Термоядерные реакции и управляемый термоядерный синтез

Классификация термоядерных реакций. Определение проблем при создании установок для получения термоядерного синтеза. Процесс термоядерного синтеза в тепловом урановом реакторе. Конструкции реакторов и радиационная безопасность природного окружения.

Рубрика Физика и энергетика
Вид контрольная работа
Язык русский
Дата добавления 30.11.2017
Размер файла 1,1 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

Самарский государственный технический университет

Контрольная работа

на тему: Термоядерные реакции и управляемый термоядерный синтез

Выполнил:

Чурбанов Денис Владимирович

Самара 2017

Содержание

Введение

1. Термоядерные реакции

2. Термоядерный синтез в тепловом урановом реакторе

3. Управляемый термоядерный синтез

4. Условия управляемого термоядерного синтеза

5. Конструкции реакторов

6. Радиационная безопасность

7. Трудности и перспективы

Заключение

Приложение

Введение

Человечество идёт по пути всё более интенсивной смены источников энергии. В ХIХ веке люди освоили уголь. А уже с начала ХХ века потребление электроэнергии на земном шаре выросло в 11 раз, при этом население Земли увеличилось в 4 раза. Появились источники электроэнергии, основанные на прочих органических ресурсах. В том числе ядерная энергия. На данный момент 20% мировой энергетики переведено на возобновляемые источники. По отдельным оценкам, к концу XXI века их доля возрастёт до 60-90%. Однако в общей сумме мощностей генерации электроэнергии в России на данное время эти источники составляют только 0,5%. Для интенсивного развития данной отрасли требуются существенные инвестиции. Поэтому отечественное будущее в плане развития возобновляемых источников ставится учёными под сомнение.

Ежегодно для получения энергии и обеспечения производства сжигается ископаемое топливо в количестве более 10 млрд. тонн угольного эквивалента (или условного топлива ). При этом в атмосферу выбрасываются миллиарды тонн газов, создающих парниковый эффект. В течение прошлого столетия в атмосфере увеличилась концентрация таких парниковых газов, как углекислый газ (CO2), метан (CH4) и гемиоксид азота (N2O). Скопление парниковых газов в атмосфере приводит к изменению климата на планете и повышению среднегодовой температуры, и, как следствие, к масштабным стихийным бедствиям. Ограниченность ископаемых ресурсов в совокупности с прогнозируемым ростом мирового энергопотребления приведет к существенным структурным, технологическим и иным изменениям в топливно-энергетической отрасли, а следом и во всей мировой экономике в период до 2030 года. Ясно, что нужен новый лидер энергетики. И на данный момент такой лидер есть. Запасы урана в сравнении с запасами угля вроде бы не столь уж и велики. Но зато на единицу веса уран содержит в себе энергии в миллионы раз больше, чем уголь. Однако в результате ядерного распада и получения электроэнергии человечество сталкивается с другими проблемами. Например утилизация радиоактивных продуктов распада и повышение безопасности и стабильности ядерных реакторов. Аварии на АЭС могут привести к катастрофам глобального масштаба и нанести непоправимый вред экологии. Так , период полураспада равен примерно лет.

На данный момент учёные рассматривают новый источник энергии - термоядерный синтез. В отличие от ядерных реакций и расхода ископаемого топлива он практически полностью безопасен для окружающей среды. К тому же, топливом для реакций термоядерного синтеза являются изотопы водорода - самого распространённого элемента , а также другие лёгкие элементы периодической таблицы. Но процесс термоядерного синтеза очень сложно осуществить и на данный момент учёные пытаются запустить его в глобальных масштабах для получения энергии. А теперь расскажу об этом подробнее.

1. Термоядерные реакции

Термоядерные реакции - экзотермические реакции синтеза легких ядер, эффективно протекающие при сверхвысоких температурах (порядка 107 - 109 К), самопродолжающиеся за счет значительного выделения в них энергии.

