Исследование распределения температурного поля от точечного источника тепла в конвективном потоке численными методами

Расчет уравнения Навье-Стокса, которое описывает двумерное ламинарное движение жидкости в условиях конвекции в декартовых координатах. Методика определения особенностей распределения температурного поля для точечного источника в конвективном потоке.

Рубрика Физика и энергетика
Вид статья
Язык русский
Дата добавления 31.10.2017
Размер файла 127,9 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Размещено на http://www.allbest.ru

Одной из особенностей задач тепломассопереноса в общем и конвективного теплообмена в частности, является сложность математического описания, представляющее собой систему дифференциальных уравнений в частных производных или интегро-дифференциальных уравнений. Причем наиболее трудным является описание именно конвекции, так как это пространственно-временной процесс, включающий в себя малые параметры, нелинейности, неустойчивости, переходные и турбулентные движения на основе уравнений Навье-Стокса. Для решения подобных задач, возникающих при исследовании процессов тепломассопереноса, разработаны численные методы, предназначенные для нахождения приближенных решений уравнений, в случаях когда результат в замкнутой форме получить невозможно, либо если такого решения просто не существует [1-3].

Описание исследования.

Уравнение Навье-Стокса, описывающее установившееся двумерное ламинарное движение жидкости в условиях конвекции в декартовых координатах (n = 0, r = y) имеет следующий вид [4, 5]:

(1)

где - плотность жидкости, - скорость потока.

Далее нам понадобиться уравнение движения в направлении х:

(2)

и в направлении r:

(3)

Основой для численного решения подобных уравнений является конечно-разностный метод с преобразованием , где - безразмерная функция тока. При этом метод Патанкара-Сполдинга и его вариации, предложенные Денни и Ладисом, соответствуют частным случаям [6, 7].

Для нахождения распределения температуры от точечного источника тепла при конвективном теплопереносе в потенциальном потоке с потенциалом , вне области пограничного слоя, для постоянной скорости и плотности потока уравнение (1) для двумерных задач сводится к следующему виду:

. (4)

На основе уравнения (4) и методики решения, полностью изложенной авторами в [8], рассматривается следующая задача: тепловой источник с заданной температурой поверхности находится в конвективном потоке определенной скорости и температуры [9, 10]. Требуется определить распределение температурного поля для точечного источника в конвективном потоке (рис. 1).

Рис. 1 - Точечный источник тепла в конвективном потоке

конвективный ламинарный температурный

За время пока поток проходит расстояние S, тепло от источника пройдет расстояние R:

(5)

, . (6)

Осуществив численное интегрирование методом контрольного объема [1] и учитывая граничные условия, дополненные краевыми условиями равенства нулю скорости потока на стенках параболоида при приближении Т0 по эквитемпературной поверхности, получим распределение температурного поля (рис. 2).

Рис. 2 - Распределение температуры от точечного источника

В результате действия конвекционного потока граничные условия из бесконечности переносятся на параболоид, и в результате задача конвективного переноса тепла сводится к решению задачи теплопроводности с измененными граничными условиями.

В работе численно было решено уравнение Навье-Стокса (непрерывности) описывающее установившееся двумерное ламинарное движение жидкости в условиях конвекции. Найдено распределение скоростей в системе источник тепла - конвективный поток при учете соответствующих граничных условий, дополненных краевыми условиями равенства нулю скорости потока на стенках параболоида, при приближении по эквитемпературной поверхности.

Литература

1. Tien-Mo Shih. Numerical Heat Transfer. CRC Press, 1984. - 563 p.

2. S. Patankar. Numerical heat transfer and fluid flow. Hemisphere Publishing Corporation, New York, 1980. - 152 p.

3. Alex Townsend. A graduate introduction to numerical methods: From the Viewpoint of Backward Error Analysis. Springer, New York, Heidelberg, 2013. - 252 p.

4. Jamshid Ghaboussi, Xiping Steven Wu. Numerical Methods in Computational Mechanics. CRC Press, 2016. - 313 p.

5. N.J. Higham. Accuracy and Stability of Numerical Algorithms. SIAM, Philadelphia, 2002. - 320 p.

6. W.H. Press, S.A. Teukolsky, W.T. Vetterling, B. P. Flannery, Numerical Recipes: The Art of Scientific Computing. Cambridge University Press, 2007. - 517 p.

7. G. Strang. Introduction to Linear Algebra. Wellesley, MA: Wellesley-Cambridge Press, 2009. - 372 p.

8. Палий А.В. Исследование способов улучшения тепловых режимов теплонагруженных микроэлектронных устройств. Кандидатская диссертация. Таганрог, 2007. - 140с.

9. Кулагин А.В. Газодинамический подход к оценке потерь на теплоотдачу в простом газопроводе // Инженерный вестник Дона, 2013, №2.

10. Палий А.В., Саенко А.В., Бесполудин В.В. Влияние формы выступа и его расположения на поверхности радиатора на температуру источника тепла // Инженерный вестник Дона, 2016, №2.

Размещено на Allbest.ru

...

Подобные документы

  • Расчет температурного поля предельного состояния при движении подвижного точечного источника тепла в полубесконечном теле. Сравнение температур в период теплонасыщения и предельного поля. Термический цикл точки, распределение максимальных температур.

    курсовая работа [304,9 K], добавлен 18.01.2015

  • Законы распределения плотности тепловыделения. Расчет температурного поля и количества импульсов, излучаемых дуговым плазматроном, необходимого для достижения температуры плавления на поверхности неограниченного тела с учетом охлаждения материала.

