Основы физики твердых тел

Характерные особенности твердых тел, основы их симметрии. Кристаллические решетки, необходимость периодической структуры. Дефекты кристаллических решеток. Теплоемкость твердых тел. Теплоёмкость металлов при разных температурах, определение числа мод.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 26.09.2017
Размер файла 760,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Теплоемкость CV находим дифференцированием (4.54) по Т. При Т<<иD верхний предел интегрирования может быть распространен до , тогда получаем (4.54).

При Т>> иD верхний предел интегрирования близок к нулю и, следовательно, о в подынтегральном выражении очень малая величина, и можно считать, что exp Поэтому формула (4.60) принимает вид:

. (61)

Следовательно, теплоемкость в этом случае равна

CV = (dU/dT)v = 3R, (62)

т.е. так и должно быть в соответствии с законом Дюлонга и Пти.

При температуре T~ интеграл в (4.52) не может быть вычислен аналитически и приходится пользоваться численными методами. Свойства различных материалов учитываются значением температуры Дебая . Поэтому кривая теплоемкости как функция отношения T/ является универсальной. Она показана на рис. 4.17 и находится в согласии с данными эксперимента.

Вывод формул для теплоемкости, исходя из представления о фононах. Для того чтобы освоиться с представлением о квазичастицах, полезно вывести формулу для теплоемкости твердого тела на основании представления о фононах.

Как уже было отмечено в связи с формулой (4.20), моду колебаний, несущую энергию щ, можно рассматривать как квазичастицу. При таком подходе тепловые колебания решетки сводятся к совокупности фононов, рассматриваемой как идеальный газ.

Энергия фонона в соответствии с (4.20) равна

е = щ, (63)

а его импульс p связан с волновым числом k обычным соотношением для свободных частиц

p = k . (64)

Энергия и импульс фонона связаны соотношением (4.42), которое с учетом (4.63) и (4.64) может быть записано в виде

е = <>p, (65)

где учтено наличие нескольких поляризаций фононов и взята их средняя скорость в соответствии с (4.57).

Плотность состояний газа, состоящего из фононов как квазичастиц, дается формулой в виде

dГ = с(е)dе = 3V4рp2dp/(2рh)3. (66)

Множитель 3 учитывает три возможных поляризации фононов. Принимая во внимание (4.64), из (4.57) получаем

(67)

Для дальнейших вычислений удобно выразить с(е) не через среднюю скорость <v> звука, а через температуру Дебая, воспользовавшись условием, что общее число фононов должно быть равно

(68)

Тогда

с(е) = 9NAе2/(kиD)3. (69)

Фононы являются частицами, подчиняющимися статистике Бозе-Эйнштейна, и поэтому среднее число <n> фононов с энергией е дается формулой, которая в данном случае записывается виде

<n(е)> = {exp[е/(kT)-1}-1. (70)

Для полной энергии фононов в теле получаем выражение

(71)

что, как и следовало ожидать, совпадает с формулой (4.60).

Приведенный вывод показывает, что представление о квазичастицах, в данном случае фононах, позволяет пользоваться понятиями и математическими приемами, выработанными для реальных частиц. Однако отсюда не следует делать вывод, что квазичастицы существуют в том же смысле, в каком существуют реальные частицы. Например, в приведенном выше выводе формулы теплоемкости мы обращались с фотоном точно так же, как с фотоном при выводе формулы абсолютно черного тела. Тем не менее, нельзя назвать фонон элементарной частицей в том же смысле, в каком фотон является одной из фундаментальных элементарных частиц физики.

В этом случае к теплоемкости за счет колебаний кристаллической решетки добавляется теплоемкость за счет свободных электронов металла. При обычной температуре она составляет ничтожную часть решеточной теплоемкости и может не приниматься во внимание. Однако с понижением температуры, поскольку решеточная теплоемкость убывает как ~T3, а электронная - как ~T, ее роль возрастает и при достаточно низкой температуре электронная теплоемкость играет главную роль по сравнению с решетчатой.

