Организация физических процессов в электрической части электростанций

Конструкция и принцип действия синхронного генератора. Режимы работы нейтрали, повышение надежности работы оборудования в аварийных режимах. Процессы в дугогасительных системах и в электрических сетях при коммутациях выключателями, заземление подстанций.

Рубрика Физика и энергетика
Вид курс лекций
Язык русский
Дата добавления 27.09.2017
Размер файла 1,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Рис.1.Кривые процесса восстановления изоляционных свойств в масле.

Рис.2.Отключение электродвигателя масляным выключателем.

Восстановление изоляционных свойств масляной среды происходит значительно медленнее,чем в выключателях с другими дугогасящими средами. Кривая 1 на рис.1 показывает график изменения напряжения пробоя межконтактного промежутка масляного выключателя после расхождения контактов. Кривая 2 демонстрирует характер изменения напряжения на вводах двигателя при размыкании контактов после прохождения тока через ноль. Эта кривая показывает,что высокочастотный процесс,связанный с обменом энергией между емкостными и индуктивными элементами присоединения, может привести к многократным повторным пробоям межконтактного промежутка.Однако на первых этапах дугового разряда за счет подпитки током от соседних фаздуговой разряд поддерживается и в момент прохождения тока через ноль. Причем дуговой разряд сохраняется до 6-8 периодов частоты 50 Гц. Следовательно,к моменту,когда изоляционные свойства выключателя будут восстановлены,запас энергии в емкости и индуктивности присоединения будет погашен и вероятность эскалации перенапряжения за счет повторных пробоев очень низка.

На рис.2 показаны осциллограммы напряжений фаз А,В и С на вводах электродвигателя мощностью 500 кВт, найденных путем моделирования процессов. Кратность первого импульса перенапряжений составляет 2*1, что ниже допустимой кратности.

Рис.3 иллюстрирует распределение напряжений по виткам обмотки в точках 1, 2 и 3 эквивалентной схемы двигателя (рис.4),которые находятся в пределах допуска. Перенапряжения при отключении масляного выключателя сильно зависят от свойств дугогасящей среды.

Рис.3.Кривые напряжений в различных точках эквивалентной схемы двигателя при отключении масляным выключателем.

Рис. 4. Схема замещения электродвигателя

Количество продуктов разложения масла зависит от энергии дуги, числа коммутаций и в среднем на единицу энергии дуги составляет 0,045 0,060 г/кДж. Так,после 10 отключений тока 5 кА выключателем с контактами из композиции 70 W-Cu в дугогасительном устройстве с объемом масла 3*103 см 3 содержится 38 г углеродов (в виде осадка), 2 г вольфрама и 0,8 г меди. Углеродистые соединения до нескольких месяцев остаются в масле во взвешенном состоянии, снижая электрическую прочность внутренней изоляции масляного выключателя. После 8-10 отключений маломасляного выключателя на 6 кВ сопротивление внутренней изоляции снижается до 30 МОм (при первоначальном значении 10000 МОм).

Наличие свободных частиц углерода во взвешенном состоянии и особенно металла снижает электрическую прочность масла, что плохо сказывается на процессах в дугогасительной камере в режиме включения. При уменьшении расстояния между контактами возникает преждевременный множественный пробой межконтактного промежутка, провоцирующий перенапряжения.

Моделирование процессов включения электродвигателя той же мощности иллюстрируется рис. 5 (масштаб рисунка тот же, что и рис. 2). Кратность перенапряжений выше нормы, а перенапряжения на витках обмотки (рис. 6) оказываются недопустимыми.

Рис. 5. Перенапряжения при включении электродвигателя масляным включателем.

Рис. 6. Перенапряжения на витках при вклю чении двигателя масляным выключателем.

Элегазовые выключатели

Характер дугогашения в элегазовых (SF6) выключателях существенно отличается от процессов в других дугогасительных средах. Так, энергия, выделяемая дугой в элегазах, меньше, чем в воздухе, вследствие меньшего ее теплосодержания, обусловленного меньшим напряжением на дуге.

Чем ниже температура диссоциации газа, тем лучше условия для уменьшения остаточной проводимости ствола дуги, поскольку в этом случае происходит более интенсивное охлаждение ее высокотемпературного ядра. Поэтому элегаз с температурой диссоциации 2000 К обладает высокой дугогасящей способностью по сравнению с воздухом, температура диссоциации которого равна 7000 К.

Отметим также электроотрицательные свойства элегаза, способствующие активному захвату свободных электронов и повышению эффективности гашения дуги.

Скоростная съемка дуговых процессов сверхскоростным фоторегистратором СФР-2М, фотометрические и металлографические методы исследования дуговых процессов на электродах из различных материалов позволили выявить существенное различие в характере протекания дуговых процессов при магнитном дутье в элегазе и воздухе. Гашение дуги осуществлялось посредством ее вращения под воздействием магнитного поля в промежутке между концентрическими электродами 1 и 2 в элегазе (рис. 7, а).

Рис.7.Характер движения электрической дуги при магнитном дутье в элегазе.

Рис.8.Временные зависимости пробивного напряжения элегазового выключателя.

Скорость движения при магнитном дутье в элегазе

VД = Кdy * I0.83 * B0.5 * P0.66

где I -ток отключения, A ; B - магнит ная индукция, Tл ; P - давление SF6 в дугогасительной камере, Па .

Анализ результатов скоростной съемки показывает, что в элегазе наблюдается четко выраженный («отшнурованный ») ствол дуги и происходит сужение (стягивание) ее оснований. Дуга в элегазе имеет склонность к петлеобразованию (особенно в области перехода тока через нулевое значение) , а при определенных условиях происходит расщепление ствола дуги в элегазе на отдельные волокна. В ряде случаев наблюдается выброс потоков плазмы, образующихся в результате радиального сжатия дуги ее собственным магнитным полем (за счет пинч эффекта), что приводит к закорачиванию отдельных участков дуги, скачкообразному ее перемещению.

Наиболее благоприятные условия для повышения эффективности гашения дуги и дугостойкости контактов при магнитном дутье в элегазе соответствуют равномерному движению дуги (рис. 7, б), когда ее основания перемещаются приблизительно с одинаковой скоростью (при этом ствол дуги несколько опережает основания). Это обусловлено снижением локального нагрева контактов вследствие рассеивания энергии, сконцентрированной в основаниях дуги, при быстром ее перемещении.

Фотометрические исследования параметров электрической дуги на моделях дугогасительных устройств элегазовых выключателей позволили определить напряжение на дуге, ее диаметр и температуру дуги SF6.

