III Научная революция. Возникновение и развитие квантовой физики
Изучение процессов излучения тел. Формулировка гипотезы квантов энергии. Теория атома Н. Бора, принцип соответствия. Создание нерелятивистской квантовой механики. Методологические установки неклассической физики. Причина корпускулярно-волнового дуализма.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 26.11.2017 |
Размер файла | 18,1 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Киевский национальный университет имени Тараса Шевченко
Факультет психологии. Заочная форма обучения
Реферат
по дисциплине: «Научный образ мира»
на тему: «III Научная революция. Возникновение и развитие квантовой физики»
Выполнила:
студентка 1 курса
заочной формы обучения
Кузьменко Юлия Алексеевна
Киев-2017
1. Возникновение и развитие квантовой физики. Гипотеза квантов. III научная революция
Истоки квантовой физики уходят своими корнями в изучение процессов излучения тел. Еще в 1809 г. Прево сделал вывод о том, что каждое тело излучает независимо от окружающей среды. Развитие спектроскопии в Х1Х веке привело к тому, что вместе с исследованием спектров излучения начинают обращать внимание и на спектры поглощения. При этом выясняется, что между излучением и поглощением тела существует простая связь. В спектрах поглощения отсутствуют или ослабляются те участки спектра, которые испускаются данным телом. Этот закон получил свое объяснение только в квантовой теории.
Супруги Пьер Кюри (1859-1906) и Мария Склодовская-Кюри (1867-1934). Прежде всего их заинтересовал вопрос: нет ли других веществ, обладающих свойством, аналогичным урану? В 1898 году были открыты новые элементы, также обладающие свойством испускать «беккерелевы лучи», -- полоний и радий. Это свойство супруги Кюри назвали радиоактивностью. Их напряженный труд принес щедрые плоды: с 1898 г. одна за другой стали появляться статьи о получении новых радиоактивных веществ.
А годом раньше, в 1897 году, в лаборатории Кавендиша в Кембридже при изучении электрического разряда в газах (катодных лучей) английский физик Джозеф Джон Томсон (1856-1940) открыл первую элементарную частицу -- электрон. В последующих опытах по измерению заряда электрона и получению отношения этого заряда к массе было обнаружено совершенно необычное явление зависимости массы электрона от его скорости. Уяснив, что электроны являются составными частями атомов всех веществ, Дж. Томсон предложил в 1903 году первую (электромагнитную) модель атома. Согласно этой модели, отрицательно заряженные электроны располагаются определенным образом (как бы «плавают») внутри положительно заряженной сферы. Сохранение электронами определенного места в сфере есть результат равновесия между положительным равномерно распределенным ее зарядом и отрицательными зарядами электронов. Но модель «атома Томсона» просуществовала сравнительно недолго.
Густав Кирхгоф (1824 - 1887) сформулировал новый закон, известный под именем закона Кирхгофа. Он показал, что для лучей одной и той же длины волны при одной и той же температуре отношение испускательной и поглощательной способности для всех тел одно и то же. Или, другими словами, если Еl T и Аl T - соответственно испускательная и поглощательная способность тела, зависящие от длины волны l и температуры Т, то где j (l ,T) - некоторая универсальная функция l и Т, одинаковая для всех тел.
Кирхгоф ввел также понятие абсолютного черного тела как тела, поглощающего все падающие на него лучи, и дал известную его модель. Для такого тела, очевидно, Al T =1; тогда универсальная функция Кирхгофа j (l , Т) равна испускательной способности абсолютно черного тела. Сам Кирхгоф не определил вид функции j (l , Т), а отметил только некоторые ее свойства. Встала задача определить вид этой функции. Функция j (l , Т) - универсальная, поэтому естественно было предполагать, что ее вид можно определить, исходя из теоретических соображений - используя основные законы термодинамики. Больцман показал, что полная энергия излучения абсолютно черного тела пропорциональна четвертой степени его температуры. Однако задача определения вида функции Кирхгофа оказалась весьма трудной.
