Холодильные агенты

Требования, которые предъявляются к хладагентам. Основные холодильные агенты: аммиак, фреоны (хладоны) и некоторые углеводороды. Применения альтернативных веществ в производстве новой техники и сервисе эксплуатируемого парка холодильного оборудования.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 18.12.2017
Размер файла 350,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

1. Холодильные агенты

холодильный агент фреон

Холодильный агент, хладагент, рабочее вещество холодильной машины, которое при кипении или в процессе расширения отнимает теплоту от охлаждаемого объекта и затем после сжатия передаёт её охлаждающей среде (воде, воздуху и т. п.). К хладагентам предъявляется ряд требований: они должны иметь низкую температуру кипения при давлениях выше атмосферного (во избежание подсоса воздуха), умеренные давление и температуру конденсации, низкую температуру затвердевания и высокую критическую температуру, большую теплоту парообразования при малых удельных объёмах паров, малую теплоёмкость и высокую теплопроводность. Кроме того, желательно, чтобы хладагенты были взрывобезопасными, нетоксичными, негорючими, нейтральными к конструкционным материалам, инертными к смазке и т. д. В зависимости от температуры кипения при атмосферном давлении Х. а. подразделяют на 3 группы: высокотемпературные (выше --10 °С), умеренные (ниже --10 °С) и низкотемпературные (ниже --50 °С). Основными холодильными агентами являются аммиак, фреоны (хладоны) и некоторые углеводороды. Аммиак относится к группе умеренных холодильных агентов. Достоинствами аммиака являются его низкая стоимость и высокие теплофизические показатели. К недостаткам относятся токсичность, взрывоопасность. Аммиак также разрушительно воздействует на медь и её сплавы. Фреоны в большинстве случаев безвредны и негорючи; насчитывается свыше 50 различных фреонов и их смесей, применяемых во всех температурных группах. Наиболее распространены фреон-12, фреон-22 (относятся к умеренным хладагентам) и фреон-13 (низкотемпературный Х. а.). Углеводороды (этан, пропан, этилен) имеют низкую температуру замерзания, но взрывоопасны; применяются в крупных и средних холодильных установках в нефтехимической и газовой промышленности. В пароэжекторных и работающих на водном растворе бромистого лития (бромистолитиевых) абсорбционных холодильных машинах холодильным агентом служит вода. В холодильно-газовых машинах в качестве хладагентов в основном используются такие газы, как гелий, водород, азот, воздух.

2. Замена хладагентов в действующем оборудовании

Развитие холодильной техники в настоящее время находится под влиянием трех определяемых экологическими проблемами взаимосвязанных факторов:

* требований Монреальского протокола о прекращении потребления веществ, разрушающих озоновый слой (в первую очередь широко распространенного хладагента R12) и о временном и количественном ограничении применения веществ переходной группы, имеющих малый потенциал разрушения озонового слоя (ОDP);

* требовании Киотского протокола к «Рамочной конвенции ООН об изменении климата» о регулировании эмиссии парниковых газов (веществ, имеющих высокий потенциал глобального потепления -- GWP), к которым относятся широко применяемый хладагент R134a и многие другие вещества, используемые в холодильной технике;

* традиционного требования к повышению энергоэффективности всех видов холодильной техники, что обусловлено растущей конкуренцией на отечественном рынке и положениями определенных законов «Об энергоэффективности» и требованиями стандартов об обязательном определении и информировании потребителей о классе энергоэффективности холодильных установок.

Анализируя наиболее известные, разработанные в различное время в нашей стране и за рубежом, хладагенты -- заменители R12, R 22, R 502 и других, можно убедиться, что у каждого из них имеются уязвимые места с точки зрения выполнения перечисленных требований. Поэтому в перспективе все они могут оказаться объектами разного рода экологического регулирования, которое в конечном итоге сведется к запретам их производства и потребления.

Кроме того, для осознанного применения альтернативных веществ в производстве новой техники и сервисе эксплуатируемого парка холодильного оборудования необходимо иметь достаточно большой объем информации о термодинамических свойствах этих веществ, их взаимодействии с другими материалами и веществами в холодильной машине, а также данные о санитарно-гигиенических свойствах и т.д. Эти сведения не всегда имеются для предлагаемых на рынке веществ, в том числе и отечественных.

Немаловажными факторами успешного внедрения новых хладагентов являются также наличие отечественного производства как самих веществ, так и компрессоров, предназначенных для работы на них, и возможность экспорта холодильной техники, работающей на таких веществах.

Прежде чем рассматривать свойства хладагентов, остановимся на основных требованиях, предъявляемых к ним. Требования к хладагентам подразделяются на следующие группы:

экологические - озонобезопасность (ODP), низкий потенциал глобального потепления (GWP), негорючесть и нетоксичность;

термодинамические - большая объемная холодопроизводительность; низкая температура кипения при атмосферном давлении; невысокое давление конденсации; хорошая теплопроводность; малые плотность и вязкость хладагента, обеспечивающие сокращение гидравлических потерь на трение и местные сопротивления при его транспортировке; максимальная приближенность к заменяемым хладагентам (для альтернативных озонобезопасных хладагентов) по давлениям, температурам, удельной объемной холодопроизводительности и холодильному коэффициенту;

эксплуатационные - термохимическая стабильность, химическая совместимость с материалами и холодильными маслами, достаточная взаимная растворимость с маслом для обеспечения его циркуляции, технологичность применения; негорючесть и не-взрывоопасность; способность растворять воду, незначительная текучесть; наличие запаха, цвет и т. д.;

экономические - наличие товарного производства, доступные (низкие) цены.