На основании фоторегистрации дуги определен диаметр ствола дуги в различных системах дугогасительных устройств элегазовых выключателей на моделях, приведено сопоставление расчетов с экспериментом, установлено влияние материала контактов на характер дугогашения. Диаметр дуги в элегазе меньше, чем в воздухе. Вследствие этого более высокое отношение единицы поверхности дуги к ее объему в элегазе обусловливает более интенсивный отвод тепла, а следовательно, более интенсивное восстановление электрической прочности межконтактного промежутка.

Эксперименты показывают, что диаметр дуги в элегазе при отключении тока 5 кА на контактах из меди составляет 10 мм, температура ядра дуги -25*103К, на периферии дуги - 10*103К.

Существенно влияет на дуговые процессы выброс потоков плазмы, возникающих на контактах вследствие радиального сжатия дуги ее собственным магнитным полем. При этом в дуге образуется разность давлений, обусловливающая выброс потоков плазмы, исходящих из мест наибольшего сужения - оснований дуги.

Кроме стягивающего эффекта, вызываемого электромагнитными усилиями, определенную роль в образовании потоков плазмы играют тепловые процессы в приэлектродных основаниях дуги. Сужение оснований дуги приводит к увеличению плотности тока в них, а следовательно, и к увеличению температуры, вследствие чего сгустки плазмы с более высокой температурой устремляются в область с меньшей температурой и более низким давлением. Кроме того, повышение температуры в основаниях дуги сопровождается интенсивным испарением материала контактов и образованием за счет этого областей с повышенным давлением. Совокупность этих явлений и обусловливает образование и выброс потоков плазмы, оказывающих существенное влияние на дугогашение.

Для возникновения потоков плазмы должны соблюдаться определенные условия. Значения граничныхтоков,при которых возникают плазменные потоки,зависят от свойств контактного материала и дугогасящей среды. Так, в элегазе выброс потоков плазмы на электродах из латуни наблюдается при значительно больших значениях тока (свыше 200А), чем на медных электродах (на них потоки плазмы образуются при токе около 80 А).

Потоки плазмы имеют более высокую температуру, чем окружающие их области ствола дуги,и более высокую электрическую проводимость. Обладая высокой скоростью, достигающей 103-104 м/с, потоки плазмы насыщают промежуток парами металла, снижая тем самым восстанавливающуюся прочность межконтактного промежутка, что создает условия для повторного пробоя межэлектродного пространства.

Рис.9.Перенапряжения при отключении двигателя элегазовым выключателем (Размерность та же,что и на рис.2).

Рис.10.Перенапряжения между витками при отключении двигателя элегазовым выключателем.

Эксперименты показывают, что в межконтактном промежутке возникает до 6% паров меди. На рис.8 показаны кривые зависимости пробивного напряжения от времени после прохождения тока через ноль при различном объеме меди:1-6%;2-4%;3-2%.

На рис.9 показаны результаты моделирования при отключении двигателя элегазовым выключателем. Видно, что первый пик перенапряжения имеет допустимую кратность. Однако последующие пробои межконтактного промежутка элегазового выключателя приводят к увеличению перенапряжений до кратности выше допустимой. Недопустимыми оказываются и перенапряжения между витками обмотки (рис.10).

Восстановление изоляционных свойств элегазовой дугогасящей среды происходит значительно быстрее, чем у масляных выключателей, т.к. отсутствуют взвешенные частицы меди и, как правило, при включении вероятность возникновения перенапряжения невелика.

Лекция 8. Процессы в дугогасительных системах и в электрических сетях 6(10) кВ при коммутациях выключателями

Вакуумные выключатели

Перенапряжения в условиях применения вакуумных выключателей определяются процессами в вакуумных камерах и прежде всего эмиссией тока с поверхности контактной системы.

Как правило,поверхность контактов имеет большое число микронеровностей и они прилегают друг к другу не всей плоскостью,а несколькими точками. В первые мгновения расхождения контактов точки соприкосновения электродов сохраняются, но при этом площадь контактов стремительно уменьшается. Также стремительно поднимается температура мест соприкосновения, причем к моменту отрыва поверхностей друг от друга металл переходит в жидкое состояние и между расходящимися контактами возникают мостики из расплавленного металла.

Дальнейшее расхождение контакта сопровождается сжатием сечения мостиков, увеличением температуры и давления. Стартовый этап заканчивается взрывом мостика и переходом к разряду в парах металла. В этих условиях ток определяется процессами в плазме.

Хоть и незначительный, но имеется ток, связанный с фотоэффектом. Фотоэффект, т.е. эмиссия электронов из катода под действием светового или иного излучения, происходит при энергии фотона, большей эффективной работы выхода hv>Wa*. В свою очередь работа выхода из электрода зависит как от материала, так и от состояния поверхности катода, поэтому плотность тока также зависит от этих факторов. При этом нужно иметь в виду, что вероятность эмиссии электрона под действием фотона с энергией, большей Wa*, много меньше единицы. Эту вероятность называют квантовым выходом. Плотность фототока зависит не только от энергии фотона, но и от температуры и состояния поверхности катода.

Второй по плотности ток автоэлектронной эмиссии. Автоэлектронная эмиссия из металла в вакуум наблюдается при напряженностях электрического поля на поверхности Е=108 ...109 В/м.

Сильное электрическое поле у катода может возникнуть не только вследствие роста напряженности между электродами, но и вследствие образования положительного объемного заряда вблизи катода. Поверхность катода обычно бывает неровной и неоднородной на отдельных участках, и заметный ток автоэлектронной эмиссии может возникнуть уже при средней напряженности порядка 107 В/м.

С учетом увеличения прозрачности барьера упрощенная формула, удобная при практических расчетах плотности тока автоэлектронной эмиссии при Т=0 К, имеет вид:

j= AE2exp(-BWa 3/2/E),

где Е -напряженность электрического поля в В/см; Wa - работа выхода из металла в эВ; jA(0) в А/см2. Повышение температуры катода приводит к росту плотности автоэлектронной эмиссии jA(Т), так как часть электронов будет иметь энергию, большую WFe.

Эмиссия электронов может происходить при бомбардировке катода медленными (потенциальная ионноэлектронная эмиссия) или быстрыми, имеющими энергию несколько килоэлектрон вольт (кинетическая ионноэлектронная эмиссия), положительными ионами.

При сближении положительного иона с металлом ширина потенциального барьера уменьшается настолько, что становится возможным туннелирование электрона на свободный нормальный энергетический уровень положительного иона. В результате этого образуется нейтральная частица.

При нейтрализации выделяется энергия, равная разности энергий, необходимой для онизации частицы Wu энергии, которую имел электрон в металле, wx. Эмиссия электрона в вакуум возможна, если выделившаяся энергия будет больше работы выхода: Wu-wx>Wa или Wu>Wа++wx. Поскольку wx>Wa, эмиссия электрона имеет место лишь при выполнении условия Wu>2Wa.