В 80-е годы ХIХ века эмпирические исследования закономерностей в распределении спектральных линий и изучение функции j ( l , T ) стали более интенсивными и систематическими. Была усовершенствована экспериментальная аппаратура. Для энергии излучения абсолютно черного тела Вином в 1896 г. и Рэлеем и Джином в 1900 г. было предложено две различные формулы. Как показали экспериментальные результаты, формула Вина ассимптотически верна в области коротких волн и дает резкие расхождения с опытом в области длинных волн, а формула Рэлея-Джинса таким же образом верна для длинных волн, но не применима для коротких.
В 1900 г. в октябре на заседании Берлинского физического общества Макс Планк (1858 - 1947) предложил новую формулу для распределения энергии в спектре черного тела, полученную первоначально полуэмпирическим путем. Эта формула давала полное соответствие с опытом. Но физический смысл этой формулы был не вполне понятен. Дополнительный анализ показал, что эта формула имеет смысл только в том случае, если допустить, что излучение энергии происходит не непрерывно, а определенными порциями - квантами (e ). Более того, e не является любой величиной, а именно e = hn , где h - совершенно определенная константа, а n - частота света. Это вело к признанию наравне с атомизмом вещества атомизма энергии или действия, дискретного, квантового характера излучения, что не укладывалось в рамки основных представлений классической физики. Формулировка гипотезы квантов энергии была началом новой эры в развитии теоретической физики. В 1912 г. А. Пуанкаре окончательно показал несовместимость формулы Планка и классической механики.
Эту гипотезу вскоре с большим успехом начали применять для объяснения других явлений, которые нельзя было объяснить на основе представлений классической физики. Существенно новым в развитии квантовой теории было введение понятия квантов света. Эта идея под влиянием гипотезы Планка была разработана в 1905 г. Эйнштейном и применена им для объяснения оптических явлений и, в частности, фотоэффекта.
В 1909 г. Эйнштейн, продолжая исследования по теории излучения признает, что свет обладает одновременно и волновыми и корпускулярными свойствами. В целом ряде исследований были получены новые подтверждения гипотезы Эйнштейна о квантовых свойствах света. Теперь всем было ясно, что световое излучение обладает и корпускулярными и волновыми свойствами.
2. Теория атома Н. Бора. Принцип соответствия
излучение квант энергия корпускулярный
В свете тех выдающихся открытий конца ХIХ века, которые революционизировали физику, одной из ключевых проблем естествознания стала проблема строения атомов. Еще в 1889 г. в своей Фарадеевской лекции Д.И. Менделеев отмечал, что в результате выявления специфической периодичности химических свойств элементов, расположенных по возрастающим атомным весам, центральной проблемой физики становится проблема строения атома.
В 1909 - 1910 гг. сотрудниками лаборатории английского физика Эрнеста Резерфорда (1871 - 1937) были проведены экспериментальные исследования рассеяния a -частиц тонким слоем вещества. Эти исследования показали, что для большинства a-частиц, пронизывающих тонкий слой вещества, можно принять, что они рассеиваются силовыми центрами, которые действуют на них с силой, обратно пропорциональной квадрату расстояния. Для некоторых же сравнительно немногих частиц, отклонение которых составляло угол 90 и больше, нужно было принять, что они встретились с очень сильными электрическими полями (в результате они даже отбрасываются назад). Это позволило Резерфорду в 1911 г. в сформулировать планетарную модель атома.
По теории Резерфорда, атом состоит из положительного ядра, гораздо меньших размеров, нежели атом, порядка 10-13 см. Вокруг ядра вращаются электроны. Общий заряд атома равен нулю, поэтому заряд ядра по абсолютной величине равен ne, где n - число электронов в атоме, e - заряд электрона. Резерфорд полагал также, что число электронов в атоме должно быть равно порядковому номеру элемента в периодической системе Менделеева. Но модель Резерфорда еще не объясняла многих выявленных к тому времени закономерностей, и прежде всего закономерностей излучения атомов.
