамах и балках с буквенными и числовыми обозначениями нагрузки. Подобор номеров двутавровых сечений. Проведение расчета поперечных сил и изгибающих моментов. Построение эпюр внутренних усилий. Определение перемещения точек.

    курсовая работа [690,7 K], добавлен 05.01.2015

  • Понятие и принципы определения предела прочности при сжатии отдельного образца в мегапаскалях. Определение конца схватывания. Порядок проведения фазового анализа порошковых материалов, цели и задачи. Сплошное и характеристическое рентгеновское излучение.

    реферат [272,0 K], добавлен 10.09.2015

  • Расчет на прочность статически определимых систем при растяжении и сжатии. Последовательность решения поставленной задачи. Подбор размера поперечного сечения. Определение потенциальной энергии упругих деформаций. Расчет бруса на прочность и жесткость.

    курсовая работа [458,2 K], добавлен 20.02.2009

  • Общая характеристика сопротивления материалов. Анализ прочности, жесткости, устойчивости. Сущность схематизации геометрии реального объекта. Брус, оболочка, пластина, массив как отдельные тела простой геометрической формы. Особенности напряжения.

    презентация [263,5 K], добавлен 22.11.2012

  • Отличия нормальных напряжений от касательных. Закон Гука и принцип суперпозиции. Построение эллипса инерции сечения. Формулировка принципа независимости действия сил. Преимущество гипотезы прочности Мора. Определение инерционных и ударных нагрузок.

    курс лекций [70,0 K], добавлен 06.04.2015

  • Построение эпюры нормальных сил и напряжений. Методика расчета задач на прочность. Подбор поперечного сечения стержня. Определение напряжения в любой точке поперечного сечения при растяжении и сжатии. Определение удлинения стержня по формуле Гука.

    методичка [173,8 K], добавлен 05.04.2010

  • Деление твердых тел на диэлектрики, проводники и полупроводники. Собственная и примесная проводимость полупроводниковых материалов. Исследование изменений сопротивления кристаллов германия и кремния при нагревании, определение энергии их активации.

    лабораторная работа [120,4 K], добавлен 10.05.2016

  • Определение размеров поперечных сечений стержней, моделирующих конструкцию робота-манипулятора. Вычисление деформации элементов конструкции, линейного и углового перемещения захвата. Построение матрицы податливости системы с помощью интеграла Мора.

    курсовая работа [255,7 K], добавлен 05.04.2013

  • Изучение характеристик модели, связанных с инфильтрацией воздуха через материал. Структура материалов тела. Анализ особенностей механизма диффузии. Экспериментальное исследование диффузии, а также методика расчета функции состояния системы с ее учетом.

    научная работа [1,3 M], добавлен 11.12.2012

  • Аксиоматика динамики. Первый закон Ньютона (закон инерции). Сущность принципа относительности Галилея. Инертность тел. Область применения механики Ньютона. Закон Гука. Деформации твердых тел. Модуль Юнга и жесткость стержня. Сила трения и сопротивления.

    презентация [2,0 M], добавлен 14.08.2013

  • Определение продольной силы в стержнях, поддерживающих жёсткий брус. Построение эпюры продольных усилий, нормальных напряжений и перемещений. Расчет изгибающих моментов и поперечных сил, действующих на балку. Эпюра крутящего момента и углов закручивания.

    контрольная работа [190,3 K], добавлен 17.02.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.