Ствол разряда на стартовых этапах имеет очень высокую проводимость, которая значительно больше, чем проводимость у элегазовых и масляных выключателей, что в совокупности с конструктивными решениями контактной системы обеспечивает перенапряжения, не превышающие допустимые. Однако после прохождения тока через ноль возникают многократные пробои, которые могут при определенных условиях привести к эскалации перенапряжений.

При фиксированной скорости восстановления диэлектрической прочности условия для первого и последующих пробоев зависят от момента начала движения контактов tоткл, отсчитываемого от момента прерывания тока. При отключении пускового тока при di/dt=50А/мксек, tоткл=0,17мсек, после среза тока при его мгновенном значении i=5А, прочность промежутка ВВ спустя время tоткл=0,17мсек после начала движения контактов оказывается недостаточной. Происходит первый, а затем ряд последующих пробоев промежутка с гашением дуги каждый раз после прохождения через выключатель одного трех (в зависимости от скорости подхода тока к нулю) высокочастотных полуволн тока.

Важнейшим явлением, влияющим на возможность возникновения перенапряжений в условиях, когда контакты холодные, является взрывная автоэлектронная эмиссия. Это происходит, как правило, при включении после длительного перерыва. В этих условиях по существу отсутствуют, по крайней мере, на первом этапе движения контактов, составляющие термоэлектронной и фотоэлектронной эмиссий. Разряд возникает с микронеровностей контактной системы. Через некоторое время за держки tз после начала эмиссии происходят микровзрывы острий на катоде, при этом образуются плазменные сгустки -катодные факелы, расширяющиеся со скоростью порядка 104м/с, а плотность тока быстро нарастает.

С ростом напряженности электрического поля tз уменьшается обратно пропорционально квадрату плотности тока tз=4*109/jА2, где jА в А/см2, tз в сек.

Быстрый рост плотности тока обусловлен термоэлектронной эмиссией из плазменного катодного факела. Еще до достижения катодным факелом анода навстречу ему начинает двигаться анодный факел, образующийся в результате бомбардировки анода ускоренными электронами.

Длительность импульса тока взрывной эмиссии tвэ определяется в основном временем перекрытия промежутка катодным факелом:

tвэ=d/v

где d -расстояние между электродами;v-скорость распределения катодного факела.

Однако первые пробои при схождении контактов происходят на очень близком расстоянии между ними, что делает вероятность эскалации перенапряжений очень низкой.

Таким образом, приведенные выше данные показывают, что перенапряжения, в силу специфических процессов в дугогасительных системах, возникают в условиях применения выключателей с любыми дугогасительными системами. Однако вероятность перенапряжений и их величина зависят не только от процессов в дугогасительной системе, но и от параметров сети.

Лекция 9. Системы автоматизированного проектирования электроустановок электрических станций и подстанций

Введение

Увеличение производительности труда разработчиков новых изделий, сокращение сроков проектирования, повышение качества разработки проектов - важнейшие проблемы, решение которых определяет уровень ускорения научно-технического прогресса общества. Развитие систем автоматизированного проектирования (САПР) опирается на прочную научно-техническую базу. Это - современные средства вычислительной техники, новые способы представления и обработки информации, создание новых численных методов решения инженерных задач и оптимизации. Системы автоматизированного проектирования дают возможность на основе новейших достижений фундаментальных наук отрабатывать и совершенствовать методологию проектирования, стимулировать развитие математической теории проектирования сложных систем и объектов. В настоящее время созданы и применяются в основном средства и методы, обеспечивающие автоматизацию рутинных процедур и операций, таких, как подготовка текстовой документации, преобразование технических чертежей, построение графических изображений и т.д..

Понятие о системах CAD/CAM/CAE (сквозные САПР)

Сквозные системы - это всеобъемлющий набор средств для автоматизации процессов и технологической подготовки производства, а также различных объектов промышленности. Системы включают в себя полный набор промышленно адаптированных и доказавших свою эффективность программных модулей, функционально охватывающих анализ и создание чертежей, подготовку производства на всех этапах, а также обеспечивающих высокую функциональную гибкость всего цикла производства.

Данная система позволяет выполнять разработку самых сложных технических изделий: жгуты электропроводки, детали из пластмассы, различные механические конструкции. Это достигается с помощью единого набора программных средств удовлетворяющих специальным требованиям производства.

Системы представляют собой не просто объединенный набор отдельных программных решений, а целостную интегрированную систему взаимосвязанных инструментальных модулей способных функционировать на различных технических платформах, взаимодействовать с другим производственным оборудованием, обрабатывать данные, полученные путем достижения разработок новейшей технологии.

Системы CAD/CAM/CAE позволяют в масштабе целого предприятия логически связывать всю информацию об изделии, обеспечивать быструю обработку и доступ к ней пользователей работающих в разнородных системах. Так же они поддерживают технологию параллельного проектирования и функционирования различных подразделений согласовано выполняющих в рамках единой компьютерной модели операции проектирования, сборки, тестирование изделия, подготовку производства и поддержку изделия в течение всего его жизненного цикла.

Создаваемая системой модель основывается на интеграции данных и представляет собой полное электронное описание изделия, где присутствует, как конструкторская, технологическая, производственная и другие базы данных по изделию.

Это обеспечивает значительное улучшение качества, снижение себестоимости и сокращение сроков выпуска изделия на рынок.

Каждая система разрабатывается руководствуясь задачами объединения и оптимизации труда разработчиков и принимаемых при этом технологий в масштабах всего предприятия для поддержания данной системой стратегии автоматического проектирования.

Классификация ЭВМ

Технические средства и общее системное программное обеспечение являются инструментальной базой САПР. Они образуют физическую среду, в которой реализуются другие виды обеспечения САПР. Инженер, взаимодействуя с этой средой и решая различные задачи проектирования, осуществляет автоматическое проектирование технических объектов. Технические средства и общее программное обеспечение в процессе проектирования выполняют и решают такие задачи как: а) ввода исходных данных описания объекта проектирования; б) отображения введенной информации с целью ее контроля и редактирования; в) преобразования информации; г) хранение и оперативного общения проектировщика с системой; и многие другие функции.

Для решения этих задач технические средства САПР должны содержать процессоры, оперативную память, внешние запоминающие устройства, устройства ввода вывода информации, технические средства машинной графики и многие др. устройства. На сегодняшний день существует очень много разнообразных ЭВМ. Основные технические характеристики по которым ЭВМ разделены на группы это: производительность, емкость оперативного запоминающего устройства, пропускная способность подсистемы ввода-вывода информации, надежность функционирования и др.

ЭВМ, используемые в САПР, можно разделить на две группы: 1) универсальные общего назначения; 2) специализированные.