Успеха в построении более совершенной квантовой модели атома добился в 1913 г. молодой датский физик Нильс Бор (1885 - 1962), работавший в лаборатории Резерфорда. Бор понял, что для построения теории, которая объясняла бы и результаты опытов по рассеянию a -частиц, и устойчивость атома, и сериальные закономерности, и ряд других экспериментальных данных, нужно отказаться от некоторых принципов классической физики. Н. Бор взял за основу модель атома Резерфорда и дополнил ее новыми гипотезами, которые не следуют или даже противоречат классическим представлениям. Эти гипотезы известны как постулаты Бора. Они сводятся к следующему
1. Каждый электрон в атоме может совершать устойчивое орбитальное движение по определенным орбитам, с определенным значением энергии, не испуская и не поглощая электромагнитного излучения. В этих состояниях атомные системы обладают энергиями, образующими дискретный ряд: E ' , E " ,. . . ,E n . Состояния эти характеризуются своей устойчивостью. Всякое изменение энергии в результате поглощения или испускания электромагнитного излучения может происходить только скачком из одного состояния в другое.
2. Электрон способен переходить с одной стационарной орбиты на другую. И только в этом случае он испускает или поглощает определенную порцию энергии монохроматического излучения определенной частоты. Эта частота определяется величиной изменения энергии атома при таком переходе. Если при переходе электрона с орбиты на орбиту и энергия атома изменяется от Еm до Еn, то испускаемая или поглощаемая частота определяется условием hn mn = Еm - Еn
Эти постулаты Бор использовал для расчета простейшего атома (атома водорода), рассматривая первоначально наиболее простую его модель: неподвижное ядро, вокруг которого вращается по круговой орбите электрон. Объяснение спектра водорода было большим успехом теории Бора.
Важным достижением квантовой теории Бора было также развитие им и другими исследователями представления о строении многоэлектронных атомов. После первых результатов, достигнутых в теории строения атома водорода и объяснения на основании этой теории спектров, были предприняты шаги в развитии теории строения более сложных атомов и объяснений структуры их спектров. В этом направлении были достигнуты некоторые успехи, однако исследователи встретились и с большими трудностями.
Введение четырех квантовых чисел, установление принципа Паули и объяснение периодической системы Менделеева - большие успехи теории атома Бора. Однако они по-прежнему не означали, что теорию можно считать удовлетворительной. Во-первых, сами постулаты Бора имели характер непонятных, ни откуда не следуемых утверждений, которые должны были бы получить свое обоснование. Во-вторых, теория дала многое для выяснения строения атома и атомных спектров и т. д., однако ее применение часто встречало непреодолимые трудности уже в довольно простых случаях. Так, никакие попытки теоретически рассчитать даже такой, казалось бы, простой атом, как атом гелия, не привели к успеху. Неудовлетворительность теории атома ясно понималась самими физиками
3. Создание нерелятивистской квантовой механики
Таким образом, в первой четверти ХХ века перед физикой по прежнему стояла задача нахождения новых путей развития теории атомных явлений. Эти пути потребовали отказа от целого ряда давно установленных понятий и выработки совершенно новых теоретических представлений и принципов. Такие представления и принципы были созданы целой плеядой выдающихся физиков ХХ века. Молодой немецкий ученый Гейзенберг установил основы так называемой матричной механики; французский физик де Бройль, а за ним австрийский физик Шредингер разработали волновую механику. Как вскоре оказалось, и матричная механика, и волновая механика - различные формы общей теории, получившей название квантовой механики.
К созданию матричной механики В. Гейзенберг (1901-1975) пришел в результате исследований спектральных закономерностей, а также теории дисперсии, в которой атом представлялся некоторой символической математической моделью - как совокупность виртуальных гармонических осцилляторов. Представления же об атоме как о системе, состоящей из ядра и вращающихся вокруг него электронов, которые обладают определенной массой, движутся с определенной скоростью по определенной траектории, нужно понимать лишь как аналогию для установления соответствующей математической модели. Указанный метод исследования и развил Гейзенберг, распространив его вообще на теорию атомных явлений. При этом особую роль играл принцип соответствия как принцип аналогии между классическим и квантовым рассмотрениями. Именно таким путем Гейзенберг рассчитывал преодолеть трудности, возникшие перед полуклассической теорией Бора.