Хладагенты, отвечающие перечисленным требованиям, найти практически невозможно, поэтому в каждом отдельном случае выбирают хладагент с учетом конкретных условий работы холодильной машины, и предпочтение следует отдавать таким, которые удовлетворяют принципиальным и определяющим требованиям.

Альтернативными веществами могут быть чистые (простые) вещества и смеси. Предпочтение отдается, прежде всего, чистым веществам.

3. Обозначения хладагентов

Стандартом допускается несколько обозначений хладагентов: условное (символическое), торговое (марка), химическое и химическая формула.

Условное обозначение хладагентов является предпочтительным и состоит из буквы "R" или слова Refrigerant (хладагент) и комбинации цифр. Например, хладон-12 имеет обозначение R12 (CF2C12). Цифры расшифровывают в зависимости от химической формулы хладагента. Первая цифра (1) указывает на метановый ряд, следующая цифра (2) соответствует числу атомов фтора в соединении. В том случае, когда в производных метана водород вытеснен не полностью, к первой цифре добавляют количество оставшихся в соединении атомов водорода, например R22.

Для этанового ряда вначале записывают комбинацию цифр - индекс, равный 11, для пропанового - 21, для бутанового - 31. Для этих производных ко второй цифре добавляют число атомов водорода, если они есть, например трифтортрихлорэтан C2F2C13 - R113.

В случае, если в составе соединения имеется бром, в его обозначении появляется буква "В", за которой следует число атомов брома, например R13B1 - трифторбромметан, химическая формула CF3Br.

Изомеры производных этана имеют одну и ту же комбинацию цифр (цифровой индекс), и то, что данный изомер является полностью симметричным, отражается его цифровым индексом без каких-либо уточнений. По мере возрастания значительной асимметрии к цифровому индексу соответствующего изомера добавляют букву "а", при большей асимметрии ее заменяют буквой "b", затем "с", например R134a, R142b и т. д.

Способ цифрового обозначения непредельных углеводородов и их галогенопроизводных аналогичен рассмотренному выше, но к цифрам, расположенным после буквы "R", слева добавляют 1 для обозначения тысяч (например, R1150).

Для хладагентов на основе циклических углеводородов и их производных после буквы "R" перед цифровым индексом вставляют букву "С" (например, RC270).

Хладагенты неорганического происхождения имеют номера, соответствующие их относительной молекулярной массе, плюс 700. Например, аммиак, химическая формула которого NH3, обозначают как R717, воду (Н2О) - как R718.

Хладагентам органического происхождения присвоена серия 600, а номер каждого хладагента внутри этой серии назначают произвольно (например, метиламин имеет номер 30, следовательно, его обозначение запишется как R630).

Зеотропным, или неазеотропным, смесям присвоена серия 400 с произвольным номером для каждого хладагента внутри этой серии, например R401A.

Хладагенты на основе предельных углеводородов, содержащих бром, имеют двойное обозначение. Это обозначение имеет в своем составе букву "В", например R13B1, или букву "Н", за которой следуют цифры 1 и 3, но далее к ним добавляют еще две цифры, первая из которых указывает на число атомов хлора, вторая - на число атомов брома. Например, трифторбромметан (CF3Br), у которого число атомов хлора равно 0, а атомов брома - 1, может обозначаться либо R13B1, либо Н1301.

В настоящее время появилась тенденция при обозначении хладагентов предварять цифровой индекс не буквой "R" или "Н", а аббревиатурой, указывающей непосредственно на группу, к которой относят хладагент в зависимости от степени воздействия его на окружающую среду. Например, предлагаются обозначения:

CFC12 для хладагента R12, принадлежащего к группе CFC (ХФУ), в которую входят хладагенты, вредные для окружающей среды;

HCFC125 для хладагента R125, относящегося к группе HCFC (ГХФУ), состоящей из хладагентов, менее вредных для окружающей среды;

HFC134a для хладагента R134a, входящего в группу HFC (ГФУ), состоящую из хладагентов, безвредных для окружающей среды.

Каждая фирма - производитель хладагентов выпускает в продажу свою продукцию под собственным наименованием, например такой деятельностью занимаются такие фирмы/торговая марка как:

"MackDown Chemical Inc" / MackFri®,

"Du Pont de Nemour" / Фреон (Freon) или Сува (SUVA®),

"Elf Atochem" / Форан (FORANE®),

"Solvay" / Кальтрон (Kaltron),

"Montedison" / Альгофрен (Algofrene),

AZSO / Allied Signal,

ICI / Клеа (Klea),

"Daikin Kogyo" / Дайфлон (Daiflon).

#

Наименование хладагента

ASHRAE Number

Аналоги фирм DuPont, Atofina, Solvay и др.

