Волны. Волновые и квантовые свойства света

Упругие и электромагнитные волны. Характеристика волновых процессов. Свойства света (волновые и квантовые). Оптическая длина пути световой волны. Понятие теплового излучения как потока энергии, испускаемого единицей площади поверхности нагретого тела.

Рубрика Физика и энергетика
Вид методичка
Язык русский
Дата добавления 26.09.2017
Размер файла 597,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

3.15. Вблизи максимума испускательной способности Солнца рассчитать с помощью формулы Планка энергию, которую оно излучает с единицы поверхности в интервале длин волн ?л=1 нм. Температура Солнца T=5500 К. Считать, что Солнце обладает свойствами абсолютно черного тела.

3.16. В условиях задачи 3.15 рассчитать энергию, которую излучает Солнце с единицы поверхности в интервале длин волн л?лmax.

3.17. В условиях задачи 3.15 рассчитать энергию, которую излучает Солнце с единицы поверхности в интервале длин волн л>лmax.

3.18. На экране получен спектр излучения положительного кратера вольфрамовой дуги, имеющего температуру 4000 К. Определить отношение мощностей, излучаемых кратером в интервалах длин волн от 695 до 705 нм (участок красного цвета) и от 395 до 405 нм (участок фиолетового цвета). Принять, что кратер излучает как черное тело а поглощение в стекле и воздухе одинаково для красных и фиолетовых лучей.

3.19. Для абсолютно чёрного тела в области максимума испускательной способности определить мощность излучения с 1 см2 его поверхности для интервала длин волн л0,01лмах. Температура тела Т=2000 К.

3.20. Абсолютно чёрное тело имеет температуру t1=200 С. Какова будет температура тела, если в результате нагревания поток излучения увеличился в 100 раз?

3.21. Как и во сколько раз изменится поток излучения абсолютно чёрного тела, если его максимум испускательной способности переместится из красной части видимого спектра л1=700 нм в фиолетовую л2=393,6 нм?

3.22. На 1 см2 земной поверхности падает в среднем около 8,4 Дж солнечной энергии в 1 мин. Расстояние от Земли до Солнца 1,5·1011 м, диаметр Солнца 1,39 109 м, температура Солнца 6000 К. Считая Солнце абсолютно чёрным телом, найти постоянную в законе Стефана-Больцмана.

3.23. Источником радиоизлучения Солнца в метровом диапазоне является его корона. Определить поток радиоизлучения от Солнца на Земле в полосе шириной Дщ=1 МГц вблизи длины волны л=1 м, предполагая, что это излучение является тепловым. Эффективная температура короны равна Т=106 К, эффективный радиус короны r=6,95·105 км, радиус земной орбиты R=1,5·108 км.

3.24. Металлический шар радиусом R=1 см и теплоемкостью C=14 Дж/К при температуре T=1200 К выброшен в межпланетное пространство. Коэффициент поглощения шара A=0,4. Через какое время температура шара уменьшится вдвое?

3.25. По пластинке длиной l=4 см и шириной b=0,5 см проходит электрический ток I=15 А. После установления теплового равновесия температура пластинки стала равной T=2000 К. Определить напряжение, подводимое к пластинке, если коэффициент поглощения пластинки А=0,6. Считать, что температура по всей площади пластинки постоянна, а все выделяющееся тепло теряется в результате излучения.

3.26. Удаленный от других тел медный шарик облучен электромагнитным излучением с длиной волны л=140 нм. Определить его потенциал?

3.27. Небольшое идеальное отражающее зеркальце массой m=10 мг подвешено на нити длиной l=10 см. Найти угол, на который отклониться нить, если по нормали к зеркалу в горизонтальном направлении произвести "выстрел" импульсом лазерного излучения с энергией E=13 Дж.

3.28. Найти среднее давление лазерного импульса на поверхности тела. Длительность импульса ф=0,13 мс, средняя энергия импульса W=10 Дж, диаметр пятна d=10 мкм. Свет падает по нормали к поверхности тела, коэффициент отражения которой =0,5.

3.29. Сколько фотонов попадает на 1 см2 поверхности Земли, перпендикулярной к солнечным лучам, за 1 мин? Солнечная постоянная щ?1,4·103 Дж/ (м2·с), средняя длина волны лср?550 нм.

3.30. Точечный источник монохроматического света на длине волны л=500 нм имеет мощность P=10 Вт. На каком максимальном расстоянии этот источник будет замечен человеком? Глаз человека реагирует на световой поток W=60 фотонов в секунду. Диаметр зрачка глаза человека d=0,5 см.