Специализированные ЭВМ предназначены для решения узкого круга задач проектирования конкретных технических объектов. Можно условно разделить ЭВМ на группы по цене/производительности, но очень быстрый прогресс в области разработки вычислительной техники размывают эту границу, превращая сегодняшнюю супер-ЭВМ в простой калькулятор.

Разделяют вычислительные машины на супер-ЭВМ, ЭВМ высокой производительности и ЭВМ средней производительности, они используются в основном для решения сложных вычислительных задач (например, моделирования, параметрической оптимизации и т.п.) ; мини-ЭВМ служат основой для создания типовых проблемно-ориентированных комплексов; персональные ЭВМ предназначены для текущей повседневной работы инженера; микро-ЭВМ получили широкое распространение, поскольку легко встраиваются в различные устройства САПР. Приведем несколько примеров, где можно проанализировать технические характеристики разных типов ЭВМ (таб. 1) .

таб. 1.

Параметры ЭВМ

Супер-ЭВМ

ЭВМ высокой произв.

ЭВМ средней произв.

Супермини ЭВМ.

Микро-ЭВМ

Название.

Cray X-MP

IBM-3081

ЕС1046

VAX11/780

СМ 50/60

Производ. млн.

опер/сек. максим.

200

14

1,2

1,1

0,15

Разрядность машинного слова.

64

32

32

32

16

Емкость ОЗУ, байт.

64М

32М

128К

В начале 90-х годов в нашу страну хлынул большой поток зарубежной вычислительной техники, произошел резкий скачок в развитии Российского рынка компьютерной и оргтехники. Нам стали доступны последние достижения в мире Hardware, Software, Multimedia. Так имея денежные средства можно без лишних усилий приобрести ЭВМ любого класса и любой конфигурации. Принцип открытой архитектуры, впервые используемый фирмой IBM, сделал самыми распространенными IBM-совместимые компьютеры. По классам их можно подразделить на офисные компьютеры, сетевые рабочие станции, графические станции, файл-серверы, видео-серверы, компьютеры мультимедиа, Desktop, Laptop. Представители каждой группы имеют различные технические характеристики.

Эти небольшие на вид машины несут в себе огромный вычислительный потенциал, который нашел свое применение в системах автоматизированного проектирования, анимации, банковского дела, образования и многих других сферах. Так, например, Cray Research единственная компания, выпускающая вычислительную технику для научных высокопроизводительных вычислений. Современные дорогостоящие ЭВМ содержат по несколько десятков и даже сотен процессоров (например, MasPar MP-2 содержит 16000 процессоров) достигая при этом пиковой производительности в несколько сотен Мфлоп. Простые же ЭВМ содержат обычно один процессор (процессоры условно подразделяют на поколения 286,386,486,586” Pentium” ) , несколько мегабайт оперативной памяти (обычно она наращивается) , жесткий диск (постоянное запоминающее устройство - “винчестер” , емкость от нескольких Мб до нескольких Гбайт) , адаптеры видео-, мульти- и др. (для поддержания работы различных устройств, как монитор, винчестер и т.д.) . Все перечисленные устройства устанавливаются на материнскую плату, к ней от блока питания подается электрическая энергия и ЭВМ может работать. Это конечно не полный состав компьютера (на самом деле он намного сложнее) , но уже достаточно, чтобы представить себе его сущность.

Организационное обеспечение САПР

Стандарты по САПР требуют выделения в качестве самостоятельного компонента организационного обеспечения, которое включает в себя положения, инструкции, приказы, штатные расписания, квалифицированные требования и другие документы, регламентирующие организационную структуру подразделений проектной организации и взаимодействие подразделений с комплексом средств автоматизированного проектирования. Функционирование САПР возможно только при наличии и взаимодействии перечисленных ниже средств: а) математического обеспечения; б) программного обеспечения; в) информационного обеспечения; г) технического обеспечения; д) лингвистического обеспечения; е) методического обеспечения; ж) комплектование подразделений САПР профессиональными кадрами.

Теперь кратко разберёмся с назначением каждого компонента средств САПР.

Математическое обеспечение САПР. Основа - это алгоритмы, по которым разрабатывается программное обеспечение САПР. Среди разнообразных элементов математического обеспечения имеются инвариантные элементы-принципы построения функциональных моделей, методы численного решения алгебраических и дифференциальных уравнений, постановки экстремальных задач, поиски экстремума. Разработка математического обеспечения является самым сложным этапом создания САПР, от которого в наибольшей степени зависят производительность и эффективность функционирования САПР в целом.

Программное обеспечение САПР. Программное обеспечение САПР представляет собой совокупность всех программ и эксплуатационной документации к ним, необходимых для выполнения автоматизированного проектирования. Программное обеспечение делится на общесистемное и специальное (прикладное) ПО. Общесистемное ПО предназначено для организации функционирования технических средств, т.е. для планирования и управления вычислительным процессом, распределения имеющихся ресурсов, о представлено различными операционными системами. В специальном ПО реализуется математическое обеспечение для непосредственного выполнения проектных процедур.

Информационное обеспечение САПР. Основу составляют данные, которыми пользуются проектировщики в процессе проектирования непосредственно для выработки проектных решений. Эти данные могут быть представлены в виде тех или иных документов на различных носителях, содержащих сведения справочного характера о материалах, параметрах элементов, сведения о состоянии текущих разработок в виде промежуточных и окончательных проектных решений.

Техническое обеспечение САПР. Это создание и использование ЭВМ, графопостроителей, оргтехники и всевозможных технических устройств, облегчающих процесс автоматизированного проектирования.

Лингвистическое обеспечение САПР. Основу составляют специальные языковые средства (языки проектирования) . предназначенные для описания процедур автоматизированного проектирования и проектных решений. Основная часть лингвистического обеспечения - языки общения человека с ЭВМ.

Методическое обеспечение САПР. Под методическим обеспечением САПР понимают входящие в её состав документы, регламентирующие порядок ее эксплуатации. Причем документы, относящиеся к процессу создания САПР, не входят в состав методического обеспечения. Так в основном документы методического обеспечения носят инструктивный характер, и их разработка является процессом творческим.

Комплектование подразделений САПР профессиональными кадрами. Этот пункт предписывает комплектование подразделений САПР профессионально грамотными специалистами, имеющими навыки и знания для работы с перечисленными выше компонентами САПР. От их работы будет зависеть эффективность и качество работы всего комплекса САПР (может даже всего производства) .

Лекция 10. Математическое моделирование на ЭВМ физических процессов в электрической части электростанций различного типа

В настоящее время на электростанциях (ЭС) и в энергетических системах получают применение быстродействующие микропроцессорные устройства релейной защиты (РЗ), реагирующие на мгновенные значения величин. Для оценки поведения таких защит и выбора уставок их срабатывания требуются расчеты мгновенных значений токов и напряжений в электрических сетях, особенно это важно для мощных системных узлов, какими являются блочные электростанции с агрегатами единичной мощностью 200-800 МВт.