Заменяет

1

MackFri®-01a

R401a

SUVA MP39

R12

2

MackFri®-01b

R401b

SUVA MP66

R12, R500

3

MackFri®-01c

R401c

SUVA MP52

R12

4

MackFri®-06a

R406a

Autofrost, GHG R-12, GHG X3, R-406a

R12, R500

5

MackFri®-09a

R409a

SUVA 409a, FX56, Genetron 409a, Forane FX56

R12

6

MackFri®-09b

R409b

Forane FX57

R12

7

MackFri®-14a

R414a

GHG X4

R12, R500

8

MackFri®-R01a

R415a

New

R12, R500

9

MackFri®-R01b

R415b

New

R12

10

MackFri®-R22

R22

Freon-22, Genetron-22

11

MackFri®-04a

R404a

SUVA HP62, FX70, Genetron 404a, Forane 404a, Solkane 404a

R22, R502

12

MackFri®-07c

R407c

Klea 66, SUVA 9000, Genetron 407c, Forane 407c, Solkane 407c

R22, HFC's

13

MackFri®-10a

R410a

SUVA 9100, AZ 20, Forane 410a, Solkane 410

R22, HFC's

14

MackFri®-502

R502

Freon-502

R502 (Only for countries of class "5")

15

MackFri®-02a

R402a

SUVA HP80

R502

16

MackFri®-02b

R402b

SUVA HP81

R502

17

MackFri®-07a

R407a

Klea 60

R502, HFC's

18

MackFri®-07b

R407b

Klea 61

R502, HFC's

19

MackFri®-08a

R408a

SUVA 9100, FX 10, Genetron 408a, Forane FX10

R502

20

MackFri®-507

R507

SUVA 507, AZ 50, Forane 507, Solkane507

R502, HFC's

21

MackFri®-141b

R141b

Solkane-141b, Genetron-141b

R11, R113

22

MackFri®-123

R123

SUVA-123, Genetron-123

R11, R113, in blends

23

MackFri®-523a

New

New

R11, R113, R141b, R123

24

MackFri®-523b

New

New

R11, R113, R141b, R123

25

MackFri®-523c

New

New

R11, R113, R141b, R123

26

MackFri®-523d

New

New

R11, R113, R141b, R123

27

MackFri®-142b

R142b

Freon-142b, Genetron-142b

R12, in blends

28

MackFri®-143a

R143a

Genetron-143a

in blends

29

MackFri®-152a

R152a

Freon-152a, Genetron-152a

R12, in blends

30

MackFri®-200

R227ea

FM-200, FE-227ea

R11, Halon 1301, in blends

31

MackFri®-ZCI A

R595

NAF S III

Halon 1301

32

MackFri®-32

R32

Freon-32

in blends

33

MackFri®-124

R124

SUVA-124, Genetron-124, FE-241

R12, R114, in blends

34

MackFri®-125

R125

FE-25, Halocarbon-125

Halon 1301, in blends

35

MackFri®-134a

R134a

FORANE®, 134a, HFC-134a, SUVA-134a, Genetron-134a, Dymel-134a, Solkane-134a, Halocarbon-134a

R12, in blends

36

MackFri®-200Pharma

R227ea

Solkane-227ea

R12 as propelant, in blends

37

MackFri®-36fa

R236fa

FE-36ea

Halon 1301

38

MackFri®-23

R23

Halocarbon-23, FE-13, GLC-23, Solcane-23

R13

39

MackFri®-600a

R600a

Isobutane

R12

40

MackFri®-601

R601

Pentane

R113, R11

41

MackFri®-601a

R601a

Isopentane

R113, R11

42

MackFri®-601b

R601b

Neopentane

R113, R11

43

MackFri®-601c

R601c

Cyclopentane

R113, R11

44

MackFri®-11a

R411a

R502

45

MackFri®-17a

R417a

Isceon-59, NU22

R22

46

MackFri®-245fa

R245fa

Genetron-245fa

R11, R113, R141b, R123, in blends

4. Хладагенты других производителей

Номер

Торговая марка

Фирма-производитель

Состав смеси

Содержание, %

Заменяемый хладагент

R403A

ISCEON 69S

RHODIA

R22-R218-R290

75-20-5

R502

R403B

ISCEON 69L

RHODIA

R22-R218-R290

56-39-5

R502

R405A

G2015

GREENCOOL

R22-R142b-R152a-RC318

45-5.5-7-42.5

R12, R500

R407D

KLEA 407D

ICI

R32-R125-R134a

15-15-70

R12, R500

R407E

KLEA 407E

ICI

R32-R125-R134a

25-15-60

R22

R411B

G2018B

GREENCOOL

R22-R152a-R1270

94-3-3

R502

R411C

G2018C

GREENCOOL

R22-R152a-R1270

95.5-1.5-3

R502

R412A

ARCTON TP5R

ICI

R22-R142

70-25-5

R12, R500

R413A

ISCEON 49

RHODIA

R134a-R218-R600

88-9-3

R12

pR-415A

MONCTON

R22-R23-R152a

80-5-15

R502

pR-415B

MONCTON

R22-R23-R152a

90-5-5

R502

pR-416A

FR-12

ICI

R124-R134a-R600

39.5-59-1.5

R12, R500

pR-416A

DI24

AUSIMONT

R124-R134a-R600

39.5-59-1.5

R12, R500

R508A

KLEA 5R3

ICI

R23-R116

39-61

R13, R503

R508B

SUVA 95

DUPONT

R23-R116

46-54

R13, R503

R509A

ARCTON TP5R2

ICI

R22-R218

44-56

R502

C10M1A

АСТРОН 12

АСТОР (Россия)

R22-R21-R142b

62-3-28

R12

C1

Хладагент-С1

ИНТЕРТЕК (Россия)

R152a-R600

70-30

R12

Большая политика и амбиции мировых монополистов во многом определяют судьбу таких на первый взгляд далеких от конечного потребителя продуктов, как хладагенты.