    курсовая работа [1,1 M], добавлен 05.03.2015

  • Методы получения дифференциального уравнения теплопроводности при одномерном распространении тепла. Расчет температурного поля в стационарных условиях по формуле Лапласа. Изменение температуры в плоской однородной стене при стационарных условиях.

    контрольная работа [397,4 K], добавлен 22.01.2012

  • Конвективный теплообмен - распространение тепла в жидкости (газе) от поверхности твердого тела или к ней. Смысл закона Ньютона, дифференциального уравнения Фурье - Кирхгофа и критериального уравнения Навье – Стокса. Теплоотдача при конденсации паров.

    реферат [208,1 K], добавлен 15.10.2011

  • Уравнение неразрывности потока жидкости. Дифференциальные уравнения движения Эйлера для идеальной жидкости. Силы, возникающие при движении реальной жидкости. Уравнение Навье - Стокса. Использование уравнения Бернулли для идеальных и реальных жидкостей.

    презентация [220,4 K], добавлен 28.09.2013

  • Работа сил электрического поля при перемещении заряда. Циркуляция вектора напряжённости электрического поля. Потенциал поля точечного заряда и системы зарядов. Связь между напряжённостью и потенциалом электрического поля. Эквипотенциальные поверхности.

    реферат [56,7 K], добавлен 15.02.2008

  • Понятие конвективного теплообмена (теплоотдачи). Схема изменения температуры среды при конвективном теплообмене. Система уравнений, которая описывает конвективный перенос. Основной закон теплоотдачи, расчет ее коэффициента. Критерии теплового подобия.

    презентация [207,9 K], добавлен 28.09.2013

  • Физические свойства жидкости, постановка задачи конвективного теплообмена. Гидродинамический и тепловой пограничные слои. Однородные разностные схемы для уравнения теплопроводности. Расчет стационарно-двумерного температурного поля при течении в трубе.

    дипломная работа [1,4 M], добавлен 22.04.2013

  • Дифференциальное уравнение теплопроводности. Поток тепла через элементарный объем. Условия постановка краевой задачи. Методы решения задач теплопроводности. Численные методы решения уравнения теплопроводности. Расчет температурного поля пластины.

    дипломная работа [353,5 K], добавлен 22.04.2011

  • Идеальная жидкость как жидкость без внутреннего трения. Безнапорное движение - движение жидкости в канале. Решение дифференциальных уравнений Навье-Стокса. Преобразование Лапласа для временных и преобразование Фурье для пространственных переменных.

    курсовая работа [220,9 K], добавлен 09.11.2011

  • Определение модуля и направления скорости меньшей части снаряда. Нахождение проекции скорости осколков. Расчет напряженности поля точечного заряда. Построение сквозного графика зависимости напряженности электрического поля от расстояния для трех областей.

    контрольная работа [205,5 K], добавлен 06.06.2013

  • Электродинамические явления в моделях климата: электрические заряды и электростатическое поле, механизмы их генерации и перераспределения в конвективном облаке. Возникновение грозовых разрядов как источника оксидов азота в атмосфере и пожароопасности.

    курсовая работа [915,5 K], добавлен 07.08.2013

  • Контактный и пирометрический методы измерения теплового поля тонких полосковых проводников. Экспериментальное измерение температурного поля и коэффициента теплоотдачи полосковых проводников пирометрическим методом с помощью ИК-термографа SAT-S160.

    курсовая работа [1,3 M], добавлен 22.09.2014

  • Определение поля скоростей и вихревого поля. Нахождение критических точек, расчет обтекаемого контура и линий тока. Определение распределения давления на обтекаемый контур, направления и величины главного вектора сил давления. Построение эпюр напряжений.

    курсовая работа [230,9 K], добавлен 04.05.2011

  • Электромагнитное поле. Система дифференциальных уравнений Максвелла. Распределение потенциала электрического поля. Распределения потенциала и составляющих напряженности электрического поля и построение графиков для каждого расстояния. Закон Кулона.

    курсовая работа [1,1 M], добавлен 12.05.2016

  • Элементарный электрический заряд. Закон сохранения электрического заряда. Напряженность электрического поля. Напряженность поля точечного заряда. Линии напряженности силовые линии. Энергия взаимодействия системы зарядов. Циркуляция напряженности поля.

    презентация [1,1 M], добавлен 23.10.2013

  • Силы и коэффициент внутреннего трения жидкости, использование формулы Ньютона. Описание динамики с помощью формулы Пуазейля. Уравнение Эйлера - одно из основных уравнений гидродинамики идеальной жидкости. Течение вязкой жидкости. Уравнение Навье-Стокса.

    курсовая работа [531,8 K], добавлен 24.12.2013

  • Исследование тепловых явлений, влияющих на установление температурного режима в квартире. Обзор способов теплообмена: теплопроводности, конвекции и излучения. Анализ влияния толщины стекла на скорость теплообмена. Источники тепла в современных квартирах.

    презентация [2,9 M], добавлен 13.02.2013

  • Устройство фотометрической головки. Световой поток и мощность источника света. Определение силы света, яркости. Принцип фотометрии. Сравнение освещенности двух поверхностей, создаваемой исследуемыми источниками света.

    лабораторная работа [53,2 K], добавлен 07.03.2007

  • Уравнения Больцмана, которое описывает статистическое распределение частиц в газе или жидкости. Принципиальные свойства уравнения Лиувилля. Безразмерная форма уравнений Боголюбова. Факторизация и корреляционные функции. Свободно-молекулярное течение.

    реферат [76,9 K], добавлен 19.01.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.