Общая энергетика
Современные способы получения электрической энергии. Классификация электрических станций. Тепловые электрические станции, их технологическая схема. Основы применения водной энергии. Повышение эффективности использования топливно-энергетических ресурсов.
Рубрика | Физика и энергетика |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 26.09.2017 |
Размер файла | 3,2 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Неравномерно распределены водные ресурсы и по территории страны. Более 86% водных ресурсов имеется в хозяйственно слабо освоенных северных и восточных районах, вдали qt центров водопотребления, и только около 14% речного стока относится к южной зоне, к территории, где сосредоточено около 85% населения и 80% промышленного и сельскохозяйственного производства.
Все это приводит к необходимости перераспределения естественного стока во времени и по территории. Оно осуществляется с помощью регулирования стока водохранилищами, в которых задерживается избыточный естественный приток, когда он превышает спрос потребителей, и расходуется, когда этот спрос больше притока.
Таким образом, регулированием стока называется процесс перераспределения его водохранилищами.
Степень зарегулированности стока определяется относительной емкостью водохранилища (коэффициентом емкости) в. Этот коэффициент определяется отношением полезного объема водохранилища Vполезн к среднему за многолетний период объему годового стока W0 в створе плотины
в=Vполезн/W0
Различают регулирование водноэнергетическое и водохозяйственное. Водноэнергетическое регулирование осуществляет перераспределение стока для энергетических целей. Мощность ГЭС является функцией не только расхода, но и напора, поэтому процесс водноэнергетического регулирования связан с учетом того и другого и позволяет в конечном счете получить требуемый режим мощности ГЭС, а отсюда и режим выработки электроэнергии. При водохозяйственном регулировании напор не является регулируемым параметром и перераспределяется лишь расход. В этом состоит основное отличие водноэнергетического регулирования от водохозяйственного.
Режим мощности ГЭС и режим выработки ею электроэнергии диктуются не только спросом потребителей, но и тем, насколько экономично этот спрос удовлетворяется. Поэтому водноэнергетическое регулирование неотделимо от определения оптимальных режимов ГЭС или группы электростанций, с которыми параллельно работает данная ГЭС или группа ГЭС.
При комплексном использовании водотока (см. § 10.6), когда последний используется как для энергетических, так и для неэнергетических целей, осуществляется комплексное регулирование, т. е.' напора и расхода для ГЭС и только расхода для других водопользователей и водопотребителей.
При любом виде регулирования потребители воды в некоторые периоды времени работают с расходом воды, превышающим, приток, а в другие периоды времени расходуют воды меньше притока. В первом случае происходит сработка водохранилища, а во втором - наполнение.
Промежуток времени от начала какого-либо одного периода сработки водохранилища до начала следующего - после очередного его заполнения - называется циклом регулирования. Длительность цикла регулирования определяет его разновидности, в соответствии с чем различают краткосрочное регулирование и длительное. К первому виду относят суточное и недельное регулирование, а ко второму - сезонное, годичное и многолетнее. Рассмотрим кратко каждый из этих видов.
Суточное регулирование. Как сказано, естественные (бытовые) расходы многих рек Qд(t) в течение суток остаются практически неизменными. Исключение составляют лишь периоды половодий и паводков. В период половодья режим работы ГЭС имеет обратную картину и, как правило, неизменен, а в остальное время резко переменен (рис. 10.20,а). Вследствие этого расходы, пропускаемые турбинами ГЭС QГЭС при ее переменном режиме, будут также переменными, меняясь нередко от нуля до полной пропускной способности.
В результате в течение некоторой части суток (рис. 10.20,6) имеется избыточный приток, в другой - недостаточный. Отсюда суточное регулирование будет заключаться в том, чтобы в часы малой нагрузки ГЭС (рис. 10.20,а) запасти в водохранилище избыточный приток, а в часы повышенной нагрузки его сработать. Если объем водохранилища достаточен для задержания всего избыточного притока в часы малой нагрузки, то этот приток при отсутствии ограничений на режим ГЭС может быть использован для увеличения мощности (против той, которую она могла бы развить, используя естественный расход) в часы пика нагрузки потребителей.
Этот эффект позволяет повысить участие ГЭС в покрытии пика нагрузки, вследствие чего при работе ГЭС в энергосистеме, во-первых, отпадает необходимость в дублировании ее мощности, и, во-вторых, возникает возможность обеспечить более благоприятный режим тепловых электростанций, создавая тем самым соответствующую экономию топлива. Однако этот эффект не сопровождается увеличением выработки электроэнергии. Наоборот, выработка энергии при суточном регулировании будет меньше той, которую давала бы ГЭС, работая на естественном режиме стока, т. е. без регулирования.