Казалось бы, свойства тех или иных холодильных агентов, или, как их называют по привычке, фреонов, должны интересовать только узкий круг специалистов, занимающихся холодильной техникой. С одной стороны, так и есть. Однако поистине гигантский рынок холодильного оборудования, требующий ежегодного производства около 100 тыс. тонн хладонов, приковывает к этой отрасли алчные взгляды крупнейших химических концернов, способных лоббировать свои интересы на уровне национальных правительств даже самых развитых стран. Рядовой потребитель холодильной техники вряд ли будет интересоваться химическим составом начинки своей покупки. Однако если подобная халатность и простительна для частного покупателя бытового холодильника, то для владельца торгового предприятия оборудование с "неправильным" хладоном может оказаться домокловым мечом. Все соглашаются, что холодильные агенты должны обладать высокой надежностью и холодопроизводительностью, низкой ценой, малым энергопотреблением, а также быть безопасными и соответствовать санитарным нормам. Кажется, что оценка перечисленных свойств и должна быть определяющей при выборе хладона, но не тут то было. С 1989 года основным критерием, стоящим выше и медицинских норм, и цены, стало отношение хладона к такой на первой взгляд далекой от холодильной тематики проблемы, как озоновый слой над нашей планетой.

5. Протоколы монреальских мудрецов

Первым международным документом, ставящим проблему сохранения озонового слоя Земли, была Венская конвенция 1985 года. Этот документ, по своей сути, носил декларативный характер. Подписавшие его государства не брали на себя никаких обязательств; были лишь очерчены контуры общечеловеческой проблемы, которую следовало как можно быстрее решить. Однако прошло чуть более двух лет, и в 1987 году международное сообщество приняло куда более жесткий документ, получивший название Монреальского протокола. Согласно его положениям, основными виновниками разрушения озонового слоя объявлялись атомы хлора или брома, которые отделились от молекул химических соединений, синтезированных человеком. Основная вина отводилась хлорфторуглеродам, использующимся в качестве распылителей в аэрозолях, и хладагентам, в том числе небезызвестному R12, которым в те времена было заправлено подавляющее большинство холодильных машин и кондиционеров. Несмотря на протесты немногочисленных групп авторитетных ученых, указывающих на недостаточную научную обоснованность положений предстоящего договора, Монреальский протокол был принят, а группа химиков, подготовившая научную базу под этот запрет, была удостоена Нобелевской премии. До сих пор некоторые исследователи выражают большие сомнения по поводу целесообразности принятия запрета хлорфторуглеродов. Самые жесткие критики объявляют протокол грандиозной аферой инициированной группой химических концернов с целью монополизировать рынок и вытесненить национальных производителей, более умеренные - говорят о спорности некоторых положений и призывают к корректировке протокола с учетом времени. Конечно, глупо было бы отрицать, что альянс Du Pont - ICI, обладающий фактической монополией на производство оборудования для синтеза хладона R-134а, который в период подписания Монреальского протокола позиционировался как единственная достойная альтернатива озоноразрушающим веществам получил небывалую прибыль после введения законодательных ограничений на R12. Однако если даже это было бы и так, то Du Pont наступил на собственные грабли - развязанная экологическая охота за вредными веществами обернулась и против R-134а (сегодня мы можем наблюдать, как Европейское сообщество вводит все более жесткие дискриминационные законы против этого хладона). "Одна из трагедий последних лет состоит в том, что политика все больше проникает в ранее не свойственные ей сферы, в том числе и технику, - говорит заведующий отделом "Энергоресурсосбережение" ОКБ-1 Энергетического института им Г.М. Кржижановского, председатель Научно-исследовательского и проектного кооператива "Элегаз" Игорь Мазурин. - Подписание Монреальского протокола сопровождалось массированной и агрессивной PR-кампанией. Любые сомневающиеся голоса замалчивались. Проблемы глобальных изменений в связи с появлением озоновой дыры стали предметом политических спекуляций. Политики устанавливали сроки постепенного вывода из производства хладагентов, а озоновый слой над Антарктидой пришел тем временем опять в свое нормальное состояние... По сути, Монреальский протокол утратил предмет своего обсуждения". Заметим, что сегодня похожая ситуация складывается и с Киотским протоколом, посвященным вопросам глобального потепления на планете. Из стран-участниц этого договора пока только США официально объявили о выходе из него в связи с недостаточной научной обоснованностью отдельных положений. Монреальский же протокол за время своего существования обогатился целым рядом поправок (Лондонская, 1990., Копенгагенская, 1992 г. и др.), ужесточающих условия вывода из производства и потребления озоноразрушающих веществ.

По степени озоноразрушающей активности озонового слоя Земли галоидопроизводные углеводороды разделены на 3 группы:

Хлорфторуглероды ХФУ (CFC)

Обладают высокой озоноразрушающей активностью. Хладагенты этого типа включают: R11, R12, R13, R113, R114, R115, R500, R502, R503, R12B1, R13B1.

Гидрохлорфторуглероды ГХФУ (HCFC)

Это хладагенты с низкой озоноразрушающей активностью. К ним относятся: R21, R22, R141b, R142b, R123, R124.

Гидрофторуглероды ГФУ (HFC)

Фторуглероды ФУ (FC), углеводороды (HC). Не содержащие хлора хладагенты, считаются полностью озонобезопасными. Таковыми являются хладагенты R134, R134a, R152a, R143a, R125, R32, R23, R218, R116, RC318, R290, R600, R600a, R717 и др.

6. Особенности термодинамики смесей хладагентов

В молекулярной теории растворов различают зеотропные (неазеотропные) и азеотропные смеси.

Термодинамическое поведение смеси азеотропного состава подобно поведению чистого вещества, поскольку состав паровой и жидкой фаз у нее одинаков, а давления в точках росы и кипения совпадают.