Высокие температуры в них необходимы для того, чтобы кинетическая энергия теплового движения ядер оказалась достаточной для преодоления кулоновского потенциального барьера ядер, сближения на расстояние порядка действия ядерных сил и последующего возбуждения реакции синтеза, сопровождающегося выделением энергии в виде избыточной кинетической энергии продуктов реакции.

При слиянии легких ядер и образовании нового ядра должно выделяться большое количество энергии. Вплоть до ядер с массовым числом около 60 удельная энергия связи нуклонов растет с увеличением A. Поэтому синтез любого ядра с A < 60 из более лёгких ядер должен сопровождаться выделением энергии. Общая масса продуктов реакции синтеза будет в этом случае меньше массы первоначальных частиц.

Чтобы два ядра вступили в реакцию синтеза, они должны сблизится на расстояние действия ядерных сил порядка 2·10-15 м, преодолев электрическое отталкивание их положительных зарядов.

Для этого средняя кинетическая энергия теплового движения молекул должна превосходить потенциальную энергию кулоновского взаимодействия. Расчет необходимой для этого температуры T приводит к величине порядка 108 - 109 К. Это чрезвычайно высокая температура. При такой температуре вещество находится в полностью ионизированном состоянии, которое называется плазмой.

Энергия, которая выделяется при термоядерных реакциях, в расчете на один нуклон в несколько раз превышает удельную энергию, выделяющуюся в цепных реакциях деления ядер.

В качестве примера рассмотрим некоторые реакции синтеза:

( Q= 4 МэВ )

( Q= 3,3 МэВ )

( Q=17,6 MэВ )

( Q=22,4 МэВ )

где Q - выделившаяся энергия. Так, например, в реакции слияния ядер дейтерия и трития выделяется 3,5 МэВ/нуклон (Рис. 1). В целом в этой реакции выделяется 17,6 МэВ. Это одна из наиболее перспективных термоядерных реакций. Термоядерные реакции дают наибольший вклад энергии на единицу массы “горючего”, чем любые другие превращения. Например, количество дейтерия в стакане простой воды энергетически эквивалентно примерно 60 л бензина. Понятен интерес к осуществлению управляемого термоядерного синтеза ( далее -УТС).

2. Термоядерный синтез в тепловом урановом реакторе

Взрыв водородной бомбы - неуправляемый термоядерный синтез, что делает его непригодным для энергетических целей. Между тем в лабораторных условиях управляемый термоядерный синтез осуществить достаточно просто. Для этого достаточно опустить в канал любого реактора, работающего на реакции деления урана тепловыми нейтронами, ампулу с дейтеридом лития. При этом никаких высоких температур не потребуется - интересующий процесс пойдет и при комнатной температуре. То, что в ампуле идет ядерная реакция между дейтерием и тритием, мы немедленно обнаружим по появлению высокоэнергичных нейтронов (энергия нейтронов 14 МэВ).

Действительно, если используемый литий обогащен стабильным изотопом 6Li (можно использовать и природный литий, поскольку в нем содержится 7% 6Li), то под действием тепловых нейтронов атомного реактора пойдет следующая ядерная реакция:

В результате этой реакции, возникают «горячие» атомы трития. Энергии атома отдачи трития (порядка 3 МэВ) вполне достаточно для протекания реакции взаимодействия трития с находящимся в дейтериде лития дейтерием:

Для энергетических целей этот метод не годится: затраты энергии на процесс превышают выделяющуюся энергию. Поэтому приходится искать другие варианты осуществления управляемого термоядерного синтеза, варианты, обеспечивающие большой энергетический выигрыш.