3.31. Параллельный пучок света с интенсивностью Io падает под углом ц на плоское зеркало с коэффициентом отражения с. Определить давление света на зеркало.

3.32. В сферическом сосуде, из которого откачан воздух, помещены два электрода из цинка. К ним подсоединён конденсатор ёмкостью c=3,5 мкФ (рис.3.2.). Один из электродов освещается светом с длиной волны л=0,25 мкм. Какой заряд будет находиться на конденсаторе при длительном освещении? Работа выхода электрона для цинка А=3,74 эВ.

3.33. На пластинку площадью S=8 см2 по нормали к ее поверхности падает излучение с плотностью энергии q=1 Вт/см2. Частота света н=4,6·1015 с-1. Какой ток может быть снят с пластинки, если считать, что каждый фотон выбивает электрон?

3.34. Какой частоты нужно взять свет, чтобы выбитые из вольфрамового катода электроны задерживались на расстоянии 4 см в электрическом поле напряженностью 1,7 В/см?

3.35. Опыт показал, что задерживающее напряжение для фотоэлектронов равно 2 В. Электрод облучили светом с длиной волны л=200 нм. Найти красную границу фотоэффекта.

3.36. Частота падающего света в опыте Комптона равна 4·1018 Гц. Найти частоту света, отраженного под углом 120 к направлению его падения.

3.37. Длина волны падающего света в опыте Комптона равна л. Найти длину волны отраженного света, если известно, что электрон отдачи полетел под углом б=60 к первоначальному направлению распространения света и обладал импульсом .

3.38. На площадь S=6 см2 по нормали падает монохроматический свет с плотностью потока энергии q=1,5 Вт/см2. Снятый с этой площади фототок насыщения равен 0,2 А. Считая, что каждый фотон выбивает электрон, найти частоту света и энергию фотона.

3.39. Фотоны с длиной волны 330 нм выбивают электроны, которые могут быть задержаны на расстоянии 2 см в электрическом поле напряженностью 2 В/см. Какова работа выхода электронов из металла (в эВ)?

3.40. Фототок вызывается светом с длиной волны 400 нм. Красная граница фотоэффекта 800 нм. Найти запирающее напряжение для электронов.

3.41. Частота падающего света в опыте Комптона н1=3·1022 1/с. Под каким углом рассеивается свет, если частота рассеянного света н2=2,5·1022 1/с?

3.42. Скорость фотоэлектронов равна 3·106 м/с. Найти задерживающую разность потенциалов и частоту падающего света. Работа выхода равна 4,5 эВ.

3.43. Найти красную границу фотоэффекта и построить график зависимости задерживающей разности потенциалов от частоты. При длине волны света 520 нм кинетическая энергия электронов равна 2 эВ.

3.44. В опыте Комптона угол рассеяния фотонов равен 180. Длина волны падающих фотонов равна л=0,5 нм. Найти частоту рассеянных фотонов.

3.45. При облучении катода фотоэлемента ток насыщения равен 0,01 А. Длина волны света равна 500 нм. Площадь катода 2 см2. Найти плотность потока энергии света.

3.46. Известно, что при освещении фотоэлемента светом с длиной волны л1=400 нм вылетают электроны, которые могут быть задержаны запирающим напряжением U1=6 В. Каково, запирающее напряжение для электрона, выбитого светом с длиной волны л2=650 нм?

3.47. Красная граница фотоэффекта для катода равна 900 нм. Построить график зависимости запирающего напряжения от частоты.

3.48. В эффекте Комптона найти изменение длины волны рентгеновского излучения. Угол рассеяния фотонов равен 120, а их длина волны 0,5 нм.

3.49. Какая доля энергии фотона в эффекте Комптона приходится на электроны отдачи? Угол рассеяния для фотонов с энергией е=0,6 МэВ равен ц=р/2.

3.50. В опыте Комптона угол рассеяния света изменился от 90 до 180. Во сколько раз изменится сдвиг по длине волны в результате опыта?

3.51. Фотон с частотой щ0 испущен с поверхности звезды, масса которой М и радиус R0. Вычислить гравитационное смещение частоты фотона ?щ/щ0 на очень большом расстоянии от звезды.

3.52. Два абсолютно черных шарика радиусами r1=4 см и r2=2 см, имеющие постоянные температуры T1=400 К и T2=800 К, находятся в вакууме на расстоянии d0=0,6 м. Между шариками помещена небольшая пластинка радиусом r0 << d0, плоскость которой перпендикулярна к прямой, соединяющей шарики (рис.3.3). Пластинка обладает свойствами черного тела. На каком расстоянии Х от первого шарика надо поместить пластинку, чтобы ее температура была наименьшей? Каково значение этой температуры? Фоном излучения от окружающих предметов пренебречь.

