Элементы ядерной физики
Энергия связи ядра. Виды радиоактивности: естественная и искусственная. Ядерные реакции и законы сохранения. Образование элементарных частиц, образующих ядра (нейтроны и протоны). Сохранение зарядового числа. Изучение ядерной цепной реакций в физике.
Рубрика | Физика и энергетика |
Вид | лекция |
Язык | русский |
Дата добавления | 09.09.2017 |
Размер файла | 67,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ЛЕКЦИЯ
ЭЛЕМЕНТЫ ЯДЕРНОЙ ФИЗИКИ
Атомное ядро состоит из нейтронов и протонов. Элементарные частицы, образующие ядра (нейтроны и протоны), называются нуклонами. Протон (ядро атома водорода) обладает положительным зарядом, равным заряду электрона. Его масса в 1836 раз больше массы электрона. Нейтрон электрически нейтральная частица с массой примерно равной 1839 масс электрона.
Количество протонов Z в ядре нейтрального атома равно числу электронов в его электронной оболочке и определяет его заряд, равный +Ze. Число Z называется зарядовым числом. Оно определяет порядковый номер химического элемента периодической системы Менделеева. N число нейтронов в ядре. A массовое число, равное суммарному количеству протонов Z и нейтронов N в ядре. Ядро атома обозначается тем же символом, что и химический элемент, снабжаясь двумя индексами, из которых верхний обозначает массовое, а нижний -- зарядовое число, т.е. где Х -- символ химического элемента. Например, .
Изотопами называются ядра с одним и тем же зарядовым числом, и различными массовыми числами. Например, водород имеет три изотопа: протий (), дейтерий () и тритий ().Изотопы обладают одинаковыми химическими свойствами и почти одинаковыми физическими свойствами. Исключение составляют, например, изотопы водорода, кальция и др.
Атомные ядра представляют собой устойчивые образования, несмотря на то, что между протонами существует сильное отталкивание. Устойчивость ядер свидетельствует, что между нуклонами в ядре действуют силы притяжения, превосходящие силы электростатического отталкивания протонов. Их назвали ядерными силами. Эти силы обладают рядом особенностей:
1) Они являются только силами притяжения и значительно сильнее электростатического отталкивания протонов.
2) Эти силы короткодействующие. Расстояние, на котором ещё действуют ядерные силы, называют радиусом действия этих сил. Он равен примерно 1,510 м.
3) Ядерные силы являются зарядово-независимыми. Это означает, что взаимодействие двух нуклонов совсем не зависит от того, обладают или не обладают они зарядом. Ядерные силы между двумя протонами, или двумя нейтронами, или протоном и нейтроном одинаковы
Для расщепления ядра на составляющие его нуклоны, необходимо затратить определённую энергию, называемую энергией связи ядра.
Оценим энергию связи атомных ядер. Пусть масса покоя нуклонов, из которых образуется ядро, равна m1. Согласно специальной теории относительности, ей соответствует энергия, рассчитываемая по формуле m1c2, где c скорость света в вакууме. После образования ядро обладает энергией ?? = Mc2. Здесь M масса ядра. Измерения показывают, что масса покоя ядра всегда меньше, чем масса покоя частиц в свободном состоянии, составляющих данное ядро. Разность этих масс называют дефектом массы. Поэтому при образовании ядра происходит выделение энергии ?1 ?2 = (m1 M)c2 = ?mc2. Из закона сохранения энергии можно заключить, что такая же энергия должна быть затрачена на расщепление ядра на протоны и нейтроны. Поэтому энергия связи ?св равна ?св = ?mc2. Если ядро с массой M образовано из Z протонов с массой mp и из N = A - Z нейтронов с массой mn, то дефект массы равен
энергия ядро физика нейрон
m = Z mp + (A - Z) mn M.(1)
С учётом этого энергия связи находится по формуле
св = [Z mp + (A - Z) mn M]c2.(2)
Процесс самопроизвольного распада атомных ядер называют радиоактивностью. Радиоактивный распад ядер сопровождается превращением одних нестабильных ядер в другие и испусканием различных частиц. Было установлено, что эти превращения ядер не зависят от внешних условий: освещения, давления, температуры и т.д. Существует два вида радиоактивности: естественная и искусственная. Естественная радиоактивность наблюдается у химических элементов, находящихся в природе. Как правило, она имеет место у тяжёлых ядер, располагающихся в конце таблицы Менделеева, за свинцом. Однако имеются и лёгкие естественно-радиоактивные ядра: изотоп калия , изотоп углерода и другие. Искусственная радиоактивность наблюдается у ядер, полученных в лаборатории с помощью ядерных реакций. Однако принципиального различия между ними нет.