3. Управляемый термоядерный синтез

Управляемый термоядерный синтез (УТС) -- синтез более тяжёлых атомных ядер из более лёгких с целью получения энергии, который, в отличие от взрывного термоядерного синтеза (используемого в термоядерном оружии), носит управляемый характер. Управляемый термоядерный синтез отличается от традиционной ядерной энергетики тем, что в последней используется реакция распада, в ходе которой из тяжёлых ядер получаются более лёгкие ядра. В основных ядерных реакциях, которые планируется использовать в целях осуществления управляемого термоядерного синтеза, будут применяться дейтерий(2H) и тритий (3H), а в более отдалённой перспективе гелий-3 (3He) и бор-11 (11B). Впервые задачу по управляемому термоядерному синтезу в Советском Союзе сформулировал и предложил для неё некоторое конструктивное решение советский физик Лаврентьев Олег Александрович.

Установлено, что смесь двух изотопов , дейтерия и трития, требует менее всего энергии для реакции синтеза по сравнению с энергией, выделяемой во время реакции. Однако, хотя смесь дейтерия и трития (D-T) является предметом большинства исследований синтеза, она в любом случае не является единственным видом потенциального горючего. Другие смеси могут быть проще в производстве; их реакция может надежнее контролироваться, или, что более важно, производить меньше нейтронов. Особенный интерес вызывают так называемые "безнейтронные" реакции, поскольку успешное промышленное использование такого горючего будет означать отсутствие долговременного радиоактивного загрязнения материалов и конструкции реактора, что, в свою очередь, могло бы положительно повлиять на общественное мнение и на общую стоимость эксплуатации реактора, существенно уменьшив затраты на его декомиссию. Проблемой остается то, что реакцию синтеза с использованием альтернативных видов горючего намного сложнее поддерживать, потому D-T реакция считается только необходимым первым шагом.

Управляемый термоядерный синтез может использовать различные виды термоядерных реакций в зависимости от вида применяемого топлива.

4. Условия управляемого термоядерного синтеза

Управляемый термоядерный синтез возможен при одновременном выполнении двух критериев:

1.Скорость соударения ядер соответствует температуре плазмы:

2.Соблюдение критерия Лоусона: (для реакции D-T)

где -- плотность высокотемпературной плазмы, -- время удержания плазмы в системе.

От значения этих двух критериев в основном зависит скорость протекания той или иной термоядерной реакции.

В настоящее время (2017) управляемый термоядерный синтез ещё не осуществлён в промышленных масштабах. Строительство международного экспериментального термоядерного реактора (ITER) находится в начальной стадии.

5. Конструкции реакторов

Существуют две принципиальные схемы осуществления управляемого термоядерного синтеза, разработки которых продолжаются в настоящее время (2017):

1. Квазистационарные системы {\displaystyle \tau \geq 1c,n\geq 10^{14}cm^{-3}}, в которых нагрев и удержание плазмы осуществляется магнитным полем при относительно низком давлении и высокой температуре. Для этого применяются реакторы в виде токамаков, стеллараторов (торсатронов) и зеркальных ловушек, которые отличаются конфигурацией магнитного поля. К квазистационарным реакторам относится реактор ITER, имеющий конфигурацию токамака.

2. Импульсные системы {\displaystyle \tau \sim 10^{-8}c,n\geq 10^{22}cm^{-3}}. В таких системах управляемый термоядерный синтез осуществляется путём кратковременного нагрева небольших мишеней, содержащих дейтерий и тритий, сверхмощными лазерными лучами или пучками высокоэнергичных частиц (ионов, электронов). Такое облучение вызывает последовательность термоядерных микровзрывов[10].

Первый вид термоядерных реакторов намного лучше разработан и изучен, чем второй.

В ядерной физике, при исследованиях термоядерного синтеза, для удержания плазмы в некотором объёме используется магнитная ловушка -- устройство, удерживающее плазму от контакта с элементами термоядерного реактора. Магнитная ловушка используется в первую очередь как теплоизолятор. Принцип удержания плазмы основан на взаимодействии заряженных частиц с магнитным полем, а именно на спиральном вращении заряженных частиц вдоль силовых линий магнитного поля. Однако намагниченная плазма очень нестабильна. В результате столкновений заряженные частицы стремятся покинуть магнитное поле. Поэтому для создания эффективной магнитной ловушки используются мощные электромагниты, потребляющее огромное количество энергии или применяются сверхпроводники.