3.53. Распределение температуры по поверхности круглой пластинки радиусом R=0,2 м в некоторый момент времени задано уравнением , где T0=1000 К, r - расстояние до центра пластинки. Найти поток теплового излучения с двух сторон пластинки. Считать, что она обладает свойствами абсолютно черного тела.

3.54. Тонкая круглая пластинка радиусом R=0,1 м в некоторый момент времени имеет температуру, распределенную по закону T (r) =T0exp (-бr2), где б=25,0 1/м2, r - расстояние до центра пластинки, T0=1000 К. Найти мощность излучения с двух сторон пластинки, считая, что она излучает как абсолютно черное тело.

3.55. Тонкая прямолинейная полоса шириной b=5,0 см и длиной l=1,0 м имеет в некоторый момент времени температуру, распределенную вдоль полосы по закону T=T0 (1+x/l), где T0=500 К, х - расстояние от одного из концов полосы. Полоса излучает как серое тело, ее коэффициент поглощения равен б=0,4. Найти поток теплового излучения с двух сторон полосы.

3.56. Обладающий свойствами черного тела шарик с площадью поверхности S=0,4 см2 нагрет до температуры T0=1000 К. Его поместили в вакуумную камеру, температура стенок которой T1=250 К. Теплоемкость шарика С=5,67 Дж/К. Считая, что шарик обменивается энергией со стенками камеры только за счет излучения, найти, за какое время t он охладился до температуры T=500 К?

Контрольная работа. Варианты заданий для студентов Заочной формы обучения

Вариант

Номер задачи

0

1

2

3

4

5

6

7

8

9

1.1 1.26 2.1 2.26 2.29 3.1 3.26 3.28

1.2 1.28 2.3 2.27 2.30 3.2 3.29 3.27

1.4 1.28 2.3 2.27 2.30 3.2 3.29 3.27

1.5 1.30 2.9 2.31 2.35 3.4 3.32 3.37

1.6 1.31 2.10 2.32 2.38 3.5 3.33 3.41

1.7 1.32 2.11 2.33 2.39 3.6 3.34 3.44

1.8 1.33 2.19 2.36 2.42 3.7 3.35 3.48

1.9 1.34 2.21 2.37 2.43 3.8 3.38 3.49

1.10 1.35 2.23 2.40 2.45 3.9 3.39 3.50

1.11 1.38 2.25 2.41 2.50 3.11 3.40 3.31

Библиографический список

1. Волков В.Н., Рыбакова Г.И., Шипко М.Н. Физика. Т.3 - Иваново ИГЭУ: 1993. - 152 с.

2. Ландсберг Г.С. Оптика. - М.: Наука, 1976. - 928 с.

3. Савельев И.В. Курс общей физики. Т.2 - М.: Наука, 1988. - 496 с.

4. Детлаф А.А., Яворский Б.М. Курс физики. - М.: Высш. шк., 1989. - 608 с.

Размещено на Allbest.ru

...

Подобные документы

  • Волновые свойства света: дисперсия, интерференция, дифракция, поляризация. Опыт Юнга. Квантовые свойства света: фотоэффект, эффект Комптона. Закономерности теплового излучения тел, фотоэлектрического эффекта.

    реферат [132,9 K], добавлен 30.10.2006

  • Волновые и квантовые аспекты теории света. Теоретические вопросы интерференции и дифракции. Оценка технических возможностей спектральных приборов, дифракционной решетки. Методика определения длины волны света по спектру от дифракционной решетки.

    методичка [211,1 K], добавлен 30.04.2014

  • Законы распространения световой энергии в прозрачных средах на основе представления о световом луче. Ход лучей в сечении треугольной призмы. Рассеивающая линза. Квантовые свойства света. Фотоэффект. Закон отражения. Угол падения равен углу отражения.

    реферат [144,9 K], добавлен 29.03.2009

  • Когерентные волны. Монохроматические волны различных частот. Получение когерентных световых волн. Контрастность интерференционной картины. Параллельная плоскость симметрии оптической системы. Оптическая длина пути. Интерференция в тонких плёнках.

    реферат [82,7 K], добавлен 11.11.2008

  • Объяснение явления интерференции. Развитие волновой теории света. Исследования Френеля по интерференции и дифракции света. Перераспределение световой энергии в пространстве. Интерференционный опыт Юнга с двумя щелями. Длина световой волны.

