Особенности акустики
Звукоизоляционные и звукопоглощающие материалы. Характеристика строительной конструкции с точки зрения акустических свойств. Акустический комфорт в помещении и классы звукопоглощающих материалов. Декоративно-отделочные звукопоглощающие конструкции.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 27.10.2017 |
Размер файла | 26,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Белорусский Государственный Университет
Факультет радиофизики и компьютерных технологий
Реферат
На тему: "Особенности акустики"
Подготовил: студент 1 курса 10 группы
Павловский Дмитрий
Преподаватель: Янукович Татьяна Петровна
Содержание
Введение
1. Звукоизоляционные и звукопоглощающие материалы
2. Акустический комфорт в помещении
3. Классы звукопоглощающих материалов
4. Выбор звукопоглощающего материала
5. Отличительные свойства каменной ваты ROCKWOOL
6. Звукопоглощающие плиты ROCKWOOL АКУСТИК БАТТС
Заключение
Использованная литература
Введение
Для описания звуковых полей в акустике широко используется звуковое давление p, измеряемое в Паскалях (Па). Так же как и применительно к электрическим величинам в звукотехнике, здесь обычно оказывается удобнее пользоваться логарифмической шкалой. При этом вводится понятие уровня звукового давления (УЗД) L=20 lg (p/p0), где p0 = 2 х 10-5 Па - звуковое давление на пороге слышимости. Весьма часто УЗД измеряют (или вычисляют) в отдельных частотных полосах. Наибольшее распространение получили октавные или 1/3 октавные полосы с относительно постоянной шириной полосы. Среднегеометрические (ниже в тексте для краткости - средние) частоты этих полос регламентированы международными и отечественными стандартами. Предпочтительный ряд средних частот для октавных полос: ...125, 250, 500,... Гц; для 1/3 октавных полос: ...125, 160,200, 250,... Гц. Помимо указанных узких частотных полос применяется и широкополосная коррекция, форма которой обозначается буквами A, B, C,... и также строго регламентирована. Наиболее часто из них применяется кривая A. При ее использовании говорят об уровнях звука по кривой A и вводят обозначение дБA.
Для оценки способности материала или конструкции поглощать звуковую энергию используют, в частности, понятие коэффициента звукопоглощения (КЗП). Он равен отношению поглощенной данным материалом звуковой энергии ко всей падающей на материал звуковой энергии, т.е. a = Е(погл)/Е(пад). Таким образом, в экстремальных случаях, a = 1 когда вся звуковая энергия полностью поглощается материалом, и a = 0, когда вся звуковая энергия полностью отражается от материала. КЗП определяют в октавных (реже в 1/3 октавных) полосах, используя обычно диапазон от 125 до 4000 Гц. Иногда в справочной литературе можно встретить значения КЗП большие, чем 1. Казалось бы, это физически некорректный результат, т.к. поглощенная энергия оказывается больше падающей. Фактически, разумеется, принцип сохранения энергии нарушен быть не может, и величины > 1 связаны лишь с особенностями измерения КЗП при размещении материала в реверберационной камере.
Одним из важнейших понятий акустики помещений является время реверберации Т. Под этой величиной подразумевается временной интервал, в течение которого УЗД в помещении падает на 60 дБ после выключения звукового источника. Величины Т, так же как и КЗП, измеряют (или вычисляют) в октавных или 1/3 октавных полосах.
1. Звукоизоляционные и звукопоглощающие материалы
Разделение акустических материалов на «звукоизоляционные» и «звукопоглощающие» достаточно условно, имеет много оговорок и исключений. Это порождает множество разночтений и ошибок, на практике приводящих к неправильным решениям в проектировании и строительстве объектов.
Дело в том, что любая строительная конструкция сточки зрения акустических свойств может характеризоваться двумя параметрами: показателями звукоизоляции и звукопоглощения. Данные свойства определяются разными физическими величинами: децибелами (дБ) для звукоизоляции и безразмерным коэффициентом звукопоглощения () для оценки звукопоглощающих качеств конструкций.
Характеристика звукоизоляции в общем случае показывает перепад между уровнями звукового давления с двух сторон оцениваемой конструкции, тогда как коэффициент звукопоглощения показывает отношение звуковой энергии, «поглотившейся» в конструкции, к общему количеству энергии, попавшему на поверхность данного материала. Из этого следует, что «звукоизоляция» оценивает способность ограждающей поверхности препятствовать проникновению шума из помещения, либо наоборот, извне. И чем больше значение звукоизоляции, тем тише будет с другой стороны звук.