6. Радиационная безопасность

Термоядерный реактор намного безопаснее ядерного реактора в радиационном отношении. Прежде всего, количество находящихся в нём радиоактивных веществ сравнительно невелико. Энергия, которая может выделиться в результате какой-либо аварии, тоже мала и не может привести к разрушению реактора. При этом в конструкции реактора есть несколько естественных барьеров, препятствующих распространению радиоактивных веществ. Например, вакуумная камера и оболочка криостата должны быть герметичными, иначе реактор просто не сможет работать. Тем не менее, при проектировании ITER большое внимание уделялось радиационной безопасности как при нормальной эксплуатации, так и во время возможных аварий. термоядерный синтез тепловой реактор

Есть несколько источников возможного радиоактивного загрязнения:

· радиоактивный изотоп водорода -- тритий;

· наведённая радиоактивность в материалах установки в результате облучения нейтронами;

· радиоактивная пыль, образующаяся в результате воздействия плазмы на первую стенку;

· радиоактивные продукты коррозии, которые могут образовываться в системе охлаждения.

Для того, чтобы предотвратить распространение трития и пыли, если они выйдут за пределы вакуумной камеры и криостата, необходима специальная система вентиляции, которая должна поддерживать в здании реактора пониженное давление. Поэтому из здания не будет утечек воздуха, кроме как через фильтры вентиляции.

При строительстве реактора, например ITER, применяются только материалы, уже испытанные в ядерной энергетике. Благодаря этому наведённая радиоактивность будет сравнительно небольшой. В частности, даже в случае отказа систем охлаждения естественной конвекции будет достаточно для охлаждения вакуумной камеры и других элементов конструкции.

Оценки показывают, что даже в случае аварии радиоактивные выбросы не будут представлять опасности для населения и не вызовут необходимости эвакуации.

7. Трудности и перспективы

Исследования в области УТС сталкиваются с большими трудностями как чисто физического, так и технического характера. К первым относится уже упомянутая проблема устойчивости горячей плазмы, помещенной в магнитную ловушку. Правда, применение сильных магнитных полей специальной конфигурации подавляет потоки частиц, покидающих зону реакции, и позволяет получить в ряде случаев достаточно устойчивые плазменные образования. Электромагнитное излучение при используемых значениях n и Т плазмы и возможных размерах реактора свободно покидает плазму, но для чисто водородной плазмы эти энергетические потери определяются только тормозным излучением электронов и в случае (d, t) реакций перекрываются ядерным энерговыделением уже при температурах выше 4·107 К. Вторая фундаментальная трудность связана с проблемой примесей. Даже малая добавка чужеродных атомов с большим Z, которые при рассматриваемых температурах находятся в сильно ионизованном состоянии, приводит к резкому увеличению интенсивности сплошного спектра, к появлению линейчатого спектра и возрастанию энергетических потерь выше допустимого уровня. Требуются чрезвычайные усилия (непрерывное совершенствование вакуумных установок, использование тугоплавких и труднораспыляемых металлов в качестве материала диафрагм, применение специальных устройств для улавливания чужеродных атомов и т.д.), чтобы содержание примесей в плазме оставалось ниже допустимого уровня. Точнее - "летальная" концентрация, исключающая возможность протекания термоядерных реакций, например для примеси вольфрама или молибдена, составляет десятые доли процента.

Заключение

Идея создания термоядерного реактора зародилась в 1950-х годах. Тогда от нее было решено отказаться, поскольку ученые были не в состоянии решить множество технических проблем. Прошло несколько десятилетий прежде, чем ученым удалось «заставить» реактор произвести хоть сколько-нибудь термоядерной энергии.