    реферат [31,1 K], добавлен 09.10.2006

  • Световые волны и их характеристики. Связь амплитуды световой волны с ее интенсивностью. Средняя плотность энергии в изучении лазера. Взаимодействие света с атомом. Дипольное приближение. Релятивистские эффекты в атоме. Комплексная напряженность поля.

    реферат [144,7 K], добавлен 18.12.2013

  • Строение и ядерная модель атома. Атомный номер элемента. Волновые свойства электрона. Звуковые волны и их свойства. Строение и анатомия уха человека. Свет и световые явления, процесс образования тени и полутени. Закон преломления света, его сущность.

    реферат [1,1 M], добавлен 18.05.2012

  • Понятие комбинационного рассеяния света. Переменное поле световой волны. Квантовые переходы при комбинационном рассеянии света. Возникновение дополнительных линий в спектре рассеяния. Устройство рамановского микроскопа, основные сферы ее применения.

    реферат [982,7 K], добавлен 08.01.2014

  • Взаимодействие электромагнитных волн с веществом. Отражение и преломление света диэлектриками. Принцип Гюйгенса - Френеля. Рефракция света. Графическое сложение амплитуд вторичных волн. Дифракция плоской световой волны и сферической световой волны.

    реферат [168,2 K], добавлен 25.11.2008

  • Основные положения и понятие волны. Волновые процессы. Волны и скорости волн. Волна - распространение возмущения в непрерывной среде. Распространение волны в пространственно периодической структуре, т.е. в твердом теле. Элементы векторного анализа.

    реферат [84,4 K], добавлен 30.11.2008

  • Изучение явления интерференции света с помощью интерференционной картины, ее получение по заданным параметрам (на экране не менее восьми светлых полос). Сравнение длины световой волны с длиной волны падающего света. Работа программы "Интерференция волн".

    лабораторная работа [86,5 K], добавлен 22.03.2015

  • Понятие и общие характеристики плоской волны, их разновидности, отличительные признаки и свойства. Сущность гармонической волны. Уравнения однородной линейно поляризованной плоской монохроматической электромагнитной волны. Определение фазовой скорости.

    презентация [276,6 K], добавлен 13.08.2013

  • Исследование корпускулярной и волновой теорий света. Изучение условий максимумов и минимумов интерференционной картины. Сложение двух монохроматических волн. Длина световой волны и цвет воспринимаемого глазом света. Локализация интерференционных полос.

    реферат [928,6 K], добавлен 20.05.2015

  • Взаимодействие света с веществом. Основные различия в дифракционном и призматическом спектрах. Квантовые свойства излучения. Поглощение и рассеяние света. Законы внешнего фотоэффекта и особенности его применения. Электронная теория дисперсии света.

    курсовая работа [537,4 K], добавлен 25.01.2012

  • Проведение измерения длины световой волны с помощью бипризмы Френеля. Определение расстояний между мнимыми источниками света и расчет пути светового излучения от мнимых источников до фокальной плоскости микроскопа. Расчет ширины интерференционных полос.

    лабораторная работа [273,5 K], добавлен 14.12.2013

  • Волновая теория света и принцип Гюйгенса. Явление интерференции света как пространственного перераспределения энергии света при наложении световых волн. Когерентность и монохроматичных световых потоков. Волновые свойства света и понятие цуга волн.

    презентация [9,4 M], добавлен 25.07.2015

  • Линейная, круговая и эллиптическая поляризация плоских электромагнитных волн. Отражение и преломление волны на плоской поверхности. Нормальное падение плоской волны на границу раздела диэлектрик-проводник. Глубина проникновения электромагнитной волны.

    презентация [1,1 M], добавлен 29.10.2013

  • Поверхностные акустические волны - упругие волны, распространяющиеся вдоль свободной поверхности твёрдого тела или вдоль его границы с другими средами и затухающие при удалении от границ. Энергетические характеристики ПАВ, составление уравнения Ламе.

    курсовая работа [2,4 M], добавлен 17.01.2012

  • Определение оптики. Квантовые свойства света и связанные с ними дифракционные явления. Законы распространения световой энергии. Классические законы излучения, распространения и взаимодействия световых волн с веществом. Явления преломления и поглощения.

    презентация [1,3 M], добавлен 02.10.2014

  • Рассмотрение шкалы электромагнитных волн. Закон прямолинейного распространения света, независимости световых пучков, отражения и преломления света. Понятие и свойства линзы, определение оптической силы. Особенности построения изображения в линзах.

    презентация [1,2 M], добавлен 28.07.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.