При этом “зона ответственности” коэффициента поглощения находится внутри того же помещения, где звук был излучен. Диапазон значений коэффициента находится в интервале от 0 до 1. Значение = 0,95 показывает, что 95% звуковой энергии на данной частоте необратимо перешло в тепло, и только 5% отраженного звука от данной поверхности отразилось от поверхности назад в помещение.
Материалы и конструкции с выраженными высокими значениями одного из вышеуказанных параметров (дБ или а), как правило, заносят в соответствующий подкласс акустических материалов. В качестве примера можно упомянуть стекло- или минераловолокнистые плиты. При толщине более 30 мм они обладают высокими значениями коэффициента звукопоглощение в широкой полосе частот. При этом их собственная звукоизоляция достаточно скромна. Поэтому они на протяжении длительного времени являются «лицом» подкласса звукопоглощающих материалов.
Так как коэффициент звукопоглощения в значительной степени зависит от физических свойств лицевой поверхности материала, звукопоглощающие материалы также подразделяются на «неотделочные» и «отделочные». Отделочные, помимо высоких акустических свойств, имеют лицевое покрытие, выполняющее декоративные функции и участвующее в дизайне интерьера помещения. С точки зрения классификации роль такого материала определена более строго - он, как изначально более дорогой и уже функционально определенный, никогда не применятся в качестве элемента звукоизоляционных конструкций. Задача материалов такого рода одна - поглощать в помещении отраженный звук.
2. Акустический комфорт в помещении
Даже если полностью изолировать помещение от проникающего шума извне, это не является гарантией акустического комфорта внутри. Само понятие «акустического комфорта» в зависимости от типа и назначения помещения содержит в себе наборы разных, иногда противоположных друг другу условий. Например, акустический комфорт в помещении вестибюля общественного помещения или торгового комплекса предполагает достаточно сильную «заглушенность», для того чтобы большое количество находящихся там людей не мешали друг другу разговорами и не утомлялись от постоянного шума. При этом в зрительном зале театра зрителю, сидящему перед балконом в конце партера, хочется быть «вовлеченным» в процесс, происходящий на сцене, что при сильном «заглушении» зала и отсутствии полезных отражений становится невозможным. При этом слишком гулкий зал спортивного сооружения непригоден для проведения в нем концертных мероприятий, потому что отраженный звук перекрывает и размазывает прямой звук, идущий со сцены.
Наконец, для хорошего звучания многоканального звука Dolby стены помещения кинотеатра должны возвращать минимум отраженного звука, тогда как в комнатах прослушивания или тон-залов студий, поверхности помещений кропотливо «настраиваются» подобно музыкальным инструментам и они должны сочетать в себе тонкий баланс - отраженного и поглощенного звука.
При выполнении акустического проектирования, как правило, решается одна из двух типовых задач. Либо требуется рассчитать оптимальное количество звукопоглощающего материала, применение которого на доступных поверхностях помещения позволит максимально снизить гулкость в пропорции: эффект/затраты. К числу таких объектов принадлежат торгово-развлекательные комплексы, спортсооружения, общественные помещения и т.п. Либо же речь идет о подробном перечне материалов и конструкций с указанием точных мест их размещения, позволяющих решать задачи сбалансированной акустики объекта. В данном списке концертные и театральные залы, клубы, кинотеатры, студии и Hi-End комнаты.
3. Классы звукопоглощающих материалов
Звукопоглощающими называют материалы, применяемые для внутренней отделки помещений с целью улучшения акустических свойств последних. Основной целью применения звукопоглощающих материалов является снижение слышимых шумов в промышленных и общественных зданиях.
Звукопоглощающие материалы способны обеспечивать требуемую продолжительность реверберации в помещениях различного назначения, причем коэффициент звукопоглощения, измеренный в диффузном поле (в реверберационной камере при непосредственном размещении материала или изделия на жестком основании) в частотных полосах 125…500, 500…2000 и 2000…8000 соответственно не ниже 0,2; 0,4 и 0,6. Под реверберацией понимают наличие постепенно затухающего в закрытом помещении звука вследствие повторных отражений после прекращения звучания. Время реверберации в зависимости от вида помещений и частот составляет 0,2…2 с.
