Введение в электродинамику

Анализ истории электродинамики. Характеристика электромагнитных явлений, возникающих при движении и взаимодействии электрически заряженных частиц. Анализ распределения радиоспектра. Анализ основных теоретических сведений элементов векторного анализа.

Рубрика Физика и энергетика
Вид лекция
Язык русский
Дата добавления 13.09.2017
Размер файла 62,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Тема 1. Введение в электродинамику

1. Историческая справка

История электродинамики - это история эволюции фундаментальных физических понятий.

Начало учения об электричестве и магнетизме связано с 1600г., когда появилась книга Гильберта «О магните». До середины 18 века были установлены важны опытные результаты: обусловленное электричеством: притяжение и отталкивание (1672г., О.Герике), открыто деление веществ на проводники и изоляторы (1729г, С.Грей), существование двух видов электричества (1733-1737гг., Ш.Дюфе). Достигнуты успехи в изучении магнетизма.

Практическое применение электричества началось со второй половины 18 века. С именем Б.Фраклина (1706-1790гг.) связано появление гипотезы об электричестве как особой материальной субстанции. В 1785г. Ш.Кулоном установлен закон взаимодействия двух точечных зарядов. С именем А.Вольта (1745-1827гг.) связан ряд изобретений электроизмерительных приборов. В 1826г. установлен закон Ома .

19-й век начался изучением электромагнетизма. В 1820г. Г.Х.Эрстедом открыто магнитное действие электрического тока. В 1820г. установлен закон Био-Савара (Ж.Био, Ф.Савар), сформулированный в общей форме П.Лапласом. Тогда же установлен закон, определяющий механическую силу, с которой магнитное поле действует на внесенный в него элемент электрического тока - закон Ампера. А.Ампером также установлен закон силового взаимодействия двух токов. Особое значение в физике имеет гипотеза молекулярных токов, предложенная Ампером в 1820г. для объяснения магнитных свойств вещества (гипотеза об электрической природе магнетизма).

В 1831г. М.Фарадеем открыт закон электромагнитной индукции. На основе выполненных им экспериментов он сформулировал представление об электричестве и магнетизме, предположил существование ЭМ волн, распространяющихся с конечной скоростью в пространстве. Им открыты парамагнетизм и диамагнетизм, поворот плоскости поляризации линейно поляризованного света, распространяющегося в веществе вдоль силовых линий магнитного поля (эффект Фарадея), введено понятие диэлектрической проницаемости.

В 1873г. Джеймс Клерк Максвелл (1831-1879гг.) изложил короткие уравнения, ставшие теоретической основой электродинамики. Одним из следствий уравнений Максвелла явилось предсказание ЭМ природы света, он же предсказал возможность существования ЭМ волн.

Постепенно в науке сложилось представление об ЭМ поле как о самостоятельной материальной сущности, являющейся носителем ЭМ взаимодействий в пространстве.

В 1895г. А.С.Попов сделал величайшее изобретение-радио. Оно оказало колоссальное воздействие на последующее развитие науки и техники.

2. Роль и значение курса ЭД для инженера

Электродинамика изучает электромагнитные (ЭМ) явления, возникающие при движении и взаимодействии электрически заряженных частиц. Ее содержанием является учение об особом виде материи - ЭМ поле и его связях с зарядами и токами. Одним из проявлений существования ЭМ поля является воздействие его с силой Лоренца F на движущийся со скоростью v электрический заряд Q

(1)

где E(p, t) - вектор напряженности электрического поля, B(p, t) - вектор магнитной индукции, p - точка наблюдения, t - время.

Кроме функций E, B для описания ЭМ поля вводится вектор напряженности магнитного поля H(p, t) и вектор электрической индукции D(p, t). Векторы D и H характеризуют состояние среды под действием ЭМ поля. Векторы E, D описывают электрическое поле, а B, H - магнитное поле. В ЭМ поле электрическое и магнитное поля взаимосвязаны.

ЭМ волнами называют возмущения ЭМ поля, распространяющиеся в пространстве. Свойства ЭМ поля существенно зависят от скорости изменения во времени описывающих его векторов. Важным случаем изменения во времени является гармонический закон изменения, при котором, например,

(2)

где E(p) и - амплитуда и фаза (колебаний) вектора напряженности электрического поля в точке p, - начальная фаза (колебаний) - фаза при t=0, - круговая частота, - частота колебаний, - период колебаний. В пространстве с параметрами вакуума , где л - длина волны, c - скорость распространения волны (в вакууме) c=2,997925х м/с.