Существующие методики расчета токов коротких замыканий (КЗ) для выбора уставок РЗ, как правило основаны на использовании кривых затухания токов [I]. Приближенный учет параметров генераторов и других элементов системы, изменений их скоростей, особенностей систем возбуждения и некоторых других факторов при таком подходе не только вносит погрешности в расчеты токов КЗ, но, в ряде случаев, не позволяет оценить поведение защит (например, работу резервной максимальной токовой защиты генератора с системой самовозбуждения при близких КЗ).

Для решения вышеуказанных проблем разработана и реализована на ПЭВМ математическая модель типовой блочной электростанции показанной на рис 1

Рисунок 1 - Схема моделируемой электростанции 1

На станции имеется два уровня напряжения 110 и 330 кВ, соединенные автотрансформаторной связью. К системе шин 110 кВ присоединены два энергоблока турбогенератор-трансформатор мощностью 300 МВт каждый. К системе шин 330 кВ подключены два энергоблока по 300 МВт и три энергоблока по 800 МВт. Нз каждом блоке учтена двигательная нагрузка собственных нужд, включающая синхронные и асинхронные двигатели. От каждой системы шин отходят линии связи с электрической системой, а также тупиковая линия с активно-индуктивной нагрузкой. Генераторы 300 МВт снабжены системами самовозбуждения, генераторы 800 МВт - системами независимого возбуждения. Имеется возможность изменять загрузку генераторов, их кратность форсировки, состав двигателей собственных нужд, мощность электрической системы.

Математические модели генераторов, трансформаторов, двигателей, линий электропередачи описаны полными дифференциальными уравнениями Парка-Горева. Уравнения асинхронных двигателей записаны в неподвижных осях d и q. Уравнения трансформаторов и линий записаны в трехфазной системе координат а,Ь,с, учтена группа соединения блочных трансформаторов Y-Д с заземленной нейтралью. Уравнения генераторов и синхронных двигателей записаны в собственных осях d,q, зависящих от углового положения ротора. На каждом шаге производится пересчет переменных к осям а,Ь,с. Для учета вытеснения тока массивы роторов генераторов и двигателей представлены двумя эквивалентными демпферными контурами по каждой из осей d и q, а также обмоткой возбуждения по оси d для синхронных машин. Более подробное описание математических моделей элементов приведено в [2,3].

Для определения напряжений в узлах схемы используется метод Гаусса. Для определения токов в ветвях потокосцеплений вращающихся машин на каждом шаге расчета с помощью метода Рунге-Кутта система дифференциальных уравнений, записанных на основании первого закона Кирхгофа для производных токов. Режим короткого замыкания моделируется подключением шунта в месте КЗ.

Предлагаемая программа позволяет получать мгновенные значения токов, напряжений, мощностей в каждой фазе, а также обобщенные вектора этих параметров по трем фазам, углов, описывающих поведение системы; действующие значения токов и напряжений по трем фазам; токи и напряжения прямой, обратной и нулевой последовательностей.

Моделировались 1,2,3-фазные и 2-фазные на землю короткие замыкания на выводах генераторов, на системах шин 110 и 330 кВ, на секциях собственных нужд 6 кВ, на отходящих от шин линиях электропередачи.

Далее приведены некоторые осциллограммы, полученные при моделировании ЭС, аналогичной Углегорской. Полученные результаты сравнивались с имеющимися на Углегорской ТЭС расчетноэкспериментальными данными.

На рис. 2-4 показаны осциллограммы мгновенных значений токов в месте замыкания в каждой из фаз при возникновении в момент времени 0.02 с 3-фазного КЗ на шинах 110 кВ. Максимального значения 108.6 кА достигает ток в фазе С. Апериодическая составляющая в фазных токах к моменту отключения выключателей (0.2 с) еще имеет существенную величину.

Рисунок 2 - 3-фазное КЗ на шинах 110 кВ, ток в месте КЗ, фаза А

Рисунок 3 - 3-фазное КЗ на шинах 110 кВ. ток в месте КЗ. фаза В

Ток можно представить в виде вектора, вращающегося с синхронной скоростью в координатах a,b,c, проекции которого на оси в каждый момент времени являются мгновенными значениями тока в фазах a,b,c. Такой вектор называется обобщенным или результирующим. На рис. 3 показано, как изменяется его модуль при рассматриваемом КЗ. Амплитудное значение равно 108.6 кА. Начальное значение периодически составляющей 66.5 кА, а по расчетам, предоставленным Углегорской ТЭС, эта величина равна 67.83 kA. Соответствующие действующие значения токов при 3-фазном КЗ на шинах 330 кВ составляют 50.5 и 51.54 кА.

Разработанная модель позволяет рассмотреть поведение всех элементов электростанции при различий коротких замыканиях, получить токи и напряжения во всех ветвях схемы, определить мощности. Имея характер переходного процесса, можно рассчитать уставки релейной защиты, проанализировать работу установленных защит. Результаты, полученные при моделировании, согласуются с данными Углегорской ТЭС, что подтверждает адекватность модели.

Лекция 11. Повышение надежности электроснабжения

Выбор резервной электростанции

Современные системы электропитания объектов в основном строятся с использованием внешнего электроснабжения. Наряду с основными источниками электроснабжения следует иметь резервные источники. Обычно в качестве резервных источников используются электроагрегаты и электростанции (электроустановки) с двигателями внутреннего сгорания.

Наиболее широкое распространение получили электроустановки с дизельными и бензиновыми двигателями.

Преимуществом таких электроустановок является возможность быстрого ввода их в действие и постоянная готовность к работе.

К основным достоинствам электроустановок с ДВС следует отнести следующие:

1. Быстрота и надежность пуска в автоматическом режиме. Это значит, что электроустановка запускается, как правило, с 1-3 попытки за время не более 5 сек и за такое же время принимает нагрузку.

2. Возможность работать с перегрузкой. Любая электроустановка в соответствии с НТД должна выдерживать 10% -ную перегрузку по мощности в течение 1 часа (кроме случаев, оговариваемых особо в ТУ).

3. Высокая степень автоматизации, возможность работать без обслуживания продолжительное время.

4. Большой моторесурс -- до 18000 моточасов.

5. Сравнительно высокая экономичность и КПД.

Следует отметить, что оптимальный режим работы дизеля достигается при загруженности станции в диапазоне 75-90% от номинальной мощности. Недопустима длительная работа при загрузке менее 40% и более 100%.