В 192б г. Гейзенберг впервые высказывает основные положения квантовой механики в матричной форме. Теория атомных явлений, по Гейзенбергу, должна ограничиваться установлением соотношений между величинами, которые непосредственно измеряются в экспериментальных исследованиях ("наблюдаемыми" величинами, по терминологии Гейзенберга) - частотой излучения спектральных линий, их интенсивностью, поляризацией и т. п. "Ненаблюдаемые" же величины, такие, как координаты электрона, его скорость, траектория, по которой он движется, и т. д., не должны использоваться в теории атома. Однако в согласии с принципом соответствия новая теория должна определенным образом соответствовать классическим теориям. Конкретно это должно выражаться в том, что соотношения новой теории должны находиться в отношении аналогии с соотношениями классических величин. При этом каждой классической величине нужно найти соответствующую ей квантовую величину и, пользуясь классическими соотношениями, составить соответствующие им соотношения между найденными квантовыми величинами.
Второе направление в создании квантовой механики начало развиваться в работах французского физика Луи де Бройля. В них была высказана идея о волновой природе материальных частиц. На основании уже установленного факта наличия у света одновременно и корпускулярных и волновых свойств, а также оптико-механической аналогии у де Бройля возникла идея о существовании волновых свойств частиц.
Первые работы де Бройля, в которых высказывалась идея волн, связанных с материальными частицами, не обратили на себя серьезного внимания. Де Бройль впоследствии писал, что идеи, которые он высказал, были приняты с "удивлением, к которому несомненно примешивалась какая-то доля скептицизма". Но не все скептически отнеслись к идеям де Бройля. Особенно сильное влияние идеи де Бройля оказали на австрийского физика Эрвина Шредингера (1887 - 1961), который увидел в них источник для создания новой атомной механики. В 1926 г. последовали работы Шредингера, в которых он, развивая идеи де Бройля, построил так называемую волновую механику.
Шредингер впервые установил связь между квантовой и волновой механикой, которую уточнил в последующих работах. Он показал, что при всем различии исходных физических положений они математически эквивалентны.
В 1927 г. волновая механика получила новое прямое экспериментальное подтверждение. В этом году Дэвиссоном и Джермером было обнаружено явление дифракции электронов. Таким образом, гипотеза де Бройля получила прямое экспериментальное подтверждение, оказалось правильным и найденное им количественное соотношение для длин "волн де Бройля". Кроме оправдания квантовой механики непосредственным подтверждением волновой природы электрона, с помощью этой теории удалось построить более совершенную теорию твердого тела, теорию электропроводности, термоэлектрических явлений, теорию магнетизма и т. д. Квантовая теория дала возможность приступить к построению теории радиоактивного распада, а в дальнейшем стала основой для новой области физики - ядерной физики и т. д.
Вслед за основополагающими работами Шредингера по волновой механике были сделаны первые попытки релятивистского обобщения квантово-механических закономерностей, и уже в 1928 г. Дирак заложил основы релятивистской квантовой механики.
4. Проблема интерпретации квантовой механики
Принцип дополнительности
Созданный группой физиков в 1925-1927 г.г. формальный математический аппарат квантовой механики убедительно продемонстрировал свои широкие возможности по количественному охвату значительного эмпирического материала; не оставалось никаких сомнений, что квантовая механика целиком пригодна для описания определенного круга явлений. Вместе с тем, исключительная абстрактность квантово-механических формализмов, наличие значительных отличий в сравнении с классической механикой (кинематические и динамические переменные заменены абстрактными символами некоммутативной алгебры, отсутствие понятия электронной орбиты, необходимость интерпретации формализмов и др.) рождали ощущение незавершенности, неполноты новой теории. В результате возникло мнение о необходимости ее завершения.
Никто и не возражал против того, что новую теорию нужно "дорабатывать". Дискуссия возникла по вопросу о том, каким путем это нужно делать. А. Эйнштейн и ряд других физиков считали, что квантово-механическое описание физической реальности является существенно неполным. Иначе говоря, созданная теория не является фундаментальной теорией, а лишь промежуточной ступенью по отношению к ней, поэтому необходимо дополнить существующую теорию принципиально новыми постулатами и понятиями, т. е. дорабатывать ту часть оснований новой теории, которая связана с ее принципами.
Другие физики, во главе с Н. Бором, считали, что созданная новая теория является фундаментальной и дает полное описание физической реальности, а "прояснить положение вещей можно было здесь только путем более глубокого исследования проблемы наблюдений в атомной физике". Иначе говоря, Н. Бор и его единомышленники считали, что "доработка" квантовой механики должна идти по линии уточнения той части ее оснований, которые связаны не с принципами теории, а с ее методологическими установками, по линии соответствующей интерпретации созданного математического формализма. Разработка методологических установок квантовой механики, являвшаяся важнейшим звеном в интерпретации этой теории, длилась вплоть до конца 40-х годов ХХ века. Завершение выработки этой интерпретации одновременно означало и завершение научной революции в физике, начавшейся в конце ХIХ века.