Это является следствием того, что, как показывается в курсе гидравлики, средний за сутки уровень воды в нижнем бьефе при неустановившемся режиме в нем всегда будет выше, чем при постоянном расходе, определяемом Qд (рис. 10 20,г). Кроме того, среднесуточный уровень верхнего бьефа Zнб (рис. 10.20,в) будет всегда ниже того, при котором ГЭС работала бы, не имея регулирования, т. е. на естественном расходе при НПУ. Это подтверждается также и графиком изменения напора Нгэс (t), представленным на рис. 10.20д. Здесь Н соответствует напору, определяемому как разность средних уровней zвб и Zy, при QГЭС(t).
Получающиеся потери суточного регулирования зависят прежде всего от величины используемого напора Чем меньше напор, тем сильнее сказываются эти потери, и для низконапорных ГЭС они доходят до 3-5% суточной выработки ГЭС при ее работе на естественном расходе.
По мере увеличения суточного притока режим работы ГЭС будет все более выравниваться и, наконец, может быть достигнуто такое положение, когда ГЭС все 24 ч будет работать с полной установленной или располагаемой мощностью, т е. в базисной части графика нагрузки. Дальнейшее увеличение бытового расхода приведет к необходимости холостого сброса излишков воды помимо турбин, уровень нижнего бьефа при этом повысится (см. рис. 10.18), напор уменьшится, а вместе с ним уменьшится и мощность ГЭС, становясь для низко- и средненапорных ГЭС значительно меньше установленной.
При осуществлении суточного регулирования могут возникнуть различного рода ограничения, накладываемые на режимы ГЭС неэнергетическими участниками комплекса. Так, например, при отсутствии подпора в нижнем бьефе со стороны нижележащей ГЭС водный транспорт может предъявить требования по обеспечению необходимых судоходных глубин в течение всех 24 ч, а также в отношении допустимых скоростей течения при подходе к шлюзам.
Аналогичные требования по поддержанию необходимых глубин могут быть предъявлены водопотребителями (ирригация, промышленное и бытовое водоснабжение). Для удовлетворения этих требований производят попуски в нижний бьеф определенных расходов воды, называемых базисными. Наконец, иногда возникают ограничения режима турбин ГЭС (обычно при небольших нагрузках) по условиям кавитации (см § 9.5), которую длительное время допускать нельзя. Ограничения при суточном регулировании иногда возникают и вследствие отсутствия достаточной емкости водохранилища.
Реализация указанных ограничений обычно приводит к снижению энергоэкономической эффективности работы ГЭС, однако при комплексном использовании водотока это снижение является вполне оправданным с точки зрения народного хозяйства в целом, так как компенсируется отдачей, получаемой от неэнергетических участников комплекса.
Объем водохранилища, необходимый для суточного регулирования, очень небольшой и обычно составляет около 0,5 объема суточного стока расчетного маловодного года.
Недельное регулирование. В нерабочие дни недели нагрузка потребителей электроэнергии резко падает (особенно в воскресенье). В это время гидроэлектростанция может также снизить свою мощность до величины, меньшей той, которую она могла бы развить, работая на естественном расходе. Получающийся избыток (рис. 1021,6) может быть использован на заполнение в0до-хранилища, сработанного за время рабочих дней недели. Сказанное иллюстрирует рис. 10.21,б, где для простоты предполагается, что бытовой расход, как это обычно бывает в периоды маловодья (межень), в течение недели практически не изменяется, нагрузка потребителей системы в рабочие дни практически одинакова и в неделе имеются два выходных дня (рис. 10 21,а). Понятно, что качественно картина не изменится, если нагрузка системы в рабочие дни и приточность не будут неизменными.
Таким образом, недельное регулирование обеспечивает неравномерное потребление воды гидроэлектростанцией в течение недели в соответствии с недельными колебаниями нагрузки потребителей. Если водохранилище одновременно используется и для суточного регулирования, то в нем будет наблюдаться и суточное колебание уровней бьефов (пунктир на рис 1021,в, г). Однако замкнутого цикла суточного регулирования, естественно, при этом не будет, так как уровень водохранилища к концу каждого рабочего дня будет ниже. Продолжительность полного цикла колебаний уровня верхнего бьефа в этом случае (рис 1021,0) будет равна одной педеле
При недельном регулировании, так уке как и при суточном, имеется возможность повысить мощность ГЭС по сравнению с той, которую она могла бы развить, работая на естественном расходе. Однако получаемый в этом случае энергетическии эффект за счет работы ГЭС большую часть времени на пониженных напорах (рис 1021,<3) будет меньше, чем при суточном регулировании Вместе с тем годовая выработка ГЭС недельного регулирования будет несколько выше (за счет некоторого уменьшения холостых сбросов) по сравнению с ГЭС суточного регулирования, так как водохранилище недельного регулирования больше по объему, чем водохранилище суточного регулирования Обычно считается, что при двух выходных днях этот объем не превышает приточности за одни, принятые за расчетные маловодные сутки.