Концентрации паровой и жидкой фаз зеотропной смеси в условиях термодинамического равновесия различаются, а изотерма под бинодалью в p--h-координатах имеет наклон, т.е. кипение при постоянном давлении происходит при увеличении температуры хладагента от t01 до t02, а конденсация - при падении температуры от tК1 до tК2 (см. диаграмму ниже).

Это необходимо учитывать при определении степени перегрева пара на входе в компрессор, а также при оценке энергетических характеристик холодильной установки.

Таким образом, температуру кипения и температуру конденсации следует находить по-другому. Температуру кипения вычисляют как среднюю температуру t0 между температурой точки росы t02 при постоянном давлении всасывания рВС и температурой, при которой хладагент поступает в испаритель t01.

Температуру конденсации определяют как среднюю температуру tк.ср между температурой точки росы tк1 (температура начала процесса конденсации при постоянном давлении нагнетания pH) и температурой tк2 жидкости на выходе из конденсатора. Разность температур фазового перехода при постоянном давлении (при кипении или конденсации) получила название Dtgl или температурный глайд (от англ, glide - скольжение). Значение Dtgl зависит от состава рабочего тела и является важным технологическим параметром.

Перегрев всасываемого пара вычисляют как разность температуры tBC на входе в компрессор и температуры точки росы t02хладагента при давлении всасывания рвс. При регулировании холодопроизводительности холодильных установок с помощью регулирующих вентилей все изложенное выше необходимо учитывать.

Переохлаждение жидкости вычисляют как разность между действительной температурой жидкости и температурой точки конца конденсации tк2 при давлении нагнетания рн.

Особенно важно при регулировании давления учитывать температурный глайд смеси хладагентов, например хладагентов 407С, R410A и др. Кроме того, температурный глайд - решающий фактор при определении размеров теплообменных аппаратов.

Потери давления в системе существенно увеличивают температурный глайд. Пренебрежение данным явлением при составлении теплового баланса может привести к занижению размеров теплообменных аппаратов и других элементов холодильной системы. Влияние этого фактора особенно существенно, когда холодильная система эксплуатируется на пределе своих возможностей.

Таким образом, зеотропные смеси имеют свои преимущества и недостатки. С одной стороны, изменение состава рабочего тела при циркуляции его по контуру холодильной системы может привести к возрастанию холодопроизводительности и холодильного коэффициента по сравнению с этими характеристиками для чистых хладагентов. С другой стороны, применение зеотропных смесей приводит к снижению интенсивности теплообмена в испарителе и конденсаторе.

Еще один недостаток зеотропной смеси - потенциальная возможность изменения ее состава при появлении утечек в контуре холодильной системы, что влияет на пожаробезопасность и холодопроизводительность установки. Чтобы снизить вероятность изменения состава в области концентраций, где преобладает пожароопасный компонент, в смесь добавляют негорючий компонент, давление насыщенных паров которого близко к давлению паров пожароопасного компонента или выше него. Если смесь содержит хотя бы один горючий компонент, то необходимо при заправке избегать попадания воздуха в систему.

Основные механизмы изменения состава многокомпонентного хладагента в холодильной установке следующие:

парожидкостное разделение зеотропных смесей в компрессоре и теплообменных аппаратах;

различная растворимость компонентов смеси в холодильном масле;

селективная потеря какого-либо компонента из-за утечки компонента вследствие негерметичности системы; изменения массы многокомпонентного рабочего тела в отдельных элементах холодильной системы при различных тепловых нагрузках.

При практическом использовании зеотропных смесей рекомендуется:

заправлять холодильную систему из баллона, заполненного жидким хладагентом;

смеси с отчетливо выраженным температурным "глайдом" не следует рекомендовать для применения в холодильных установках с затопленным испарителем;

учитывать неодинаковую растворимость каждого компонента смесевого хладагента в холодильных маслах;

при расчете характеристик холодильной машины следует принимать во внимание изменение состава многокомпонентного хладагента.

7. Традиционные хладагенты групп ХФУ и ГХФУ

Хладагент R12. Дифтордихлорметан относится к группе ХФУ (CFC). Характеризуется высоким потенциалом разрушения озона (ODP = 1) и большим потенциалом глобального потепления (GWP = 8500). Бесцветный газ со специфическим запахом, в 4,18 раза тяжелее воздуха. Один из наиболее распространенных и безопасных при эксплуатации хладагентов. Обезвоженный R12 нейтрален ко всем металлам. Характеризуется повышенной текучестью, что способствует проникновению его через мельчайшие неплотности и даже через поры обычного чугуна. В то же время благодаря повышенной текучести R12 холодильные масла проникают во все трущиеся детали, снижая их износ. Поскольку R12 хороший растворитель многих органических веществ, при изготовлении прокладок применяют специальную резину - севанит или паронит. В холодильной технике R12 широко применяли для получения средних температур.

Хладагент R11. Фтортрихлорметан, тяжелый газ (в 4,74 раза тяжелее воздуха), относится к группе ХФУ (CFC). Характеризуется высокой озоноразрушающей активностью (ODP = 1). Согласно Монреальскому протоколу с 1 января 1996 г. прекращено производство R11 (Копенгаген, 1992г.). Для организма человека R11 безвреден, он невзрывоопасен, неограниченно растворяется в минеральном масле. В воде R11 нерастворим, допустимая массовая доля влаги не более 0,0025%. Обезвоженный хладагент нейтрален ко всем металлам, за исключением сплавов, содержащих более 20% магния. Нормальная температура кипения 23,8 °С. Объемная холодопроизводительность R11 мала; применяют его в холодильных машинах при температуре кипения до -20 °С. Хладагент R11 широко применяли в промышленных кондиционерах, турбокомпрессорах средних и больших мощностей.