Теплоёмкость металлов

Металл состоит из положительно заряженных ионов, совершающих тепловые колебания вокруг узлов кристаллической решетки. Между ними движутся так называемые свободные электроны, т.е. электроны, сравнительно слабо связанные с ионами решетки. Они ведут себя подобно электронному газу. Наличием свободных электронов объясняется высокая электрическая проводимость металлов. По значению электрической проводимости можно оценить концентрацию свободных электронов. Она оказывается сравнимой (того же порядка), что и концентрация ионов, образующих кристаллическую решетку. Теория Дюлонга и Пти (классическая теория теплоемкости) отвлекается от наличия электронного газа. Она учитывает колебания одних только ионов. Между тем следует учесть также вклад в теплоемкость, вносимый металлами.

Расчет показывает, что при средняя энергия свободного электрона в металле имеет вид:

, (72)

где - энергия Ферми (согласно квантовой механике при Т = 0 электроны будут занимать уровни энергии начиная от нулевого до максимального, который и называется энергия Ферми). Тогда молярная теплоемкость электронного газа

. (73)

По закону Дюлонга и Пти молярная теплоемкость решетки при нормальных условиях . Тогда отношение электронной теплоемкости к решеточной при нормальных условиях будет равно

. (74)

Поскольку при рассматриваемых условиях , то это означает, что теплоемкость металлов за счет свободных электронов пренебрежимо мала. Это обусловлено тем, что при обычных температурах в тепловом движении принимает участие лишь небольшая часть общего числа свободных электронов - только те электроны, энергия которых лежит вблизи уровня Ферми. Таким образом, поведение электронного газа резко отличается от поведения обычного газа, его степени свободы оказываются в основном “замороженными”. Заметим, что при достаточно низких температурах ситуация становится обратной: теплоемкость электронного газа превосходит решеточную, поскольку последняя уменьшается .

Размещено на Allbest.ru

...

Подобные документы

  • Структура кристаллов. Роль, предмет и задачи физики твердого тела. Кристаллические и аморфные тела. Типы кристаллических решеток. Типы связей в кристаллах. Кристаллические структуры твердых тел. Жидкие кристаллы. Дефекты кристаллов.

    лекция [2,0 M], добавлен 13.03.2007

  • Теплоемкость газов, твердых тел. Примеры значений. Методы определения теплоемкости индивидуальных веществ. Экспериментальное измерение теплоемкости для разных интервалов температур – от предельно низких до высоких. Производные потенциалы Гиббса.

    реферат [36,4 K], добавлен 11.09.2015

  • Газовая постоянная воздуха. Изотермическое сжатие и адиабатное расширение воздуха. Измерение теплоемкости твердых тел. Измерение теплопроводности твердых тел. Теплопроводность однослойных и многослойных стенок. Соотношения между единицами давления.

    методичка [2,3 M], добавлен 22.11.2012

  • Дефекты реальных кристаллов, принцип работы биполярных транзисторов. Искажение кристаллической решетки в твердых растворах внедрения и замещения. Поверхностные явления в полупроводниках. Параметры транзистора и коэффициент передачи тока эмиттера.

    контрольная работа [2,9 M], добавлен 22.10.2009

  • Физика твердого тела – один из столпов, на которых покоится современное технологическое общество. Физическое строение твердых тел. Симметрия и классификация кристаллов. Особенности деформации и напряжения. Дефекты кристаллов, способы повышения прочности.

    презентация [967,2 K], добавлен 12.02.2010

  • Тепловые свойства твердых тел. Классическая теория теплоемкостей. Общие требования к созданию анимационной обучающей программы по физике. Ее реализация для определения удельной теплоемкости твердых тел (проверка выполнимости закона Дюлонга и Пти).

    дипломная работа [866,2 K], добавлен 17.03.2011

  • Изучение электропроводности твердых растворов ферритов. Анализ результатов опыта, которые позволяют утверждать, что в исследованных твердых растворах системы CoXMn1-XS реализуются переходы типа металл-диэлектрик как по температуре, так и по концентрации.