При осуществлении недельного регулирования на соответствующий режим ГЭС могут также накладываться разного рода ограничения как со стороны неэнергетических отраслей комплекса, так и по условиям бескавитационного режима работы турбин. Естественно, что все подобного рода ограничения будут снижать энергоэкономическую эффективность ГЭС
Общим для краткосрочного регулирования является перераспределение сравнительно равномерного суточного и петельного режима прп-точпости в неравномерный режим расходов ГЭС
Годичное регулирование. Естественный гидрологический годовой ре/Ким реки обычно отличается крайней неравномерностью и находится в противоречии с запросами энергетики Применяемое для снятия этого противоречия годичное регулирование путем задержания (частично пли полностью) в водохранилище вод половодья и использование их в течение маловодного периода позволяет увеличить гарантированную мощность ГЭС и количество вырабатываемой ею энергии по сравнению с ГЭС краткосрочного регулирования за счет уменьшения (или ликвидации) бесполезных сбросов вод половодья.
Весь цикл регулирования при этом занимает 1 год. Если после сработки очередного наполнения водохранилища всегда имеются холостые сбросы, то регулирование называется сезонным (неполным годичным) в отличие от годичного (полного), когда в условиях расчетной обеспеченности стока сбросов нет. Как в случае сезонного регулирования, так и годичного в каждом следующем году циклы сработки и наполнения повторяются
Объем водохранилища годичного регулирования обычно составляет от 2 до 30% среднемноголетнего объема годового стока реки, т е. вгр=0,02ч0,30.
Водохранилище годичного регулирования может, как это обычно и бывает, одновременно выполнять и краткосрочное регулирование (суточное и недельное)
На рис 10 22,а представлена общая схема годичного регулирования, а на рис. 1022,6 - сезонного (имеется период сброса излишков вод). На этих же рисунках представлены соответствующие режимы верхнего бьефа Zвб(t). Ясно, что в особо маловодные годы или при слишком больших (сверх расчетных) изъятиях вод половодья водохранилище может и не наполниться до отметки НПУ.
Нетрудно представить себе, как будет изменяться, если регулирование будет произведено не на постоянный расход QГЭС, а в соответствии с заданным графиком нагрузки ГЭС.
Многолетнее регулирование. Цикл регулирования длится несколько лет Водохранилище наполняется избыточным стоком одного пли нескольких многоводных лети опорожняется в течение ряда маловодных лет. При этом регулировании уровень водохранилища в конце маловодною года будет всегда ниже, чем в начале его Многолетнее регулирование сводится к увеличению стока маловодных лет. Особенностью этого вида регулирования является непостоянство продолжительности цикла регулирования. При неизменном потреблении воды период наполнения и период опорожнения водохранилища определяется исключительно гидрологической обстановкой каждого года Чем больше при этом относительный объем водохранилища, тем, очевидно, реже он заполняется до отметки НПУ.
При многолетнем регулировании, так же как и при годичном, имеется возможность увеличить гарантированную мощность ГЭС и вырабатываемую ею энергию (за счет практически полного устранения бесполезных сбросов во время половодий) по сравнению с ГЭС годичного регулирования и краткосрочного. Само собой разумеется, что и в этом случае водохранилище может осуществлять любое менее длительное регулирование (или сочетание их).
Считается, что для того, чтобы водохранилище ГЭС могло осуществлять многолетнее регулирование, его объем должен составлять не менее 30-50% величины среднего за многолетний период объема годового стока реки, т. е. вмр = 0,3ч0,5
На рис 1023 представлены общая схема многолетнего регулирования и график изменения уровня верхнего бьефа. Как видно из рисунка, период наполнения' в зависимости от водности лет может быть различным В начале регулирования водохранилище было заполнено в первый же год, а после сработки на это потребовалось два года (более маловодных, чем первый год).
Таким образом, при длительном регулировании уменьшается многолетняя и годичная неравномерность расхода, в то время как при краткосрочном регулировании неравномерность расхода за регулируемый период (сутки, неделя) резко возрастает.