Процессы возбуждения, приема, распространения ЭМ волн, их взаимодействия с веществом в диапазоне радиоволн достаточно полно описываются уравнениями классической электродинамики - уравнениями Максвелла. В диапазонах более коротких волн определяющую роль играют процессы, имеющие квантовую природу.

Классическая (макроскопическая) электродинамика приписывает ЭМ полю только волновые свойства, а элементарным частицам - только корпускулярные. ЭМ поля могут накладываться друг на друга и существовать в одном и том же пространстве, а частицы вещества не обладают этим свойством. ЭМ поля и частицы взаимно проницаемы и существуют в одном и том же объеме, взаимодействуя друг с другом.

Квантовая электродинамика изучает законы микромира. При этом свойствами материи являются единство волновой и корпускулярной природы всех микрообъектов и взаимопревращаемость различных видов материи.

ЭМ поле есть особый вид материи, отличающийся непрерывным распределением в пространстве (ЭМ волны, поле заряженных частиц) и обнаруживающий дискретность структуры (фотоны), характеризующийся в свободном состоянии способностью распространения в вакууме (при отсутствии сильных гравитационных полей) со скоростью, близкой к м/с, оказывающий на заряженные частицы силовое воздействие, зависящее от их скорости. электродинамика заряженный частица радиоспектр

Электрический заряд есть свойство частиц материи (вещества) или тел, характеризующее их взаимосвязь собственного ЭМ поля с внешним ЭМ полем; имеет два вида, известные как положительный заряд и отрицательный заряд; количественно определяется по силовому взаимодействию тел, обладающих электрическими зарядами.

В соответствии с Регламентом радиосвязи к радиоволнам (радиодиапазону) относят ЭМ волны с частотами от 3 кГц до 3 ТГц. Распределение радиоспектра по диапазонам приведено в таблице 1.

Таблица 1

Номер полосы

Границы диапазона по частотам и по длинам волн

Название диапазона по частотам и по длинам волн

Сокращенное обозначение

русское

международ.

4

3-30кГц 100-10км

Очень низкие частоты

Мириаметровые волны

(сверхдлинные волны)

ОНЧ

(СДВ)

VLF

5

30-300кГц 10-1км

Низкие частоты

Километровые волны

(длинные волны)

НЧ

(ДВ)

LF

6

300-3000кГц 1000-100м

Средние частоты

Гектометровые волны

(средние волны)

СЧ

(СВ)

MF

7

3-30МГц 100-10м

Высокие частоты

Декаметровые волны

(короткие волны)

ВЧ

(КВ)

HF

8

30-300МГц 10-1м

Очень высокие частоты

Метровые волны

(ультракороткие волны)

ОВЧ

(УКВ)

VHF

9

300-3000МГЦ 100-10см

Ультравысокие частоты

Дециметровые волны

(ультракороткие волны)

УВЧ

(УКВ)

UHF

10

3-30ГГц 10-1см

Сверхвысокие частоты

Сантиметровые волны

(ультракороткие волны)

СВЧ

(УКВ)

SHF

11

30-300ГГЦ 10-1мм

Крайне высокие частоты

Миллиметровые волны

КВЧ

EHF

12

300-3000ГГц 1-0.1мм

Гипервысокие частоты

Децимиллиметровые волны

ГВЧ

3. Основные теоретические сведения элементов векторного анализа

Классическая электродинамика основана на представлении о непрерывном электрическом заряде и сплошной (непрерывной) покоящейся среде. В среду вводится покоящаяся ортогональная система координат, в которой определена покоящаяся точка наблюдения . В частности, в декартовой системе координат (ДСК) . В математическом смысле непрерывные функции координат описывают реально существующее физическое поле в каждой точке .