Основной отличительной особенностью экспериментальных исследований в области квантовой механики является фундаментальная роль взаимодействия между физическим объектом и измерительным устройством. Это связано с корпускулярно-волновым дуализмом. И свет и частицы проявляют в различных условиях противоречивые свойства, и, в связи с этим, о них возникает противоречивое представление. В одном типе измерительных приборов (дифракционная решетка) они представляются нам в виде непрерывного поля, распределенного в пространстве, будь то световое поле или поле, которое описывается волновой функцией. В другом типе приборов (пузырьковая камера) эти же микроявления выступают как частицы, как материальные точки. Причиной корпускулярно-волнового дуализма, по Бору, является то обстоятельство, что сам микрообъект не является ни волной, ни частицей в обычном понимании.
Невозможность провести резкую границу между объектом и прибором в квантовой физике выдвигает две проблемы:
каким образом можно отличить знания об объекте от знаний о приборе?
каким образом, различив их, связать в единую картину, теорию объекта?
Первая задача разрешается введением требования описывать поведение прибора на языке классической физики, а принципиально статистическое поведение микрочастиц - на языке квантово-механических формализмов. Вследствие того, что сведения о микрообъекте получают в результате его взаимодействия с классическим прибором, т.е. макроскопическим объектом, микрообъект можно интерпретировать только в классических понятиях, т.е. использовать классические представления о волне и частице. Мы как бы вынуждены говорить на классическом языке, хотя с его помощью нельзя выразить все особенности микрообъекта, который не является классическим.
Вторая задача разрешается с помощью принципа дополнительности: волновое и корпускулярное описания микропроцессов не исключают и не заменяют друг друга, а взаимно дополняют друг друга, при одном представлении микрообъекта используется причинное описание соответствующих процессов, в другом же случае пространственно - временное. Единая картина объекта является синтезом этих двух описаний.
5. Методологические установки неклассической физики
Создание релятивистской, а затем и квантовой физики привело к необходимости значительного пересмотра методологических установок классической физики. Кардинальные изменения в системе методологических установок релятивистской физики связаны с выявлением зависимости описания поведения физических объектов от условий познания (учет состояния движения систем отсчета при признании постоянства скорости света в вакууме). Произошло изменение гносеологической позиции субъекта и объекта - появилась необходимость указания на ту систему отсчета, с позиций которой описывается исследуемая физическая область. Создание квантовой механики привело к еще более значительному пересмотру методологических принципов классической физики: введение нового класса принципиально статистических закономерностей; невозможность провести резкую границу между объектом и прибором и введение принципа дополнительности; невозможность одновременного определения всех свойств микрообъекта (принцип неопределенности); ненаглядный характер теоретических моделей, неоднозначность употребления понятий, необходимость указывать на условия познания и др.
Рассмотрим в систематическом виде методологические установки неклассической физики.
1.Признание объективного существования физического мира, т.е. его существования до и независимо от человека и его сознания.
2. В отличие от классической физики, которая рассматривала мир физических элементов как качественно однородное образование, современная физика приходит к выводу о наличии трех качественно различающихся структурных уровней мира физических элементов: микро-, макро- и мага- уровней.
3. Явления микромира, микропроцессы обладают чертами целостности, необратимости и неделимости, которые приводят к качественному изменению представлений о характере взаимосвязи объекта и экспериментальных средств исследования.
4. Причинность как один из элементов всеобщей связи и взаимообусловленности вещей, явлений, событий материального мира присуща и микропроцессам. Но характер причинной связи в микромире отличен от механистического детерминизма. В области микроявлений причинность реализуется через многообразие случайностей, и потому микропроцессам свойственны не динамические, а статистические закономерности.
5. Микроявления принципиально познаваемы. Получение полного и непротиворечивого описания поведения микрочастиц требует выработки нового способа познания и новых методологических установок познания.