Известно, что естественная радиоактивность тяжёлых ядер сопровождается излучением, состоящим из трёх видов: лучи - это поток ядер гелия , обладающих большой энергией. ?-лучи поток электронов, ?-лучи электромагнитные волны с очень малой длиной волны.
Радиоактивность широко используется в научных исследованиях и технике. Разработан метод контроля качества изделий или материалов гамма-дефектоскопия. Она позволяет установить глубину залегания и правильность расположения арматуры в железобетоне, выявить раковины, пустоты или участки бетона неравномерной плотности, случаи неплотного контакта бетона с арматурой. По степени поглощения ?-лучей высокой энергии судят о влажности материалов. Построены радиоактивные приборы для измерения состава газа, причём источником излучения в них является очень небольшое количество изотопа, дающего ?-лучи. Радиоактивный сигнализатор позволяет определить наличие небольших примесей газов, образующихся при горении любых материалов. Он подаёт сигнал тревоги при возникновении пожара в помещении.
Пусть радиоактивное вещество к данному моменту времени t содержит N ядер. Экспериментально установлено, что за малый промежуток времени dt убыль dN ядер пропорциональна числу этих ядер и этому промежутку времени, т.е. dN = -?Ndt, где ?? постоянная распада, определяющая его скорость. Интегрируя это уравнение и учитывая, что при t = 0 число атомов равнялось N0, получаем:
(3)
Соотношение (3) представляет собой закон радиоактивного распада. Для количественной характеристики быстроты распада вводится физическая величина, называемая периодом полураспада, т.е. время Т, за которое начальное число атомов радиоактивного вещества уменьшается в два раза. Найдём связь периода полураспада и постоянной распада . По истечении времени, равным периоду полураспада, т.е. при t = T, число будет равно N = N0 /2. Подставляя эти выражения в (3), находим: ?T = ln 2; Для различных ядер период полураспада T меняется в широких пределах -- от 10 с до миллиардов лет.
Превращения атомных ядер, обусловленные их взаимодействиями друг с другом или с элементарными частицами, называются ядерными реакциями. Ядерные реакции осуществляются за счёт бомбардировки ядер атомов ?-частицами и протонами, обладающими большой кинетической энергией вследствие того, что они разгоняются в ускорителе. В качестве примера приведём первую ядерную реакцию, осуществленную Резерфордом при бомбардировке ядер азота (ядра-мишени) ядрами гелия (ядра-снаряды): . Все ядерные реакции подчиняются следующим общим законам:
1. Сохранение зарядового числа. Сумма зарядовых чисел частиц и ядер, вступающих в реакцию, равна сумме этих чисел продуктов реакции. Например, в приведённой выше ядерной реакции имеем следующее равенство: 2 + 7 = 1 + 8.
2. Сохранение массового числа. Сумма массовых чисел частиц и ядер до и после реакции равны друг другу. Например, для той же реакции 4 + 14 = 1 + 17.
3. Сохранение массы-энергии. Для изолированной системы полная масса-энергия неизменна.
Рисунок 1
Для протекания ядерной реакции ядра должны сблизиться на столь малое расстояние, чтобы между ними начали действовать ядерные силы.
Установлено, что при бомбардировке ядер урана нейтронами происходит распад ядра на две примерно равные части. Отметим три важные особенности таких реакций:
1. Легко делятся ядра одного из изотопов урана .