Для описания физических полей принято использовать их математические модели - скалярные и векторные поля. В произвольной системе координат скалярное поле ц приобретает вид некоторой функции ц, принимающей численные значения - действительные или комплексные. Векторное поле А задается тремя проекциями на единичные векторы (орты) выбранной системы координат:

(3)

Для характеристики величины и направления скорости изменения скалярного поля в пространстве вводят градиент этого поля:

(4)

где , - коэффициенты Лямэ по координатам , являющиеся коэффициентами пропорциональности между дифференциалами обобщенных координат и бесконечно малыми ребрами элементарного параллелепипеда в выбранной точке пространства.

Значения коэффициентов Лямэ для наиболее употребительных координатных систем:

декартова система координат

;

цилиндрическая система координат )

;

сферическая система координат

Конкретно градиент вычисляют следующим образом:

в декартовой системе координат

(5)

в цилиндрической системе координат

(6)

в сферической системе координат

(7)

Описание дифференциальных свойств векторного поля несколько сложнее. Векторное поле A принято характеризовать скалярным полем - дивергенцией div A и векторным полем - ротором rot A. Значение дивергенции равно плотности источников рассматриваемого поля в заданной точке пространства. Трактовка ротора векторного поля сложнее; можно считать, что оно в известном смысле характеризует степень отличия исследуемого поля от однородного.

Дивергенцию векторного поля A вычисляют путем дифференцирования его проекций по определенным правилам:

в декартовой системе координат

(8)

в цилиндрической системе координат

(9)

в сферической системе координат

(10)

В произвольной ортогональной криволинейной системе координат

(11)

Проекции ротора векторного поля имею вид:

в декартовой системе координат

?? ???? ????

в цилиндрической системе координат

(13)

в сферической системе координат

(14)

Ротор векторного поля A в произвольной системе координат выражают через проекции исходного поля и коэффициенты Лямэ:

(15)

Дифференциальные операции со скалярными и векторными полями удобно записывать с помощью оператора Гамильтона . По определению

(16)

В декартовой системе координат оператора Гамильтона есть символический вектор

(17)

Из дифференциальных векторных операций второго порядка широкое применение в электродинамике находит оператор , закон действия которого на векторное поле A описывается соотношением

(18)

Дифференциальная операция второго порядка, действующая на скалярное поле, задается оператором Лапласа

Оператор Лапласа в различных координатных системах записывается следующим образом:

в декартовой системе координат

(19)

в цилиндрической системе координат

(20)

в сферической системе координат

(21)

Для графического изображения векторных полей принято строить картину их силовых линий.

Размещено на Allbest.ru

...

Подобные документы

  • Анализ естественных и искусственных радиоактивных веществ. Методы анализа, основанные на взаимодействии излучения с веществами. Радиоиндикаторные методы анализа. Метод анализа, основанный на упругом рассеянии заряженных частиц, на поглощении P-частиц.

    реферат [23,4 K], добавлен 10.03.2011

  • Ускорители заряженных частиц — устройства для получения заряженных частиц больших энергий, один из основных инструментов современной физики. Проектирование и испытание предшественников адронного коллайдера, поиск возможности увеличения мощности систем.

    реферат [685,8 K], добавлен 01.12.2010

  • Ускорители заряженных частиц как устройства, в которых под действием электрических и магнитных полей создаются и управляются пучки высокоэнергетичных заряженных частиц. Общая характеристика высоковольтного генератора Ван-де-Граафа, знакомство с функциями.

    презентация [4,2 M], добавлен 14.03.2016

  • Взаимодействие заряженных частиц и со средой. Детектирование. Определение граничной энергии бета-спектра методом поглощения. Взаимодействие заряженных частиц со средой. Пробег заряженных частиц в веществе. Ядерное взаимодействие. Тормозное излучение.

    курсовая работа [1,1 M], добавлен 06.02.2008

  • Полевая концепция природы электричества как фундамент классической электродинамики. Доказательство, что уравнения полевой теории стационарных явлений электромагнетизма можно получить гипотетически, ориентируясь на основных эмпирических законах.

    реферат [75,9 K], добавлен 25.01.2008

  • Развитие электродинамики до Фарадея. Работы Фарадея по постоянному току и его идеи о существовании электрического и магнитного полей. Вклад Фарадея в развитие электродинамики и электромагнетизма. Современный взгляд на электродинамику Фарадея-Максвелла.