В ходе написания этой работы мною были подняты вопросы по созданию и основным проблемам термоядерного синтеза, и как оказалось, создание установок для получения термоядерного синтеза - это и есть проблема, но не основная. К основным проблемам можно отнести удержание плазмы в реакторе и создание оптимальных условий: произведением концентрации n частиц на время t их удержания в ловушке и созданиям температуры, приблизительно равной температуре в центре солнца.

Несмотря на все сложности создания управляемого термоядерного синтеза, ученые не отчаиваются и ищут решения проблем, т.к. при удачном осуществлении реакции синтеза будет получен колоссальный источник энергии, во многом превосходящий любую созданную электростанцию. Запасы топлива для таких электростанций практически неисчерпаемы - дейтерий и тритий легко добываются из морской воды. Килограмм этих изотопов может выделить столько же энергии, сколько 10 млн кг органического топлива.

Будущее не сможет существовать без развития термоядерного синтеза, человечеству необходима электроэнергия, а в современных условиях нам не хватит наших запасов энергии, при получении ее из атомных и электростанций.

Приложение

Рисунок 1: термоядерная реакция синтеза дейтерия(2H) и трития(3Н) с образованием гелия, свободного нейтрона и выделением энергии.

Рисунок 2: схема ITER

Рисунок 3: строительство ITER

Рисунок 4:

Рисунок 5: ITER - вид изнутри

Размещено на Allbest.ru

...

Подобные документы

  • Необходимость управляемого термоядерного синтеза. Плазма и топливный цикл термоядерного реактора. Высокотемпературный нагрев вещества, лазерный управляемый термоядерный синтез. Характеристика особенностей реализации "лазерного" термоядерного синтеза.

    реферат [1,1 M], добавлен 27.05.2012

  • Изучение свойств термоядерного синтеза. Энергетическая выгодность термоядерных реакций. Их осуществление в земных условиях и, связанные с этим проблемы. Осуществление управляемых реакций в установках типа "ТОКАМАК". Современные исследования плазмы.

    курсовая работа [108,0 K], добавлен 09.12.2010

  • Сущность и механизм инициации управляемого термоядерного синтеза. Разновидности термоядерных реакций и их примеры. Преимущество термоядерной энергетики и сфера применения. История создания и конструкция Токамака (тороидальной магнитной камеры с током).

    презентация [2,2 M], добавлен 02.04.2015

  • Изучение современных альтернативных источников энергии. История развития технологии термоядерного синтеза в России и за рубежом. Технология термоядерного синтеза, анализ ее эффективности в будущем, сравнение с другими альтернативными источниками энергии.

    презентация [2,2 M], добавлен 10.05.2010

  • Рассмотрение особенностей протекания и результатов реакций "безнейтронных", между ядрами дейтерия, дейтерий + тритий, дейтерий + гелий-3. Определение критериев выполнения управляемого термоядерного синтеза. Изучение магнитных методов удержания плазмы.

    курсовая работа [1,6 M], добавлен 28.07.2010

  • Управляемый термоядерный синтез при синтезе ядер дейтерия и трития. Преодоление кулоновского барьера путем нагрева и сжатия вещества. Выполнение критерия Лоусона. Подходы к решению проблемы управляемого термоядерного синтеза. Пороговая энергия лазера.

    презентация [49,7 K], добавлен 19.02.2014

  • Научные разработки в сфере холодного термоядерного (ХТС) и холодного ядерного синтеза (ХЯС). Возможность использования реакций ХТС и ХЯС для создания природных ресурсов, дешевой энергии, производства электромобилей и решения экологических проблем.

    презентация [2,1 M], добавлен 14.12.2010

  • Рассмотрение гипотез о происхождении энергии на Солнце. Определение необходимости, условий и проблем (экономических и медицинских) осуществления самоподдерживающейся реакции ядерного синтеза. Выдвижение теории о преобразовании энергии в электричество.