Звукопоглощающие материалы применяют для равномерного распределения уровней полезного сигнала по площади в данном помещении, а также для предотвращения распространения звука вдоль длинных помещений. звукопоглощающий акустический комфорт помещение
По характеру поглощения звука звукопоглощающие материалы делят: на пористые с твердым скелетом, в которых звук поглощается в результате вязкого трения в порах, при этом звуковая энергия переходит в тепло (пеностекло, газобетон и другие пористые материалы с твердым скелетом); пористые с гибким скелетом, в которых кроме резкого трения в порах возникают релаксационные потери, связанные с деформацией нежесткого скелета (минеральная, скелетная, базальтовая и хлопковая ваты; древесноволокнистые плиты и другие, аналогичные по характеру, материалы); панельные материалы и конструкции, звукопоглощение которых обусловлено активным сопротивлением системы, совершающей вынужденные колебания под действием падающей звуковой волны (тонкие панели из фанеры, жесткие древесноволокнистые плиты, звуконепроницаемые ткани и т. п.). Звукопоглощение пористых материалов можно увеличить также посредством устройства воздушного слоя между ограждающей конструкцией и ими.
По структуре различают звукопоглощающие материалы:
1. пористо-зернистые
2. пористо-волокнистые
3. пористо-губчатые;
а по степени твердости скелета их делят на:
1. мягкие
2. полужесткие
3. жесткие
4. твердые.
В зависимости от вида звукопоглощающие материалы бывают в виде плит, рулонов и сыпучих материалов; их используют также в виде штукатурки, имеющей гладко-пористую структуру, перфорированную и бороздчатую.
Один из главных критериев, оценивающих акустическое качество помещения, - это время реверберации (RT60). При большом его значении искажается восприятие музыки, уменьшается разборчивость речи, при очень малом - появляется эффект «безжизненности» помещения, «сухости» воспроизводимых произведений. Обеспечить оптимальное время реверберации (или регулировать его) в большинстве случаев позволяют современные акустические материалы и конструкции, с помощью которых создается дополнительное поглощение звука в помещении.
Для обеспечения необходимого звукопоглощения наибольшее внимание уделяется потолочному пространству. Поэтому уже довольно давно выпускаются «акустические» потолки, поглощающие звук. В больших помещениях, где для улучшения акустики не хватает одного только потолочного пространства, рекомендуется также использовать звукопоглощающие стеновые панели.
К техническим характеристикам потолочных и стеновых звукопоглотителей относятся: акустические и гигиенические показатели, влагостойкость, пожарно-технические характеристики, ударопрочность, светотехнические показатели и долговечность.
В настоящее время существуют материалы, которые пригодны для решения не только одной задачи, но и целого комплекса требований, скажем для обеспечения необходимой акустики в помещениях с повышенной влажностью, например в бассейне. При этом, естественно, данные системы обязаны решать еще и художественные задачи по формированию интерьера.
Выбор акустического материала потолка или стен зависит от разных параметров: назначения помещения, его объема, цены материала, интерьерных особенностей и др., а также от того, какую именно область частотного диапазона нужно корректировать.
С точки зрения поглощения акустические материалы можно разделить следующим образом:
1. средне-высокочастотные поглотители
2. низкочастотные поглотители
3. широкополосные поглотители.
К средне-высокочастотным поглотителям относятся:
пористые материалы в виде плит, изготовленных из легких пористых материалов;
волокнистые материалы, выполненные также в виде плит, изготовленных из минеральной или стекловаты, синтетических либо древесных волокон. Лицевая поверхность данных материалов может быть обработана специальными красками (пористыми), пропускающими воздух, покрыта акустически прозрачными тканями или неткаными материалами, а также в случае отсутствия окрасочного или тканевого слоя может иметь наружную защиту из перфорированного материала (металла, дерева и др.)
Коэффициент поглощения данных материалов находится в пределах 0,4 - 1,0 в диапазоне средних/высоких частот (500 Гц - 4 кГц).
Низкочастотные поглотители:
- перфорированные материалы в виде тонких панелей с различной степенью перфорации, которые могут быть изготовлены из гипсовых плит, МДФ, дерева и др.;
-резонансные конструкции из пористых/волокнистых материалов перфорированных/тканевых экранов и воздушного зазора.
Коэффициент поглощения данных материалов находится в пределах 0,3 - 1,0 в диапазоне низких частот (63 - 500 Гц).