Кроме описанных видов регулирования различают специальные виды регулирования, включая каскадное.
10.6 Каскадное и комплексное использование водных ресурсов
Развитие гидроэнергетики СССР осуществляется главным образом за счет каскадного освоения водных ресурсов. В этих условиях гидроэнергетические ресурсы отдельных рек используются не одной гидроэлектростанцией, а несколькими, последовательно расположенными друг за другом. При этом в каскаде могут быть как плотинные, так и деривационные гидроэлектростанции.
Как показывает практика, каскадные схемы позволяют полнее и экономичнее использовать энергетический потенциал реки, поскольку они, в частности, уменьшают энергетические потери водотока. Энергоэкономическая эффективность каскада при проектировании определяется количеством ступеней и месторасположением каждого гидроузла, определяющего размеры водохранилища, напора, мощности и капитальных вложений. Особое значение при этом приобретают экологические аспекты. В числе наиболее крупных объединенных каскадов страны следует отметить Лнгаро-Енисейский, в том числе завершаемая строительством Саяно-Шушенская ГЭС мощностью 6400 МВт и действующая Красноярская ГЭС 6000 МВт. Это уникальный каскад по своим энергоэкономическим показателям. Достаточно сказать, что себестоимость вырабатываемой электроэнергии на этих ГЭС составляет всего несколько сотых копейки. Вторым объединенным крупнейшим каскадом является Волжско-Камский.
Энергоэкономическая эффективность действующих каскадов при заданном естественном режиме речного стока определяется исключительно оптимальным распределением нагрузки между отдельными электростанциями системы и характером требований на воду со стороны других отраслей народного хозяйства, которые при этом должны выполнять отдельные ГЭС.
Кроме повышения энергетической эффективности каскадные схемы позволяют существенно повысить эффективность использования стока и другими отраслями народного хозяйства.
Использование водных ресурсов одновременно несколькими отраслями народного хозяйства называется комплексным Комплексное использование обеспечивает от данного гидроузла больший экономический эффект, чем использование их какой-либо одной отраслью народного хозяйства. Участники (компоненты) комплексного использования образуют водохозяйственный комплекс. Те из компонентов водохозяйственного комплекса, которые используют воду как вещество и изымают ее из данного водоисточника, называются водопотребителями. Эта вода по истечении некоторого времени, иногда достаточно длительного, может вновь поступить в водооборот, но уже в другом створе или даже в другом бассейне. При этом многие водопотребители возвращают воду существенно худшего качества. Те же участники комплекса, которые полностью или почти полностью возвращают после использования воду того же качества (например, ГЭС) или совсем ее не изымают из водотока (например, водный транспорт), называются водопользователями.
Каждый вид водопользования предъявляет свои требования к качеству воды. Наиболее разнообразные требования, диктуемые технологическими процессами производства, предъявляет промышленность. Для некоторых технологических процессов к качеству воды предъявляются более высокие требования, чем к питьевой.
Поддержание должного уровня качества воды, используемой для хозяйственно- и культурно-бытовых нужд, обеспечивается «Правилами охраны поверхностных вод от загрязнения сточными водами», разработанными Министерством здравоохранения СССР. Эти правила являются обязательными для всех видов водопотребления, и выполнение их контролируется соответствующими службами Государственного санитарного надзора СССР.
Размещено на Allbest.ru
...Подобные документы
Производство электрической и тепловой энергии. Гидравлические электрические станции. Использование альтернативных источников энергии. Распределение электрических нагрузок между электростанциями. Передача и потребление электрической и тепловой энергии.
учебное пособие [2,2 M], добавлен 19.04.2012Общая характеристика, работа и основные узлы теплоэлектростанции. Виды тепловых паротурбинных электростанций. Схема конденсационной электрической станции. Топливно-экономические показатели работы станций. Расчет себестоимости вырабатываемой энергии.
реферат [165,2 K], добавлен 01.02.2012Характеристика видов и классификации топливно-энергетических ресурсов или совокупности всех природных и преобразованных видов топлива и энергии. Вторичные топливно-энергетические ресурсы - горючие, тепловые и энергоресурсы избыточного давления (напора).
контрольная работа [45,8 K], добавлен 31.01.2015Количественная характеристика и особенности топливно-энергетических ресурсов, их классификация. Мировые запасы, современное состояние, размещение и потребление энергетических ресурсов в мире и в России. Нетрадиционные и возобновляемые источники энергии.