Хладагент R502. Азеотропнаяя смесь хладагентов R22 и R115. Массовая доля R22 составляет 48,8%, a R115 - 51,2%. Относится к группе ХФУ (CFC), имеет следующие экологические характеристики: ODP = 0,33; GWP = 4300. Невзрывоопасен, малотоксичен и химически инертен к металлам. Растворимость R502 в маслах, коэффициент теплоотдачи при кипении и конденсации близки к соответствующим значениям для R22. Характерная особенность: R502 малорастворим в воде.. Объемная холодопроизводительность его выше, а температура нагнетания ниже примерно на 20°С, чем у R22, что положительно сказывается на температуре обмотки электродвигателя при эксплуатации герметичного холодильного компрессора. Хладагент R502 широко применяли в низкотемпературных компрессионных холодильных установках.

Хладагент R22. Дифторхлорметан относится к группе ГХФУ (HCFC). Имеет низкий потенциал разрушения озона (ODP = 0,05), невысокий потенциал парникового эффекта (GWP = 1700), т. е. экологические свойства R22 значительно лучше, чем у R12 и R502. Это бесцветный газ со слабым запахом хлороформа, более ядовит, чем R12, невзрывоопасен и негорюч.. По сравнению с R12 хладагент R22 хуже растворяется в масле, но легко проникает через неплотности и нейтрален к металлам. Для R22 холодильной промышленностью выпускаются холодильные масла хорошего качества. Хладагент R22 слабо растворяется в воде. Коэффициент теплоотдачи при кипении и конденсации на 25...30% выше, чем у R12, однако R22 имеет более высокие давление конденсации и температуру нагнетания (в холодильных машинах).. Этот хладагент широко применяют для получения низких температур в холодильных компрессионных установках, в системах кондиционирования и тепловых насосах. В холодильных установках, работающих на R22, необходимо использовать минеральные или алкилбензольные масла. Нельзя смешивать R22 с R12 - образуется азеотропная смесь.

По энергетической эффективности R502 и R22 достаточно близки. Холодильную установку, использующую в качестве рабочего тела R502, можно адаптировать к применению R22. Однако, как отмечалось ранее, R22 имеет более высокое давление насыщенных паров и, как следствие, более высокую температуру нагнетания.

Хладагент R123. Относится к группе ГХФУ (HCFC). Температура кипения при атмосферных условиях 27,9 °С. Потенциал разрушения озона ODP = 0,02, потенциал глобального потепления GWP = 90. Хладагент предназначен для ретрофита (замена хладагента на озонобезопасный) холодильных установок - водоохладителей, работающих на R11. Теоретическая холодопроизводительность цикла с R123 составляет 0,86 относительно холодопроизводительности цикла с R11, температура и давление конденсации ниже на 10...15% по сравнению с R11. В сочетании с R123 рекомендуется использовать алкилбензольное холодильное масло или смесь минерального и алкилбензольного.

Хладагент R13. Хладон - 13 (ТРИФТОРХЛОРМЕТАН, CF3Cl, CFC - 13, R13) Хладон - 13 Бесцветный газ со слабым запахом тетрахлорметана. Хладон - 13 Хладагент высокого давления в технике средних и низких температур. ODP=1; GWP=11700. При соприкосновении с пламенем разлагается с образованием высокотоксичных продуктов. Негорючий газ.

Критическое давление, МПа

3,878

Температура кипения, єС

-81,5

Критическая температура, єС

28,8

Хладон снят с производства. Заменяется хладоном R23

Альтернативные многокомпонентные хладагенты групп ГХФУ

Хладагент R401A(-B,-C). Это зеотропная смесь среднего давления с температурным глайдом Dtgl= 4...5К.

В зависимости от условий эксплуатации холодопроизводительность холодильной системы, в которой ранее был R12, увеличивается на 5...8 %. Хладагент R401 несовместим с минеральными маслами, поэтому во время ретрофита необходимо заправлять холодильный агрегат алкилбензольным маслом. Требуется также замена фильтра-осушителя.

Хладагент рекомендуется применять для ретрофита в высоко- (выше О oС) и среднетемпературных торговых холодильных установках (герметичные, бессальниковые компрессоры и компрессоры с открытым приводом), бытовых холодильниках и стационарных кондиционерах воздуха для замены R12.

Холодопроизводительность холодильной системы, работающей на R401, сопоставима с холодопроизводительностью систем на R12 при температурах кипения выше -25 oС.

Хладагент R404а. Это близко зеотропная смесь R125/R143a/R134a с соотношением массовых долей компонентов 44/52/4. Температурный глайд менее 0,5К. В зависимости от условий эксплуатации обеспечиваются повышение холодопроизводительности на 4...5 % и снижение температуры нагнетания в компрессоре до 8 % по сравнению с аналогичными характеристиками R502. После поступления в продажу с конца 1993 г. R404A первоначально использовали в новом оборудовании, рассчитанном на низкие и средние температуры кипения. В настоящее время R404A применяют в качестве заменителя R502 при ретрофите систем. При этом необходима замена минерального масла на полиэфирное и фильтра-осушителя.