2. В результате реакции деления высвобождается огромное количество энергии. Это связано с тем, что масса ядра урана больше суммарной массы осколков деления. Образующийся дефект массы и приводит к выделению энергии.
3. Важной особенностью рассматриваемой ядерной реакции является то, что при делении ядра урана выделяется 2 или 3 нейтрона. Физики поняли, что нейтроны, испускаемые в каждом акте деления, можно использовать для осуществления цепной реакции: один нейтрон делит одно ядро урана, два или три образовавшихся нейтрона вызовут дополнительные деления и таким образом процесс лавинообразно нарастает, как показано на рис. 2 для трёх нейтронов. На этом рисунке не показаны новые ядра, возникающие после распада ядер урана. Чтобы цепная реакция проходила, масса урана должна превышать некоторое значение, называемое критической массой, которая составляет несколько килограмм.
Ядерную реакцию, происходящую в атомной бомбе, называют неуправляемой. Управляемая реакция осуществляется в ядерных реакторах, используемых на атомных электростанциях (АЭС).
Атомные электростанции. Если в атомной бомбе происходит неуправляемая цепная реакция, то в созданных ядерных реакторах она носит управляемый характер. Суть управляемой реакции заключается в том, что создаются условия, когда на каждый процесс деления ядра урана-235 или плутония приходится в среднем только один нейтрон, вызывающий новый акт деления. Другие же образовавшиеся нейтроны вылетают из системы или поглощаются атомными ядрами других веществ. Таким образом, скорость выделения энергии будет поддерживаться одинаковой. Сердцем атомной электростанции является ядерный реактор 1. В качестве горючего используются уран-235 и плутоний-239. Для управления потоком нейтронов в атомных реакторах применяются управляющие стержни 3, содержащие кадмий или бор, которые хорошо поглощают нейтроны. Эти стержни вводят в активную зону реактора 2 (топливо -- замедлитель). Когда стержни полностью погружены в реактор, они поглощают столько нейтронов, что цепная реакция в реакторе не идёт. При выведении стержней увеличивается число нейтронов в реакторе и начинается реакция. В качестве замедлителя нейтронов используют графит или тяжелую воду. Для обеспечения безопасности работающего персонала от радиоактивных излучений реактор помещают в защитную оболочку 4. Необходимо отметить, что для получения самоподдерживающейся цепной реакции, как и в атомной бомбе, масса топлива должна быть не меньше критической. Критическая масса зависит от вида горючего и составляет несколько килограмм. Энергия, выделяемая реактором (1) в виде тепла, снимается теплоносителем (вода, жидкий натрий), циркулирующим в замкнутом контуре (5). Циркуляция обеспечивается насосом (6). В теплообменнике (7) теплоноситель отдаёт тепло воде, превращая её в пар, который вращает паровую турбину (8). Турбина соединена с электрогенератором (9), вырабатывающим электроэнергию. Из паровой турбины пар поступает в конденсатор 10. Происходит его конденсация в воду, которая поступает в теплообменник. Охлаждение пара в конденсаторе осуществляется водой из искусственно созданного водоёма (11).
Ядерные реакции, в которых из лёгких ядер образуются более тяжёлые ядра, называются реакциями термоядерного синтеза (термоядерными реакциями). При синтезе суммарная масса исходных ядер, превышает массу образовавшегося ядра, в результате этого выделяется энергия. Например, ядра дейтерия D () при слиянии образуют ядро гелия . Расчёты показывают, что два грамма дейтерия выделяют 1013 Дж энергии. Для того чтобы произошла термоядерная реакция надо положительно заряженные ядра сблизить настоль малые расстояния, чтобы между ними возникли ядерные силы. Для преодоления кулоновского отталкивания ядер вещество надо нагреть до температуры 107-108 К. В водородной бомбе высокая температура достигается за счёт взрыва атомной бомбы, при котором получается температура порядка 70 млн. градусов. Взрыв водородной бомбы представляет собой неуправляемую термоядерную реакцию. Реакция термоядерного синтеза не взрывного характера осуществлена природой на Солнце и звёздах, где достигается температура в миллионы градусов. Человечеству необходима управляемая термоядерная реакция, т.е. реакция, в ходе которой энергию можно было бы отбирать в нужном количестве в нужное время.