презентация [22,1 M], добавлен 31.01.2015Увеличение мирового производства энергии. Энергетика как фундаментальная отрасль экономики. Сохранение роли ископаемых топлив. Повышение эффективности использования энергии. Тенденция децентрализации и малая энергетика. Альтернативные источники энергии.
доклад [14,8 K], добавлен 03.11.2010Описание процессов получения электроэнергии на тепловых конденсационных электрических станциях, газотурбинных установках и теплоэлектроцентралях. Изучение устройства гидравлических и аккумулирующих электростанций. Геотермальная и ветровая энергетика.
реферат [3,5 M], добавлен 25.10.2013Типовые источники энергии. Проблемы современной энергетики. "Чистота" получаемой, производимой энергии как преимущество альтернативной энергетики. Направления развития альтернативных источников энергии. Водород как источник энергии, способы его получения.
реферат [253,9 K], добавлен 30.05.2016Основные способы организации энергосберегающих технологий. Сущность регенерации энергии. Утилизация вторичных (побочных) энергоресурсов. Системы испарительного охлаждения элементов высокотемпературных печей. Подогрев воды низкотемпературными газами.
доклад [110,9 K], добавлен 26.10.2013Силовое, измерительное и коммутационное оборудования электрических станций и подстанций. Механизм выработки энергии на тепловых электрических станциях. Особенности построения государственных районных электрических станций. Структурные схемы подстанций.
презентация [7,8 M], добавлен 10.03.2019История развития энергетики как науки, общая и вторичная энергетика, понятие "энергия", пути решения энергетических проблем. Электроэнергетика как самостоятельная отрасль. Технологии, используемые в процессе получения, передачи и использования энергии.
курсовая работа [40,0 K], добавлен 03.02.2012Классификация альтернативных источников энергии. Возможности использования альтернативных источников энергии в России. Энергия ветра (ветровая энергетика). Малая гидроэнергетика, солнечная энергия. Использование энергии биомассы в энергетических целях.
курсовая работа [3,9 M], добавлен 30.07.2012Основы энергосбережения, энергетические ресурсы, выработка, преобразование, передача и использование различных видов энергии. Традиционные способы получения тепловой и электрической энергии. Структура производства и потребления электрической энергии.
реферат [27,7 K], добавлен 16.09.2010Промышленная и альтернативная энергетика. Преимущества и недостатки гидроэлектростанций, тепловых и атомных электростанций. Получение энергии без использования традиционного ископаемого топлива. Эффективное использование энергии, энергосбережение.
презентация [1,2 M], добавлен 15.05.2016Рациональное использование топливно-энергетических ресурсов. Основные причины большого потребления топливно-энергетических ресурсов на предприятиях пищевой промышленности, пути сбережения тепловой энергии. Использование вторичных энергоресурсов.
реферат [98,2 K], добавлен 11.02.2013Мировые лидеры в производстве ядерной электроэнергии. Схема работы атомной электростанции с двухконтурным водо-водяным энергетическим реактором. Главный недостаток АЭС. Реакторы на быстрых нейтронах. Проект первой в мире плавучей атомной электростанции.
реферат [1,4 M], добавлен 22.09.2013Внутренняя структура протона. Закономерность структурогенеза протона. Энергия вакуума и протона. Эффект Лэмба-Ризерфорда и Казимира. Современные способы получения энергии. Основной этап и схема энергопреобразований в новом способе получения энергии.
доклад [52,2 K], добавлен 20.01.2011Анализ действия и оценка перспектив использования альтернативных методов получения электрической энергии в России. Вклад в обеспечение государства электроэнергией гидроэлектростанций, ветроэнергетических установок, солнечных и приливных электростанций.
контрольная работа [55,9 K], добавлен 11.04.2010Распространение солнечной энергии на Земле. Способы получения электричества из солнечного излучения. Освещение зданий с помощью световых колодцев. Получение энергии с помощью ветрогенераторов. Виды геотермальных источников энергии и способы ее получения.
презентация [2,9 M], добавлен 18.12.2013История возникновения приборов учёта и измерения электрической энергии. Классификация счётчиков электричества по типу измеряемых величин, типу подключения и конструкции. Схема устройства индукционного счетчика. Будущее учёта электрической энергии.
реферат [268,8 K], добавлен 11.06.2014Источники энергии Древнего мира, раннего Средневековья и Нового времени. Технологии, используемые в процессе получения, передачи и использования энергии. Тепловые двигатели, двигатели внутреннего сгорания, электрогенераторы. Развитие ядерной энергетики.
презентация [2,7 M], добавлен 15.05.2014