    реферат [1,8 M], добавлен 21.06.2010

  • Тепловое движение частиц твердого тела. Развитие теории теплоемкости и теплопроводности кристаллической решетки материала. Основные механизмы переноса тепла в твердом теле. Фотоны. Фотонный газ. Электронная теплопроводность. Закон Видемана-Франца.

    курсовая работа [242,1 K], добавлен 24.06.2008

  • Электрификация производственных процессов на участке твердых сплавов, расчет электрического освещения и облучения. Расчет внутренних сетей. Описание изобретения для смешивания сыпучих материалов. Меры безопасности при обслуживании установки, охрана труда.

    курсовая работа [1,5 M], добавлен 20.01.2010

  • Определение понятия "газ" как агрегатного состояния вещества, характеризующегося очень слабыми связями между молекулами, атомами и ионами. Основные состояния жидкостей: испарение, конденсация, кипение, смачивание и смешиваемость. Свойства твердых тел.

    презентация [711,7 K], добавлен 31.03.2012

  • Теоретические сведения о физических явлениях, возникающих при столкновении твердых тел. Проверка законов сохранения импульса и энергии для случаев прямого и косого центральных ударов тел. Определение для заданных случаев коэффициента восстановления.

    лабораторная работа [193,9 K], добавлен 05.05.2011

  • Виды реакций твердых тел. Радиационно-химическое разложение ионных и ионно-молекулярных кристаллов. Релаксация и автолокализация электронных возбуждений. Механизмы фундаментальной реакционной способности. Твердофазные превращения без изменения состава.

    презентация [710,4 K], добавлен 22.10.2013

  • Тушение возбужденных состояний примесных молекул в твердых растворах органических соединений. Особенности температурной зависимости параметров сенсибилизированной фосфоресценции примесных молекул в замороженных н-парафинах.

    диссертация [410,5 K], добавлен 13.03.2007

  • Кинематическое предположение Ньютона. Понятие упругого и неупругого удара. Соударение точки с гладкой поверхностью. Изменение кинематического момента и количества движения. Нахождение ударного импульса. Прямой центральный удар двух твердых тел.

    лекция [399,6 K], добавлен 02.10.2013

  • Кристаллическое и аморфное состояния твердых тел, причины точечных и линейных дефектов. Зарождение и рост кристаллов. Искусственное получение драгоценных камней, твердые растворы и жидкие кристаллы. Оптические свойства холестерических жидких кристаллов.

    реферат [1,1 M], добавлен 26.04.2010

  • Общая характеристика и значение основных механических свойств твердых тел, направления их регулирования и воздействий: деформация, напряжение. Классификация и типы деформации: изгиба, кручения и сдвига. Пластическое течение кристаллов. Закон Гука.

    контрольная работа [782,4 K], добавлен 27.05.2013

  • Кристаллическая структура и полупроводниковые свойства карбида кремния и нитрида алюминия. Люминесцентные свойства SiC и твердых растворов (SiC)1-x(AlN)x. Технологическая установка для выращивания растворов. Электронный микроскоп-микроанализатор ЭММА-2.

    дипломная работа [175,9 K], добавлен 09.09.2012

  • Расчет пределов существования твердых растворов со структурой перовскита в системе. Установление закономерностей температурно-частотных зависимостей характеристик диэлектрического отклика. Характер частотной зависимости составляющих электропроводности.

    реферат [1,1 M], добавлен 26.06.2010

  • Свойства твердых тел. Основные виды деформации. Основные допущения о свойствах материалов и характере деформирования. Геометрическая схематизация элементов строительных конструкций. Внешнее воздействие на тело. Классификация нагрузок. Крутящий момент.

    реферат [2,4 M], добавлен 28.01.2009

  • Приведены результаты исследования влияния температуры на интенсивность и кинетику сенсибилизированной фосфоресценции трифенилена в Н-декане в интервале от 77 до 150 К в необезгаженном и обезгаженном твердых растворах.

    статья [10,2 K], добавлен 22.07.2007

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.