Для осуществления управляемой термоядерной реакции нужно создать высокотемпературную плазму, которую надо ещё удержать. Частицы, обладая колоссальной кинетической энергией, стремятся сразу же разлететься, а в природе нет такого материала, который бы выдерживал миллионы градусов. Для удержания плазмы физики предположили два пути решения этой задачи. Первый путь заключается в удержании плазмы с помощью магнитного поля. Если на газоразрядную трубку наложить магнитное поле, совпадающее по направлению с электрическим полем, то в такой трубке возникает плазменный шнур. Заряженные частицы плазмы под действием силы Лоренца будут описывать спиральные траектории вокруг магнитных силовых линий. Чем сильнее магнитное поле, тем меньше радиус плазменного шнура. Сила, которая действует на движущиеся заряженные частицы, со стороны магнитного поля и есть причина образования шнура, не соприкасающегося со стенами газоразрядной трубки; плазма как бы висит в вакууме. Второе направление это создание управляемого термоядерного синтеза с помощью лазерного излучения. Самые мощные лазеры могут разогреть вещество с помощью короткого импульса до температуры 60 млн. град. Поэтому появилась возможность осуществить термоядерную реакцию в виде микровзрыва, даже без использования, удерживающего плазму магнитного поля, так как реакция протекает быстро, и дейтерий с тритием не успевают разлететься. В этом случае технически реакция осуществляется воздействием мощного лазерного импульса на твёрдую замороженную таблетку из дейтерия и трития.
Размещено на Allbest.ru
...Подобные документы
Энергия связи атомного ядра, необходимая для полного расщепления ядра на отдельные нуклоны. Условия, необходимые для ядерной реакции. Классификация ядерных реакций. Определение коэффициента размножения нейтронов. Ядерное оружие, его поражающие свойства.
презентация [2,2 M], добавлен 29.11.2015Сущность цепной ядерной реакции. Распределение энергии деления ядра урана между различными продуктами деления. Виды и химический состав ядерного топлива. Массовые числа протона и нейтрона. Механизм цепной реакции деления ядер под действием нейтронов.
реферат [34,4 K], добавлен 30.01.2012Физика атомного ядра. Структура атомных ядер. Ядерные силы. Энергия связи ядер. Дефект массы. Ядерные силы. Ядерные реакции. Закон радиоактивного распада. Измерение радиоактивности и радиационная защита.
реферат [306,3 K], добавлен 08.05.2003Краткая характеристика нуклонов. Масса и энергия связи ядра. Формы радиоактивного распада. Ядерные силы и модели атомного ядра. Основные формулы теории атомного ядра. Цепные реакции деления. Термоядерные и ядерные реакции. Химические свойства изобаров.
курсовая работа [1,5 M], добавлен 21.03.2014Планетарная модель атома Резерфорда. Состав и характеристика атомного ядра. Масса и энергия связи ядра. Энергия связи нуклонов в ядре. Взаимодействие между заряженными частицами. Большой адронный коллайдер. Положения теории физики элементарных частиц.
курсовая работа [140,4 K], добавлен 25.04.2015Энергия связи и состав атомного ядра. Особенности цепной ядерной реакции. Основы термоядерного синтеза. Ядерный реактор как установка, в которой осуществляется управляемая цепная реакция деления тяжелых ядер. Применение этого рода энергии. Определения.
презентация [3,8 M], добавлен 22.12.2013Заряд, масса, размер и состав атомного ядра. Энергия связи ядер, дефект массы. Ядерные силы и радиоактивность. Плотность ядерного вещества. Понятие ядерных реакций и их основные типы. Деление и синтез ядер. Квадрупольный электрический момент ядра.