Степени автоматизации

Устройства резервного питания на основе дизель-генераторных установок (ДГУ) выпускаются с ручным и автоматическим управлением. Последние по степени автоматизации подразделяются на: 8 1-я степень осуществляет защиту (останов) при перегрузке, коротких замыканиях, разносе, падении давления масла, снижении уровня охлаждающей жидкости. Обеспечивает работу ДГУ без обслуживающего персонала до 24 часов.

8 2-я степень кроме вышеуказанных защит предусматривает автоматический пуск (останов) ДГУ при отклонении параметров сети от заданных, контроль линейных напряжений, частоты потребляемых токов сети и генератора. Обеспечивает автономную работу ДГУ без вмешательства обслуживающего персонала до 50 часов.

8 3-я степень дополнительно выполняет функции подкачки топлива и масла, вентиляцию помещения, контроль за температурой в помещении, подогрев ДГУ. Обеспечивает работу ДГУ без обслуживающего персонала до 240 часов. Возможна поставка оборудования, обеспечивающего дистанционный контроль и управление ДГУ посредством ПЭВМ, а также программируемых микроконтроллеров.

Однофазные ДГУ выполняются на мощность 0,9-9,4 кВт. Как правило, пуск маломощных установок ручной. Обычно предусматривается защитный автомат, а также защита двигателя по давлению масла. У более мощных установок (у некоторых начиная с 4-х кВт) предусмотрен электростартер. Трехфазные электростанции средней мощности могут быть укомплектованы как дизельным, так и бензиновым двигателем. Более мощные -- только дизелями. Мощности предлагаемых дизельных ДГУ -- от 4 до 2250 кВт. Дополнительно для установок 30--100 кВт электростартер может быть заменен пусковым бензиновым двигателем. А на некоторых установках дополнительно может быть установлена резервная система пуска от сжатого воздуха.

Электростанции делятся на основные: для работы 24 часа в сутки, и резервные -- до 500 часов в год.

Особенности выбора электростанции

Для правильного выбора электростанции тщательно изучается характер потребителей электроэнергии и их требования к источнику электропитания, чтобы определить следующие данные: 1. Потребляемую мощность, напряжение, род тока, частоту тока, необходимую точность регулирования напряжения и частоты в различных режимах. Не следует завышать предполагаемую потребляемую мощность с необоснованно большим запасом «на перспективу».

2. Условия эксплуатации (транспортабельность, высота над уровнем моря, температура окружающей среды, относительная влажность воздуха, вид охлаждения, вид и сорт топлива).

3. Режим работы (длительный, кратковременный, повторно-кратковременный и т. д.).

По полученным данным, по справочникам, каталогам и техническим условиям подбирают необходимую электростанцию или группу электростанций. При этом возможен вариант параллельной работы электростанций.

Так как различные потребители электроэнергии обычно работают в разное время года и суток и при этом не всегда потребляют одинаковую мощность, то при определении необходимой мощности электростанции и режима ее работы строятся графики нагрузок.

Графики нагрузок строятся по расчетной максимальной нагрузке потребителей, которая определяется по формуле:

Рмакс = Кс х Ру

где

Ру - установленная мощность, равная суммарной номинальной мощности Рном потребителей в кВт;

Кс - коэффициент спроса.

Коэффициент спроса определяется опытным путем. Он учитывает степень одновременности работы потребителей, степень их загрузки и КПД,

где

Ко - коэффициент одновременности;

Кз - коэффициент загрузки;

hп - КПД потребителей;

hс- КПД сети.

Расчетная максимальная нагрузка в киловольтамперах определяется по формуле:

Для небольшого количества потребителей, зная их режим работы, значение Кс можно определить приближенно. В этом случае Ко и Кз принимают ориентировочно или находят в справочных данных, в каталогах и справочниках, a cos j принимают равным 0,94 -- 0,96.

При построении графика учитывают потери мощности в электросетях, передающих электроэнергию, и расход мощности на собственные нужды (освещение, вентиляция, охлаждение и др.). Потери мощности в сетях незначительны, потому что электростанции, как правило, располагаются недалеко от потребителей и трансформация энергии отсутствует. Эти потери могут быть как переменными, зависящими от нагрузки, так и постоянными и при значительном удалении потребителей принимаются в процентах от максимума суммарного потребления в следующих пределах:

а) переменные -- в сетях напряжением до 500 В: 3 - 5 %.

В сетях низкого напряжения при одновременном питании осветительной и силовой нагрузки: 7,5 %.

В сетях низкого напряжения с частыми пусками двигателей: 10 %;

б) постоянные (потери в стали трансформаторов), не зависящие от нагрузки: 1 - 3 %.

Мощность, расходуемая на собственные нужды, ориентировочно принимается равной 2 - 5 %. Примерно 40 % этой мощности является постоянной и 60 % - переменной.

Площадь суточного графика нагрузки в определенном масштабе определяет потребное количество электроэнергии в киловатт-часах за сутки.

По максимальным ординатам графиков, составленных для суток с максимальным потреблением, определяют максимум для нагрузки электростанции Рмакс. расч. и, следовательно, их необходимую мощность и количество.

Полученная мощность электростанции Рном проверяется на возможность пуска наиболее крупного (или нескольких) потребителя электроэнергии в наиболее тяжелых условиях. В том случае, если электростанция будет эксплуатироваться в более тяжелых условиях окружающей среды, чем расчетные, то их номинальная мощность уменьшается, что также необходимо учитывать. Следует учитывать, что мощность электростанции уменьшается в зависимости от высоты над уровнем моря. Так, при атмосферном давлении, равном 450 мм. рт. ст. (приблизительно 4000 метров над уровнем моря), мощность электроустановки с естественным всасыванием составит 60%, а с турбонаддувом - 85% от номинальной мощности.

Так же следует отметить, что увеличение температуры всасываемого воздуха на 10°С уменьшает мощность электроустановки приблизительно на 3%.

Повышение устойчивости работы электроагрегатов

Для обеспечения устойчивого электроснабжения потребителей необходимы конкретные рекомендации с учетом конструктивных особенностей оборудования, применяемого для резервного энергообеспечения. Такие рекомендации могут дать инжиниринговые фирмы с комплексным подходом к проблемам гарантированного электропитания (далее предлагаем оптимальные, на взгляд редакции, вопросы, ответы на которые являются основными техническими требованиями и позволяют сориентироваться при выборе ДЭС - см. ниже).

Общие рекомендации могут быть даны отдельно по системам резервных электроагрегатов:

· по системе впуска питания;

· по системе выпуска отработавших газов;

· по системе запуска;

· по системе контроля и автоматики, а также по станциям в целом.

Размещение электростанций и требования к производственным помещениям

Изготовители электростанций в обязательном порядке должны предоставлять руководства и рекомендации по установке и необходимые требования к помещениям.