Изменение состава смеси, циркулирующей в холодильной системе, может привести к ухудшению ее энергетических характеристик, особенно в схемах с ресивером или при значительной длине коммуникационных линий. Компонентом служит R143a, который в чистом виде становится горючим при давлении 1*105 Па и температуре 177 oС, а в смеси с воздухом - при объемной доле 60 %. При низких температурах для возникновения горючести требуются высокие давления. Поэтому R404а также не следует смешивать с воздухом или пользоваться и допускать присутствия высоких концентраций воздуха с давлением выше атмосферного или при высоких температурах.

Температура кипения при атмосферном давлении, oС

-46,7

Критическая температура, oС

72,7

Критическое давление, кПа (абс.)

3735

Потенциал разрушения озона ODP

0,0

Потенциал глобального потепления HGWP

0,94

Хладагент R409A. Представляет собой смесь на основе ГХФУ: R22, R124 и R142. Массовые доли компонентов составляют соответственно 60; 25 и 15. Температура кипения при атмосферных условиях -34 oС. Потенциал разрушения озона ODP = 0,05. Хладагент негорючая и не ядовит, совместим с минеральными, а также с алкилбензольными маслами. Предназначен для ретрофита холодильных систем мобильного торгового транспортного оборудования, бытовых холодильников, промышленных холодильных установок с поршневыми и винтовыми компрессорами.

Хладагент С10М1. Хладагент С10М1 (ТУ 2412-003-32837395-98), разработанный компанией "АСТОР" и производимый под зарегистрированной маркой АСТРОНТМ 12, - это трехкомпонентная смесь на основе гидрохлорфторуглеродов R22/R21/R142b, имеющих ограниченный срок применения. Предназначена смесь С10М1 для ретрофита холодильных систем, работающих на R12.

Выпускают смеси двух марок (А и Б), различающихся массовыми долями компонентов: в смеси С10М1 марки A - R22, R21 и R142b массовые доли компонентов соответственно 65; 5 и 30%; в смеси С10М1 марки Б - 65; 15 и 20%.

Состав смеси подобран таким образом, чтобы эксплуатационные характеристики оборудования с этими хладагентами минимально отличались от показателей, достигаемых при работе с заменяемым хладагентом R12.

Хладагенты С10М1 нетоксичны, негорючий и по основным физико-химическим, термодинамическим и эксплуатационным свойствам сходны с хладагентом R12.

В качестве заменителя R12 хладагенты прошли трехлетние испытания в отечественном торговом холодильном оборудовании, в том числе в бытовых холодильниках производства заводов "Атлант", ЗИЛ и др.:

С10М1 марки А - в рефрижераторах железнодорожного транспорта (5-вагонные рефрижераторные секции ЦБ-5 производства завода "Дессау" и РС-4, выпускаемые на БМЗ), кондиционерах железнодорожного транспорта (установки типа МАБ-II);

С10М1 марки Б - в торговом холодильном оборудовании (холодильные агрегаты ВСР400, ВС500, ВС3800, ФАК-1,65МЗ, ФАК1,5МЗ, АК-4,5, АКФМ-4М и др.); в бытовых холодильниках (ЗИЛ-64, ЗИЛ-227, МХМ152, КШД270/280 и др.).

Преимущества хладагента С10М1 (АСТРОНТМ 12) по отношению к зарубежным аналогам следующие:

относительная дешевизна - хладагент состоит из компонентов, выпускаемых заводами России, а его производство организовано компанией "АСТОР" также на территории России;

транспортировать хладагент можно в контейнерах и баллонах, предназначенных для перевозки R12;

перевод холодильного оборудования с R12 на смеси С10М1 осуществляют исключительно путем замены самого хладагента без какой-либо модернизации холодильного оборудования, без внесения изменений в конструкцию холодильной машины и без замены компрессорного масла (в холодильном оборудовании, работающем на R12, используют минеральное масло ХФ12-16);

переход на хладагент С10М1 не предусматривает дополнительной подготовки холодильной системы к работе, переобучения персонала, применения специального оборудования или инструмента для сервисного обслуживания холодильной техники - согласно международной классификации, технология перехода на этот хладагент классифицируется как "drop in", т. е. простая замена.

Технология перевода действующей холодильной техники с хладагента R12 на смеси С10М1 отработана и оптимизирована в процессе опытной эксплуатации соответствующего оборудования. Обязательное условие применения смесей - заправка оборудования хладагентом в жидкой фазе. В случае утечки до 30...35 % хладагента С10М1 из системы в процессе эксплуатации проводят дозаправку смесью того же состава.

Хладагент R142b. При нормальной температуре и давлении HCFC-142b - бесцветный газ. Температура кипения при нормальном давлении -9,8oС. Характеризуется невысокими давлениями при высоких температурах конденсации:

60

8,819

70

11,182

80

13,999

90

17,329

Используется в кондиционерах и тепловых насосах.

Смесь R22/R142b. Хладагент представляет собой негорючую зеотропную смесь, компоненты которой имеют ограниченный Монреальским протоколом срок применения. Результаты испытаний бытовых холодильников, заправленных смесью R22 и R142b с массовыми долями соответственно 0,6 и 0,4показали, что энергопотребление осталось практически на том же уровне, что и при использовании R12. Применение этой смеси целесообразно при ретрофите действующего холодильного оборудования; при этом не требуется замены масел, фильтров-осушителей, а также внесения изменений в конструкцию холодильного агрегата. Смесь R22 и R142b может служить переходным хладагентом не только в бытовой технике, но и в другом холодильном оборудовании.