Поглотители в широком диапазоне частот:
- многослойные резонансные конструкции, состоящие из нескольких параллельных экранов с разной степенью перфорации и воздушным зазором разной толщины;
перфорированные конструкции из перфорированных материалов и пористых поглотителей. В данном случае частотную характеристику поглощения можно регулировать подбором пористого материала и изменением воздушного зазора.
4. Выбор звукопоглощающего материала
Инструментами, позволяющими эффективно регулировать акустику помещения, являются декоративно-отделочные звукопоглощающие материалы и конструкции. При этом звукоизоляционные материалы должны выполнять две главные функции - предотвращать колебания звуковой волной преграды (например, межкомнатной перегородки), а также, по возможности, поглощать и рассеивать звуковую волну. На сегодняшний день на российском рынке представлен широкий спектр таких изделий. Такие материалы бывают как натурального происхождения (изделия на основе каменной ваты, каолиновая вата, вспученный перлит, целлюлозная вата, маты из льняной пакли, пробковый лист), так и синтетического (пенополиэстр, пенополиуретан, пенополистирол и пр.).
В принципе, все перечисленные материалы рекомендованы для использования в качестве звукоизоляции офисных помещений. Но хотелось бы остановиться на некоторых нюансах. Еще совсем недавно пробковое покрытие очень широко применялось в качестве звукоизолятора. Однако, по мнению специалистов, фактически пробка эффективна только против так называемого "ударного шума" (возникающего в результате механического воздействия на элементы строительных конструкций), и не обладает универсальными звукоизоляционными характеристиками. То же касается и различных синтетических вспененных материалов. Они довольно привлекательны с точки зрения простоты использования, но в большинстве своем не отвечают современным требованиям к звукоизоляции общественных зданий, а кроме того, зачастую не соответствуют требованиям пожарной безопасности. Поэтому в настоящее время на первый план выходят универсальные звукоизоляционные материалы на основе природного сырья, например, изделия на основе каменной ваты. Их отличные звукоизоляционные свойства определяет специфическая структура - хаотично направленные тончайшие волокна при трении друг о друга превращают энергию звуковых колебаний в тепловую. Применение таких утеплителей значительно снижает риск возникновения вертикальных звуковых волн между поверхностями стены, сокращая время реверберации, и, тем самым, снижая звуковой уровень в соседних помещениях.
5. Отличительные свойства каменной ваты ROCKWOOL
Высокая теплоизолирующая способность. Применение материалов из каменной ваты Роквул (ROCKWOOL) позволяет создать комфортные условия внутри помещения - хорошо сохранять тепло зимой и прохладу летом. Теплоизоляционные материалы нужно сравнивать по расчетным коэффициентам, т. к. теплопроводность в сухом состоянии у разных материалов может быть одинакова. Расчетные коэффициенты теплоизоляции ROCKWOOL - одни из лучших в своем классе (0,039-0,045 Вт/м К). Т.е. изделия из каменной ваты ROCKWOOL обладают высокими теплоизоляционными свойствами. При повышенных температурах технические характеристики изделий из каменной ваты остаются очень высокими. Благодаря этому изделия из каменной ваты производства компании ROCKWOOL могут препятствовать не только распространению огня и высоких температур, но и защищать конструкции из горючих материалов.
Негорючесть. Каменные волокна материала способны выдерживать, не плавясь, температуру свыше 1000 °С. В то время как связующий компонент испаряется при температуре 250 °С, волокна остаются неповрежденными, связанными между собой, сохраняя свою прочность и обеспечивая защиту от огня. Изделия ROCKWOOL являются негорючим материалом (класс пожарной опасности КМ0). Это их свойство позволяет при пожарах препятствовать распространению пламени, а также на определенное время задерживать процесс разрушения несущих конструкций зданий. Обладая абсолютной пожарной безопасностью, изоляционные материалы ROCKWOOL применяются в конструкциях зданий любых типов и назначений: и в одноэтажных коттеджах, и в высотных строениях, в том числе в детских дошкольных и учебных учреждениях, к которым предъявляются повешенные требования пожарной безопасности.
Устойчивость к деформациям. Это, прежде всего, отсутствие усадки на протяжении всего срока эксплуатации материала. Сопротивляемость механическим воздействиям - это так же очень важная характеристика теплоизоляции. Если материал не способен сохранять необходимую толщину при механических воздействиях, его изоляционные свойства теряются. Часть волокон нашего материала расположена вертикально, в результате чего общая структура не имеет определенного направления, что обеспечивает высокую жесткость теплоизоляционного материала.