После выбора электростанции следует подготовить план размещения. При этом необходимо учитывать следующие факторы:

· расположение для обеспечения доступа и обслуживания;

· нагрузку на пол;

· вибрацию, передаваемую зданию и на пол;

· вентиляцию помещения;

· расположение трубопровода для выхлопных газов двигателя и его изоляцию;

· шум;

· способ охлаждения двигателя;

· размер и место расположения топливного бака;

· параметры дымности и излучений.

Электроустановки можно располагать в подвале, на любом этаже здания, балконе, пристройке, на крыше.

Обычно для экономии и удобства обслуживания электроустановку располагают в подвальном помещении. Помещение генераторной должно быть достаточно большим для обеспечения необходимой циркуляции воздуха и прохода вокруг установки для ее обслуживания.

При необходимости расположения электроустановки снаружи здания необходимо поместить ее в защитный кожух (контейнер). Кожух, как правило, служит не только для защиты электроустановки от атмосферного воздействия, но и выполняет функцию защиты от несанкционированного доступа. Соответствующие кожуха могут использоваться для уменьшения акустического шума и вибрации, неизбежных при работе электроустановки.

Не следует забывать, что воздушный поток в основном направлен через радиатор из установки, и поэтому не следует располагать перед радиатором предметы, создающие преграду воздушному потоку. По этой же причине не следует контейнер с электроустановкой ставить радиатором к стене. Если это технически трудновыполнимо, следует устроить выносной радиатор или организовать тоннель для отвода воздуха, применив лопатки для направления воздушного потока. После прочтения данного материала может создаться впечатление, что резервная электроустановка является сложным механизмом требующим к себе постоянного и неотрывного внимания, сложна в установке и эксплуатации. Однако это далеко не так. Как правило, грамотно выбранная и квалифицированно установленная электроустановка, эксплуатируемая подготовленным персоналом, никаких сложностей в эксплуатации не вызывает и благодаря малой наработке очень долго служит без ремонта.

Лекция 12. Подстанции 110-750 кВ

Защита оборудования от перенапряжений

Часто причиной выхода из строя подстанционного оборудования является наличие в сети импульсов перенапряжений, вызываемых различными источниками.

Основными аппаратами, защищающими от перенапряжений, долгие годы являлись вентильные разрядники. Но они морально и конструктивно устарели, и еще в конце прошлого века вышел Приказ РАО «ЕЭС России» № 120 от 01.07.98 «О мерах по повышению взрывопожаробезопасности энергетических объектов», которым предписывалось осуществить замену вентильных разрядников на ограничители перенапряжений. В силу многих причин он не был выполнен, и лишь в последние годы энергосистемы начали работу в этом направлении.

В процессе эксплуатации оборудование подстанций (ПС) подвергается воздействию рабочего напряжения, а также различных видов перенапряжений. В случае возможности превышения допустимой величины и длительности какого-либо из воздействий на оборудование необходимо принять меры по их ограничению. К таким мерам относятся:

· установка на ПС специальных защитных аппаратов (ЗА) - вентильных разрядников (РВ) и нелинейных ограничителей перенапряжений (ОПН). Указанные аппараты предназначены для защиты оборудования ПС от грозовых и коммутационных перенапряжений, но не от квазистационарных (феррорезонансные перенапряжения, резонансное смещение нейтрали);

· схемно-режимные мероприятия, направленные на снижение тех видов перенапряжений, для ограничения которых ОПН и РВ не предназначены и которые могут привести к повреждению оборудования ПС (в том числе и самих ЗА).

При построении (или модернизации уже существующих) схем защиты оборудования ПС от перенапряжений с помощью ОПН и РВ необходимо решать две основные, тесно связанные друг с другом задачи:

· выбор количества, мест установки и характеристик ЗА, которые обеспечат надежную защиту основного оборудования ПС;

· обеспечение надежной работы самих ЗА.

Необходимо иметь в виду, что вентильные разрядники уже сняты с производства, а использующиеся в большинстве случаев отслужили свой нормативный срок. Поэтому замена РВ возможна лишь на современные ОПН. И при модернизации существующих схем защиты необходимо решать дополнительную задачу по выбору характеристик ОПН, предназначенных для замены устаревших РВ.

О настройках защитных аппаратов и месте ИХ установки

Как мы уже сказали, защита высоковольтного оборудования ПС от грозовых и коммутационных перенапряжений осуществляется с помощью вентильных разрядников и ограничителей перенапряжений.

Для оборудования сетей номинальным напряжением 110-220 кВ наибольшую опасность представляют грозовые перенапряжения, для оборудования сетей 330-750 кВ - как грозовые, так и коммутационные. Поэтому в сетях 110-220 кВ вольт-секундные характеристики искровых промежутков РВ выбирались так, чтобы разрядники типа РВС, РВМ, РВМГ не срабатывали при воздействии коммутационных перенапряжений; разрядники для сетей 330-750 кВ (типа РВМК) настраивались на срабатывание при воздействии как грозовых, так и коммутационных перенапряжений.

Так как нелинейные элементы ОПН постоянно присоединены к сети, то при использовании ограничителей перенапряжений вместо разрядников защита изоляции электрооборудования, вне зависимости от номинального напряжения сети (110-750 кВ), будет производиться и от грозовых, и от коммутационных перенапряжений.

Защитные аппараты на ПС могут быть установлены:

· в цепи трансформатора, автотрансформатора;

· у шунтирующего реактора;

· на шинах распределительного устройства ПС (например, у шинных измерительных трансформаторов напряжения);

· на концах присоединенных к ПС линий.

При защите ПС от перенапряжений одной из требующих решения задач является обеспечение надежности самих защитных аппаратов, т.е. ОПН и РВ. Иными словами, характеристики установленных на подстанциях защитных аппаратов должны быть согласованы с эксплуатационными воздействиями на них. Основными характеристиками защитных РВ и ОПН являются [1]:

· наибольшее рабочее напряжение аппарата;

· амплитуда импульса тока пропускной способности или удельная энергоемкость аппарата;

· характеристика «напряжение-время»;

· номинальный разрядный ток грозового импульса;

· ток взрывобезопасности.

Превышение значений какого-либо из этих воздействий может стать причиной повреждения аппарата. Даже в случае, если защитный аппарат и не выйдет из строя непосредственно после такого воздействия, его ресурс будет снижен относительно расчетного и соответственно срок службы сократится.

О вентильных разрядниках

Искровые промежутки вентильных разрядников отделяют нелинейные резисторы РВ от сети. При воздействии на вентильный разрядник перенапряжения, превышающего пробивное напряжение его искровых промежутков, происходит их пробой, и нелинейный резистор присоединяется к сети, обеспечивая снижение перенапряжения. После прохождения через разрядник импульсного тока, вызванного перенапряжением, через нелинейный резистор протекает так называемый «сопровождающий» ток, обусловленный воздействием на РВ рабочего напряжения сети. При переходе сопровождающего тока через ноль дуга в искровых промежутках гаснет и разрядник приходит в исходное состояние.