6. Основа познания - эксперимент, непосредственное материальное взаимодействие между средствами исследования субъекта и объектом. Так же, как и в классической физике, исследователь свободен в выборе условий эксперимента.
7. Кардинальные изменения в методологии неклассической физики по сравнению с классической физикой связаны с выявлением зависимости описания поведения физической объектов от определенных условий познания. В релятивистской физике - это учет состояния движения систем отсчета при признании постоянства скорости света в вакууме. В квантовой физике - фундаментальная роль взаимодействия между микрообъектом и измерительным устройством, прибором. Речь здесь идет об изменении познавательного отношения субъекта и объекта. В квантовой физике она разрешается принципом дополнительности.
8. Если в классической физике все свойства объекта могут определяться одновременно, то уже в квантовой физике существуют принципиальные ограничения в этом, выражаемые принципом неопределенности.
9. Неклассические способы описания позволяют получать объективное описание природы. Но объективность знания не должна отождествляться с наглядностью. Создание механической наглядной модели вовсе не выступает синонимом адекватного физического объяснения исследуемого явления.
10. Физическая теория должна содержать в себе не только средства для описания поведения познаваемых объектов, но также и средства для описания условий познания, включая процедуры исследования.
11. В неклассической физике, как и в классической, игнорируется атомная структура экспериментальных устройств.
12. Структура процесса познания не является неизменной. Качественному многообразию природы должно соответствовать и многообразие способов ее познания. На основе неклассических способов познания (релятивистскому и квантовому) со временем должны сформироваться новые способы познания.
Во второй половине ХХ века основное внимание в физике обращено на создание теорий, раскрывающих с позиций квантово-релятивистских представлений сущность и основания единства четырех фундаментальных взаимодействий - электромагнитного, "сильного", "слабого" и гравитационного. Эта задача одновременно является и задачей создания единой теории элементарных частиц (теории структуры материи). На основе представления о различных калибровочных симметриях созданы и получили хорошее эмпирическое обоснование квантовая электродинамика, теория электрослабого взаимодействия, квантовая хромодинамика (теория сильного взаимодействия), есть перспективы на создание единой теории электромагнитного, "слабого" и "сильного" взаимодействий. Физики ожидают, что в отдаленной перспективе к ним должно быть присоединено и гравитационное взаимодействие, о природе которого высказываются разные точки зрения (искривление пространства-времени, некоторое силовое поле с гравитоном как его квантом, и то и другое вместе, и др.). Трудно сказать, как далеко находится наука от реализации этой великой цели - создания единой теории структуры материи.
Размещено на Allbest.ru
...Подобные документы
Развитие квантовой физики: гипотеза квантов, теория атома, природа света, концепция целостности. Создание нерелятивистской квантовой механики, принципы ее интерпретации. Парадокс Эйнштейна-Подольского-Розена, принцип неопределенности Гейзенберга.
реферат [94,0 K], добавлен 14.02.2009Открытие явления фотоэффекта не вписывалось в рамки классической физики. Это привело к созданию квантовой механики. Фотоэлектрический эффект и дискретная природа света. Дифракция электронов. Применение явления корпускулярно – волнового дуализма.
реферат [39,6 K], добавлен 24.06.2008Описания детских годов, учебы в школе и университете, работы в лаборатории. Анализ первых работ Бора по исследованию колебаний струи жидкости. Исследование квантовой теории водородоподобного атома. Становление квантовой механики. Принцип дополнительности.
презентация [110,9 K], добавлен 21.02.2013Физический смысл волн де Бройля. Соотношение неопределенности Гейзенберга. Корпускулярно-волновая двойственность свойств частиц. Условие нормировки волновой функции. Уравнение Шредингера как основное уравнение нерелятивистской квантовой механики.
презентация [738,3 K], добавлен 14.03.2016Изложение физических основ классической механики, элементы теории относительности. Основы молекулярной физики и термодинамики. Электростатика и электромагнетизм, теория колебаний и волн, основы квантовой физики, физики атомного ядра, элементарных частиц.
учебное пособие [7,9 M], добавлен 03.04.2010"Планетарная модель" атома Бора в основе квантовой механики, ее основные принципы, идеи и значение. Попытки объяснить корпускулярные и волновые свойства вещества в квантовой (волновой) механике. Анализ волновой функции и ее вероятностного смысла.