Звукоизоляция. Благодаря своему строению - открытой пористой структуре - каменная вата обладает отличными акустическими свойствами: улучшает воздушную звукоизоляцию помещения, звукопоглощающие свойства конструкции, сокращает время реверберации, и, тем самым, снижает звуковой уровень шума в соседних помещениях.
Водоотталкивание и паропроницаемость. Каменная вата ROCKWOOL обладает превосходными водоотталкивающими свойствами, что вместе с отличной паропроницаемостью позволяет легко и эффективно выводить пары из помещений и конструкций на улицу. Эти свойства позволяют создать благоприятный внутренний климат помещений, а так же всей конструкции в целом и теплоизоляции в частности работать в сухом состоянии. Ведь, как известно, влага хорошо проводит тепло. Попадая в теплоизоляционный материал, она заполняет воздушные поры. При этом теплозащитные свойства влажного материала заметно ухудшаются. А влага, попавшая на поверхность материала ROCKWOOL, не проникает в его толщу, благодаря чему он остается сухим, сохраняет свои высокие теплозащитные свойства.
Экологичность. Теплоизоляция - один из немногих промышленных продуктов, позитивно влияющих на окружающую среду. Она значительно снижает потребление энергии, необходимой для промышленного процесса и содержания здания в теплом или холодном состоянии. За время эксплуатации теплоизоляция ROCKWOOL экономит энергии в 100 раз больше, чем затрачено на ее производство, переработку и транспортировку.
6. Звукопоглощающие плиты ROCKWOOL АКУСТИК БАТТС
Специально для обеспечения акустического комфорта в собственном доме, в общественных местах, на рабочем месте компания ROCKWOOL разработала новый продукт - звукопоглощающие плиты из каменной ваты АКУСТИК БАТТС.
В виде плит различной толщины они применяются для звукоизоляции помещений всех типов. Среди них есть универсальные материалы для повышения звукоизоляции стен, пола и потолков. Например, ROCKWOOL АКУСТИК БАТТС плотностью 40 кг/м3; конструкции с использованием которого обеспечивают индекс звукоизоляции до 60 дБ.
Заключение
Звукоизоляция стен и перекрытий в квартире невозможна без учета конструктивных и функциональных особенностей каждой комнаты. Например, в спальне или в детской необходимо обеспечить максимальный уровень защиты от проникновения шума, помещения, в которых установлено работающее оборудование требуют усиленного поглощения вибраций, а там где будет расположена аудио- или видеотехника следует обеспечить максимальное сохранение и качество звука. Внешний вид материалов тоже имеет значение. Сегодня существует множество дизайнерских решений, позволяющих сделать систему шумопоглощения не только эффективной, но и эстетически привлекательной.
Использованная литература
1. http://www.rockwool.ru/
2. http://www.kvaleton.ru/Heradesign_index.html
3. http://www.zya.ru/article/article_2495_2.asp
4. http://porolon555.ru/content/akustika-studii
5. http://bibliotekar.ru/
Размещено на Allbest.ru
...Подобные документы
Акустическое проектирование помещения ночного клуба. Требуется коррекция звукоизоляции помещения (уровень шума вблизи клуба превышает нормативные значения). Определение требуемого количества поглощения, подбор и размещение звукопоглощающих материалов.
курсовая работа [839,0 K], добавлен 22.12.2010Изучение понятия теплоизоляции. Рассмотрение особенностей конструкции органических и неорганических теплоизоляционных материалов. Неметаллические конструкционные материалы и их применение. Отношение данных материалов к действию воды и высоких температур.
реферат [27,3 K], добавлен 25.05.2015Характеристика кристаллической структуры оксида титана с точки зрения кристаллографических и кристаллофизических свойств. Расчет рентгенограмм для двух материалов: диоксида олова и теллурида свинца. Пиролитический и пьезоэлектрический эффект в кристаллах.
курсовая работа [1,1 M], добавлен 24.06.2011Электрические линии задержки: понятие и функциональные особенности, внутренняя структура и принцип действия. Методика разработки многоотводной линии задержки на поверхностных акустических волнах с заданными характеристиками, анализ эффективности.
курсовая работа [96,3 K], добавлен 12.06.2013Теория диэлектрических волноводов. Анализ распространения волн в плоском оптическом волноводе с геометрической точки зрения и с точки зрения электромагнитной теории. Распределение электромагнитного поля и зависимость свойств волновода от его параметров.