    реферат [25,6 K], добавлен 05.12.2010

  • Рассмотрение понятия, классификации (сверхмалый, малый, средний, большой, сверхбольшой, высотный, воздушный, наземный, надводный, подводный, подземный) ядерного взрыва. Изучение реакций деления атомных ядер каскадного характера и термоядерного синтеза.

    презентация [897,8 K], добавлен 09.04.2010

  • Ознакомление с понятием термоядерных реакций; особенности из применения в военном деле, энергетике и медицине. Рассмотрение схемы термоядерной реакции синтеза гелия. Изучение устройства и функционального назначения тороидальной магнитной камеры с током.

    презентация [1,1 M], добавлен 13.05.2012

  • Первая водородная авиабомба. Испытание самого мощного в истории термоядерного устройства. Световая вспышка. Политический результат испытания. Термоядерные реакции. Изотопы водорода. Разработка водородной бомбы. Последствия взрыва. Радиоактивные осадки.

    доклад [13,4 K], добавлен 11.09.2008

  • Возможность осуществления ядерных реакций синтеза ядер изотопов водорода в присутствии катализаторов при температурах, существенно меньших, чем в термоядерных реакциях. Сколько же энергии в стакане обычной воды. Механизм работы холодного ядерного синтеза.

    статья [559,5 K], добавлен 15.05.2019

  • История использования человеком источников энергии на протяжении своего исторического развития – от каменного века до нашего времени. Огонь и способы его добывания. Тепловые и реактивные двигатели. Химические источники тока. Энергия термоядерного синтеза.

    реферат [3,0 M], добавлен 15.11.2009

  • Энергия связи и состав атомного ядра. Особенности цепной ядерной реакции. Основы термоядерного синтеза. Ядерный реактор как установка, в которой осуществляется управляемая цепная реакция деления тяжелых ядер. Применение этого рода энергии. Определения.

    презентация [3,8 M], добавлен 22.12.2013

  • Особенности осуществления ядерных реакций, их сопровождение энергетическими превращениями. Термоядерные реакции в природных условиях. Строение ядерного реактора. Цепные ядерные реакции, схема их развития. Способы и области применения ядерных реакций.

    презентация [774,1 K], добавлен 12.12.2014

  • Энергия солнца, ветра, вод, термоядерного синтеза как новые источники энергии. Преобразование солнечной энергии в электрическую посредством использования фотоэлементов. Использование ветродвигателей различной мощности. Спирт, получаемый из биоресурсов.

    реферат [20,0 K], добавлен 16.09.2010

  • Факторы устойчивого удержания высокотемпературной плазмы, необходимого для осуществления управляемого термоядерного синтеза. Дивертор, управление примесями. Ядерная реакция при столкновении дейтона с тритоном. Наиболее перспективные методы нагрева.

    доклад [804,7 K], добавлен 02.10.2014

  • Применение энергии термоядерного синтеза. Радиоактивный распад. Получение ядерной энергии. Расщепление атома. Деление ядер тяжелых элементов, получение новых нейронов. Преобразование кинетической энергии в тепло. Открытие новых элементарных частиц.

    презентация [877,4 K], добавлен 08.04.2015

  • Атомная энергетика. Переход к альтернативным источникам энергии. Доказанные запасы нефти в мире. Проблема исчерпания запасов органических природных энергоресурсов. Обеспечение сохранности природы, чистоты воды и воздуха. Управляемый термоядерный синтез.

    презентация [1,5 M], добавлен 23.05.2014

  • Изучение деления ядер, открытие цепных реакций на деление ядер урана. Создание ядерных реакторов, ядерной энергетики и оружия. Термоядерный синтез легких ядер в звездах. Что должен знать физик-ядерщик. Общие клинические проявления лучевой болезни.

    реферат [16,7 K], добавлен 14.05.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.