Значительно большая нелинейность окисно-цинковых сопротивлений (варисторов) ограничителей перенапряжений позволила отказаться от использования в их конструкции искровых промежутков.

Нелинейные элементы ограничителя перенапряжений присоединены к сети в течение всего срока его службы. При воздействии рабочего напряжения через ОПН протекает ток порядка нескольких миллиампер, который носит в основном емкостный характер. При перенапряжениях сопротивление ОПН существенно падает, что приводит к резкому увеличению активной составляющей тока через аппарат. В итоге в варисторах ОПН рассеивается избыточная энергия перенапряжений, возникающих в защищаемой сети.

...

Подобные документы

  • Назначение и виды заземлений. Грунт, его структура и электропроводность. Выбор режима нейтрали в электрических сетях. Требования, предъявляемые к заземляющему устройству в отношении величины сопротивления. Схема замещения протяжённого заземлителя.

    контрольная работа [487,3 K], добавлен 13.07.2013

  • Виды режима нейтрали в трехфазных электрических сетях переменного тока. Особенности резистивного заземления нейтрали в системах с различными номинальными напряжениями. Меры электробезопасности при эксплуатации трехфазных систем переменного тока до 1 кВ.

    презентация [1,2 M], добавлен 10.07.2015

  • Параллельная работа синхронного генератора с сетью, регулирование его активной и реактивной мощности. Построение векторных диаграмм при различных режимах нагрузки. Схема подключения синхронного генератора к сети с помощью лампового синхроноскопа.

    контрольная работа [92,0 K], добавлен 07.06.2012

  • Порядок проектирования электрической части станции, выбор мощности и типов трансформаторов и электрической схемы ГПП. Расчет токов при КЗ и при нормальных режимах работы. Правила и порядок проверки каждого аппарата при различных условиях режима работы.

    курсовая работа [488,4 K], добавлен 22.08.2009

  • Анализ нормативной документации способов заземления нейтрали. Определение емкостных токов замыкания на землю. Анализ режимов работы экранов кабельной сети при различных режимах работы сети. Методика выбора числа и мощности компенсирующих аппаратов.

    курсовая работа [1,3 M], добавлен 22.01.2011

  • Приемники электрической энергии. Качество электрической энергии и факторы, его определяющие. Режимы работы нейтрали. Выбор напряжений, числа и мощности силовых трансформаторов, сечения проводов и жил кабелей, подстанций. Компенсация реактивной мощности.

    курс лекций [1,3 M], добавлен 23.06.2013

  • Конструкция, принцип действия, надежность и области применения вакуумных выключателей. Особенности вакуума при гашении электрической дуги. Общая характеристика и проверка работы дугогасительных камер BB/TEL, сущность процесса их включения и отключения.

    лабораторная работа [866,0 K], добавлен 30.05.2010

  • Расчёт электрической части подстанции путем определения суммарной мощности ее потребителей, заземляющего устройства электроустановок, выбора силовых трансформаторов электрических аппаратов, устройств защиты оборудования от перенапряжения и грозозащиты.

    контрольная работа [38,2 K], добавлен 19.12.2011

  • Потери электрической энергии при ее передачи. Динамика основных потерь электроэнергии в электрических сетях России и Японии. Структура потребления электроэнергии по РФ. Структура технических и коммерческих потерь электроэнергии в электрических сетях.

    презентация [980,8 K], добавлен 26.10.2013

  • Оценка, выбор схемы электрических соединений станций и подстанций. Выявление условий работы потребителей при аварийных режимах. Выбор аппаратов и проводников, их проверка по условиям работы при коротких замыканиях. Устройство релейной защиты и автоматики.

    дипломная работа [1,1 M], добавлен 05.09.2010

  • История создания, разновидности и срок службы трансформаторов. Конструкция и базовые принципы их действия. Преобразование электрической энергии в электросетях и установках, принимающих и использующих ее. Режимы работы, перенапряжение трансформатора.

    курсовая работа [68,2 K], добавлен 14.07.2015

  • Простота устройства, большая надежность и низкая стоимость асинхронных двигателей. Принцип действия асинхронной машины и режимы ее работы. Получения вращающегося магнитного поля. Устройство синхронной машины, холостой ход синхронного генератора.

    презентация [443,8 K], добавлен 12.01.2010

  • Расчет параметров заданной электрической сети и одной из выбранных трансформаторных подстанций. Составление схемы замещения сети. Расчет электрической части подстанции, электромагнитных переходных процессов в электрической сети и релейной защиты.

    дипломная работа [1,0 M], добавлен 29.10.2010

  • Повышение мощности крупных электрических машин. Увеличение коэффициента полезного действия. Повышение уровня надежности. Модернизация узла токосъема (контактных колец-щеток), экскаваторного электропривода для тяжелых электрических карьерных экскаваторов.

    курсовая работа [247,7 K], добавлен 30.01.2016

  • Структура потерь электроэнергии в электрических сетях, методы их расчета. Анализ надежности работы систем электроэнергетики методом Монте-Карло, структурная схема различного соединения элементов. Расчет вероятности безотказной работы заданной схемы СЭС.

    контрольная работа [690,5 K], добавлен 26.05.2015

  • Конструкция, принцип действия, технические данные и сфера применения малообъёмных масляных и вакуумных выключателей. Назначение рабочих и дугогасительных контактов. Принцип работы дугогасительной камеры при отключении масляным выключателем малых токов.

    лабораторная работа [1,9 M], добавлен 29.05.2010

  • Установившийся режим трехфазного короткого замыкания синхронного генератора. Физические явления при внезапном трехфазном коротком замыкании в цепи синхронного генератора без автоматического регулятора напряжения. Процессы изменения магнитных потоков.

    лекция [76,5 K], добавлен 11.12.2013

  • Конструкция синхронного генератора и приводного двигателя. Приведение генератора в состояние синхронизации. Способ точной синхронизации. Процесс синхронизации генераторов с применением лампового синхроноскопа. Порядок следования фаз генератора.

    лабораторная работа [61,0 K], добавлен 23.04.2012

  • Понятие переходных процессов в электрических системах и причины, их вызывающие. Определение шины неизменного напряжения. Расчеты симметричного (трёхфазного) и несимметричного (двухфазного на землю) коротких замыканий в сложной электрической системе.

    курсовая работа [5,3 M], добавлен 15.05.2012

  • Требования к прокладке кабелей через палубы и переборки. Определения допустимой величины износа коллекторных пластин. Правила использования плавких вставок. Принцип работы синхронного генератора. Допустимые нормы сопротивления изоляции для защитных щитов.

    шпаргалка [2,6 M], добавлен 29.06.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.