курсовая работа [5,4 M], добавлен 07.05.2012Особенности использования магнитомягких материалов для постоянных и низкочастотных полей. Определение свойств ферритов и магнитодиелектриков. Применение магнитострикционных материалов для изготовления сердечников электромеханических преобразователей.
реферат [25,2 K], добавлен 30.08.2010Приёмники акустических сигналов: микрофоны, гидрофоны и стереоскопы. Электронные устройства перехвата речевой информации. Основные характеристики и возможные способы внедрения акустических закладок. Физика инфракрасного излучения, его основные источники.
реферат [129,9 K], добавлен 07.03.2011Вычисление геометрических отражений как способ контроля правильности выбора формы помещения и очертаний его внутренних поверхностей. Определение дополнительных акустических параметров зала. Частотный анализ звукового поля. Расчет времени реверберации.
контрольная работа [2,1 M], добавлен 12.09.2014Определение размеров поперечных сечений стержней, моделирующих конструкцию робота-манипулятора. Вычисление деформации элементов конструкции, линейного и углового перемещения захвата. Построение матрицы податливости системы с помощью интеграла Мора.
курсовая работа [255,7 K], добавлен 05.04.2013Разработка строительно-акустических методов снижение шума. Определение основных объемно-планировочных параметров зала. Построение профиля из условий видимости. Анализ распространения звука в зрительном зале. Расчет времени реверберации зрительного зала.
курсовая работа [244,0 K], добавлен 03.10.2014- Распространение плоских, гармонических по времени, упругих акустических волн в периодичном волноводе
Волновые явления в периодических слоистых волноводах. Создание приложения, моделирующего процесс распространения плоских, гармонических по времени, упругих акустических волн в периодическом волноводе. Метод Т-Матриц для периодического волновода.
курсовая работа [910,2 K], добавлен 30.06.2014 Принцип работы инверторного источника питания сварочной дуги, его достоинства и недостатки, схемы и конструкции. Эффективность эксплуатации инверторных источников питания с точки зрения энергосбережения. Элементная база выпрямителей с инвертором.
курсовая работа [5,1 M], добавлен 28.11.2014Классификация электротехнических материалов. Энергетические уровни. Проводники. Диэлектрические материалы. Энергетическое отличие металлических проводников от полупроводников и диэлектриков. Полупроводниковые материалы. Магнитные материалы и магнетизм.
реферат [1022,4 K], добавлен 15.04.2008Свойства звукоизоляции и звукопроницаемости материалов. Определение звукоизоляции образца звукоизоляционного материала с помощью акустического интерферометра. Характеристики погрешности измерений. Оценка погрешности измерений звукоизоляции образца.
дипломная работа [3,4 M], добавлен 24.06.2012Изучение элементов конструкции и описание технологической схемы атомных электрических станции с водо-водяными энергетическими реакторами. Технические особенности конструкции канальных водографитовых кипящих ректоров. АЭС с ректорами на быстрых нейтронах.
реферат [1,3 M], добавлен 25.10.2013Принцип действия и конструктивные особенности пружинной конструкции. Составление и сборка уравнений равновесия элементов и узлов. Проведение замены локальных перемещений глобальными. Исключение и решение уравнений связей. Подстановка данных и проверка.
контрольная работа [759,9 K], добавлен 25.05.2015Характеристика района строительства и назначения помещения. Теплотехнические характеристики материала стены. Расчет нормируемого сопротивления теплопередаче. Расчет и определение сопротивления паропроницанию и воздухопроницанию ограждающей конструкции.
контрольная работа [94,2 K], добавлен 08.04.2011Анализ компоновочных решений и обоснование конструкции котла-утилизатора. Байпасная система дымовых газов. Характеристика основного топлива. Разработка конструкции пароперегревателя, испарительных поверхностей нагрева, расчет на прочность элементов котла.
дипломная работа [629,3 K], добавлен 25.03.2014Служебное назначение и особенности конструкции ротора. Оценка технологичности конструкции. Расчет усилия запрессовки ротора без вала на вал и выбор оборудования и оснастки для запрессовки. Маршрутная технология сборки. Расчет количества оборудования.
курсовая работа [1,6 M], добавлен 21.01.2017Разработка конструкции ветрогенератора и расчет необходимой мощности. Определение периода окупаемости и экономической эффективности ветряного электрогенератора с мощностью, необходимой для бесперебойного обеспечения электроэнергией загородного коттеджа.
дипломная работа [974,9 K], добавлен 24.06.2013