презентация [16,0 M], добавлен 14.03.2016Законы сохранения и энергетические соотношения в ядерных реакциях. Определение порога реакции в нерелятивистском и релятивистском приближениях. Механизмы протекания и основные типы ядерных реакций. Концепция образования составного ядра нейтроном.
контрольная работа [948,5 K], добавлен 08.09.2015Характеристика методов наблюдения элементарных частиц. Понятие элементарных частиц, виды их взаимодействий. Состав атомных ядер и взаимодействие в них нуклонов. Определение, история открытия и виды радиоактивности. Простейшие и цепные ядерные реакции.
реферат [32,0 K], добавлен 12.12.2009Энергия связывания нейтрона в ядре урана и проверка возможности ядерной реакции. Расчет атомной массы и активности радионуклида. Нахождение энергий, получаемых атомами при их соударении, комптоновское происхождение электронов, их кинетическая энергия.
контрольная работа [297,5 K], добавлен 17.06.2012Физические основы ядерной реакции: энергия связи нуклонов и деление ядер. Высвобождение ядерной энергии. Особенности применениея энергии, выделяющейся при делении тяжёлых ядер, на атомных электростанциях, атомных ледоколах, авианосцах и подводных лодках.
презентация [1,0 M], добавлен 05.04.2015Изложение физических основ классической механики, элементы теории относительности. Основы молекулярной физики и термодинамики. Электростатика и электромагнетизм, теория колебаний и волн, основы квантовой физики, физики атомного ядра, элементарных частиц.
учебное пособие [7,9 M], добавлен 03.04.2010Изменение атомных ядер при взаимодействии их с элементарными частицами. Механизм протекания ядерной реакции. Коэффициент размножения нейтронов. Масса урана, отражающая оболочка и содержание примесей. Замедлители нейтронов, ускорители элементарных частиц.
доклад [18,8 K], добавлен 20.09.2011Метод совпадений и антисовпадений как один из экспериментальных методов ядерной физики и физики элементарных частиц. Регистрация частиц и квантов с заданной между ними корреляцией в пространстве и во времени. Способы повышения временного разрешения.
контрольная работа [295,2 K], добавлен 15.01.2014Изучение деления ядер, открытие цепных реакций на деление ядер урана. Создание ядерных реакторов, ядерной энергетики и оружия. Термоядерный синтез легких ядер в звездах. Что должен знать физик-ядерщик. Общие клинические проявления лучевой болезни.
реферат [16,7 K], добавлен 14.05.2011История открытий в области строения атомного ядра. Модели атома до Бора. Открытие атомного ядра. Атом Бора. Расщепление ядра. Протонно-нейтронная модель ядра. Искусственная радиоактивность. Строение и важнейшие свойства атомных ядер.
реферат [24,6 K], добавлен 08.05.2003Определение водородной связи. Поверхностное натяжение. Использование модели капли жидкости для описания ядра в ядерной физике. Процессы, происходящие в туче. Вода - квантовый объект. Датчик внутриглазного давления. Динамика идеальной несжимаемой жидкости.
презентация [299,5 K], добавлен 29.09.2013Напряженность электростатического поля, его потенциал. Постоянный электрический ток. Магнитное поле тока. Явление электромагнитной индукции. Вихревое электрическое поле. Гармонические колебания, электромагнитные волны. Элементы геометрической оптики.
презентация [12,0 M], добавлен 28.06.2015Применение энергии термоядерного синтеза. Радиоактивный распад. Получение ядерной энергии. Расщепление атома. Деление ядер тяжелых элементов, получение новых нейронов. Преобразование кинетической энергии в тепло. Открытие новых элементарных частиц.
презентация [877,4 K], добавлен 08.04.2015Типы, устройство и принцип действия ядерных реакторов – устройств, предназначенных для осуществления управляемой ядерной реакции. Обоснование необходимости использования ядерной энергии в мирных целях. Преимущества АЭС над другими видами электростанций.
презентация [898,5 K], добавлен 04.05.2011