реферат [90,7 K], добавлен 21.11.2011История зарождения квантовой теории. Открытие эффекта Комптона. Содержание концепций Резерфорда и Бора относительно строения атома. Основные положения волновой теории Бройля и принципа неопределенности Гейзенберга. Корпускулярно-волновой дуализм.
реферат [37,0 K], добавлен 25.10.2010Научные исследования физических, химических и биологических явлений, проводившиеся в ХХ в. Открытие элементарных частиц и теория расширяющейся Вселенной. Создание и развитие общей теории относительности. Возникновение релятивистской и квантовой физики.
презентация [508,6 K], добавлен 08.11.2015Принципы неклассической физики. Современные представления о материи, пространстве и времени. Основные идеи и принципы квантовой физики. Современные представления об элементарных частицах. Структура микромира. Фундаментальные физические взаимодействия.
реферат [52,2 K], добавлен 30.10.2007Предпосылки возникновения квантовой теории. Квантовая механика (волновая механика, матричная механика) как раздел теоретической физики, описывающий квантовые законы движения. Современная интерпретация квантовой теории, взаимосвязь с классической физикой.
реферат [44,0 K], добавлен 17.02.2010История развития квантовой теории. Квантово-полевая картина мира. Основные принципы квантово-механического описания. Принцип наблюдаемости, наглядность квантово-механических явлений. Соотношение неопределенностей. Принцип дополнительности Н. Бора.
реферат [654,4 K], добавлен 22.06.2013Фундаментальные теории классической физики XIX-XX вв. Становление квантовой механики. Школа Нильса Бора, датского физика-теоретика, лауреата Нобелевской премии, основоположника современного научного мировоззрения. Борьба с нацизмом и атомной угрозой.
курсовая работа [603,3 K], добавлен 24.03.2016Законы квантовой механики, сущность и границы её применимости. Эффект Комптона и свойства света в период формирования новой физики. Волновая теория Бройля и ряд его крупнейших технических достижений. Теория теплового излучения и электромагнетизм.
реферат [36,5 K], добавлен 26.02.2012Дифракция света как явление отклонения света от прямолинейного направления распространения при прохождении вблизи препятствий. Сущность и закономерности корпускулярно-волнового дуализма. Боровская модель атома. Понятие и свойства идеального газа.
контрольная работа [400,8 K], добавлен 24.05.2014- История возникновения и формирования квантовой механики и квантово-механической теории твердого тела
Экспериментальные основы и роль М. Планка в возникновении квантовой теории твердого тела. Основные закономерности фотоэффекта. Теория волновой механики, вклад в развитие квантово-механической теории и квантовой статистики А. Гейзенберга, Э. Шредингера.
доклад [473,4 K], добавлен 24.09.2019 Представление об атомах как неделимых мельчайших частицах. Опыт Резерфорда по рассеянию альфа частиц. Рассмотрение линейчатого спектра атома водорода. Идея Бора о существовании в атомах стационарных состояний. Описание основных опытов Франка и Герца.
презентация [433,4 K], добавлен 30.07.2015Диссипативная модификация квантовой механики. Суперструнные модели; дилатонное скалярное поле и инфляция. Микроскопический струнный подход к описанию диссипативного варианта квантовой механики. Сравнение теории с наблюдениями, построение графиков.
контрольная работа [3,3 M], добавлен 05.08.2015"Теория струн" или "теория всего" как одно из самых динамично развивающихся направлений современной физики. Сущность и специфика данной теории, ее экспериментальная проверка. Союз общей теории относительности и квантовой механики в "теории струн".
практическая работа [13,4 K], добавлен 28.11.2014Важная роль физики в техническом развитии оборонной промышленности. Теоретические исследования физиков, начальное развитие новых отраслей науки: теории относительности, атомной квантовой физики. Работы в области радиотехники, военных прикладных отраслей.
доклад [17,9 K], добавлен 27.02.2011Классификация элементарных частиц. Фундаментальные взаимодействия. Модель атома Резерфорда. Теория Бора для атома водорода. Атом водорода в квантовой механике. Квантово-механическое обоснование Периодического закона Д. Менделеева. Понятие радиоактивности.
реферат [110,6 K], добавлен 21.02.2010