    дипломная работа [1,8 M], добавлен 21.10.2010

  • Рассмотрение способов определения коэффициентов амбиполярной диффузии. Общая характеристика уравнения непрерывности. Анализ пространственного распределения частиц. Знакомство с особенностями транспортировки нейтральных частиц из объема к поверхности.

    презентация [706,1 K], добавлен 02.10.2013

  • Анализ направленного движения свободных заряженных частиц под действием электрического поля. Обзор основных величин, описывающих процесс прохождения тока по проводнику. Исследование источников и теплового действия тока, способов соединения сопротивлений.

    презентация [430,0 K], добавлен 05.02.2012

  • Анализ развития идей атомизма в истории науки. Роль элементарных частиц и физического вакуума в строении атома. Суть современной теории атомизма. Анализ квантовой модели атома. Введение понятия "молекула" Пьером Гассенди. Открытие эффекта Комптона.

    контрольная работа [25,2 K], добавлен 15.01.2013

  • Изучение процессов рассеяния заряженных и незаряженных частиц как один из основных экспериментальных методов исследования строения атомов, атомных ядер и элементарных частиц. Борновское приближение и формула Резерфорда. Фазовая теория рассеяния.

    курсовая работа [555,8 K], добавлен 03.05.2011

  • Физическое содержание классической микроскопической электродинамики. Основная идея макроскопического описания системы многих частиц. Эргодическая гипотеза. Теорема Лиувилля. Физическая природа магнетизма. Сводка уравнений классической электродинамики.

    контрольная работа [193,6 K], добавлен 20.03.2016

  • Полевая концепция природы электричества является фундаментальной основой классической электродинамики. Поле электромагнитного векторного потенциала как физическая величина. Полевой эквивалент локальных характеристик микрочастицы. Электромагнитные поля.

    реферат [70,5 K], добавлен 17.02.2008

  • Динамика частиц, захваченных геомагнитным полем, ее роль в механизме динамики космического изучения в околоземном пространстве. Геометрия радиационных поясов Земли. Ускорение частиц космического излучения. Происхождение галактических космических лучей.

    дипломная работа [1,2 M], добавлен 24.06.2015

  • Место активационного анализа в аналитической химии. Регистрация ядерного излучения и частиц. Понятия и термины активационного анализа. Метод нейтронно-активационного анализа. Источники активации и нейтронов. Количественный нейтронно-активационный анализ.

    курсовая работа [735,0 K], добавлен 03.02.2016

  • Предсказание Максвелла Дж.К. - английского физика, создателя классической электродинамики о существовании электромагнитных волн. Их экспериментальное получение немецким ученым Г. Герцем. Изобретение радио А.С. Поповым, основные принципы его действия.

    реферат [13,5 K], добавлен 30.03.2011

  • Понятие и принцип работы ускорителей, их внутреннее устройство и основные элементы. Ускорение пучков частиц с высокой энергией в электрическом поле как способ их получения. Типы ускорителей и их функциональные особенности. Генератор Ван де Граафа.

    контрольная работа [276,8 K], добавлен 18.09.2015

  • Создание большого адронного коллайдера, ускорителя заряженных частиц на встречных пучках. Предназначение его для разгона протонов и ионов, изучение продуктов их соударений. Изучение космических лучей, моделируемых с помощью несталкивающихся частиц.

    презентация [1,1 M], добавлен 16.04.2015

  • Анализ взаимодействия электромагнитных волн с биологическими тканями. Разработка вычислительного алгоритма и программного обеспечения для анализа рассеяния монохроматических электромагнитных волн неоднородными контрастными объектами цилиндрической формы.

    дипломная работа [3,3 M], добавлен 08.05.2012

  • Многообразие решений уравнений Максвелла. Причинность и физические взаимодействия. Вариационные основы квазистатических явлений. Тензор энергии-импульса электромагнитной волны. Эфирные теории и баллистическая гипотеза Ритца. Волны и функции Бесселя.

    книга [1,6 M], добавлен 27.08.2009

  • Рассмотрение основных особенностей изменения поверхности зонда в химически активных газах. Знакомство с процессами образования и гибели активных частиц плазмы. Анализ кинетического уравнения Больцмана. Общая характеристика гетерогенной рекомбинации.

    презентация [971,2 K], добавлен 02.10.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.