Хладагент R408A. Разработан концерном "ElfAtochem" в качестве альтернативы R502 при ретрофите в действующих холодильных системах. Близко азеотропная смесь, состоит из компонентов R22, R143a и R125. Состав по массе (%) соответственно 44; 4 и 52. Предназначен для применения в мобильных транспортных холодильных системах, а также в промышленных холодильных установках с поршневыми и винтовыми компрессорами. У R408A и R502 при одной и той же температуре давления близки, температура конденсации выше на 10 К. Холодопроизводительность цикла примерно на 1...10 % выше, чем при работе на R502.

Плотность жидкости R408A ниже, чем у хладагента R502, а, следовательно, требуемая масса заправки, т. е. имеющиеся в установке ресиверы, трубопроводы и насосы, предназначенные для R502, можно использовать для R408A.

Кроме того, уменьшение массы заправки важно учитывать в малых установках, чтобы не допустить перезаправки во избежание превышения давления и потребляемой мощности. В малых установках снижение заправки может достигать 25 %, а в больших - 15 %.

R408A более гигроскопичен, чем R502, что связано с необходимостью тщательного соблюдения правил перекачки этого хладагента, заправки систем и т. п. Теплоемкость жидкости при постоянном давлении больше у R408A, что привозит к значительным потерям при дросселировании. Этого можно избежать, увеличив переохлаждение жидкости в конденсаторе. Теплопроводность насыщенной жидкости также больше у R408A. Это повышает эффективность теплообмена, а следовательно, улучшает термодинамические характеристики установки, что и подтвердили испытания.

Потребляемая мощность при отрицательных температурах ниже на 7 %, что важно при ретрофите, так как уменьшает опасность замыкания или сгорания электродвигателя. Поэтому для применения R408A даже в малых герметичных компрессорах нет ограничений.

Из-за высокой полярности молекул одного из компонентов (R143a) хладагент R408A взаимно растворим и с алкилбензольными, и с минеральными маслами. В компактных холодильных системах при стандартных условиях этого достаточно, чтобы обеспечить возврат масла в компрессор. Хладагент R408A можно использовать также в сочетании с полиэфирными маслами.

По отношению к уплотнительным материалам R408A менее агрессивен, чем R502.

В качестве фильтров-осушителей используют молекулярные сита, применяемые для R502 и R22.

8. Альтернативные многокомпонентные хладагенты на основе углеводородов

Хладагент С1. В результате комплексных исследований в НИИ тепловых процессов им. В. М. Келдыша (Россия) разработан ряд многокомпонентных озонобезопасных хладагентов взамен R134a в качестве альтернативы R12. Наиболее перспективный из них хладагент С1 (азеотропная смесь R152/R600a), представляющий собой смесь углеводородов и фторуглеродов. Результаты исследований свидетельствуют о высоких теплофизических и эксплуатационных свойствах хладагентов и низком энергопотреблении холодильников, где используют эти хладагенты.

Зависимость холодопроизводительности и холодильного коэффициента от температуры кипения для С1, а также для R12 и R134a приведена на рисунке ниже. Эксперименты показали, что холодопроизводительность и холодильный коэффициент компрессоров ХКВ-6 и V1040G, заправленных смесью С1 в диапазоне температур кипения, характерных для бытовых холодильников и морозильников, соответствуют аналогичным параметрам для R12 и тем более для R134a.

Исследования, проведенные в НИИ тепловых процессов им. В. М. Келдыша, позволили сделать следующие выводы:

бытовые холодильники, заправленные хладагентом С1, работают устойчиво, их энергетические характеристики не хуже, чем при работе на R12, даже несколько превосходят их;

совместимость С1 с минеральным маслом ХФ 12-16 и конструкционными материалами позволяет максимально упростить процесс перехода с R12 на многокомпонентные хладагенты;

компоненты, входящие в С1, нетоксичны, их потенциал глобального потепления GWP низок; они освоены промышленностью развитых стран;

хладагент С1 горюч, но, как считают разработчики, необходимая доза для заправки бытовых холодильников и морозильников столь мала (28...56 г), что даже при полной утечке С1 из агрегата его концентрация (например, в кухне объемом 20 м3) будет ниже порога горючести в десятки раз.

Смесь пропан-бутан. По результатам исследований предлагается также использовать в бытовых холодильниках в качестве хладагента смесь пропан-бутан: при этом изменений в конструкцию бытового холодильника не вносят, а в качестве масла используют обычные минеральные масла, работающие с R12.

По энергетическим характеристикам теоретического холодильного цикла смесь пропан-бутан при аналогичных условиях уступает R12. Смесь пропан-бутана зеотропная.

Как было сказано ранее, такие смеси кипят при переменных температурах, но при постоянном давлении, т. е. это свойство может быть реализовано в холодильниках с двумя испарителями, когда кипение зеотропной смеси начинается в низкотемпературном отделении, а вскипание происходит в испарителе холодильной камеры при более высоких температурах.

Предлагаемая смесь пропан-изобутан (43 % R600a) горюча, но масса хладагента, находящегося в бытовом холодильнике, мала (20...40 г). Этой смесью заправляют бытовые холодильники в Германии, широко внедряют ее в Китае и Индии. Вместе с тем американское агентство по охране окружающей среды (ЕРА) ввело правило, запрещающее использование смеси пропан-изобутан (НС-12а) в качестве альтернативы R12.

Хладагент СМ1. Этот хладагент разработан в МЭИ (состав R134a/R218/R600), представляет собой зеотропную, пожаро- и взрывобезопасную смесь, по термодинамическим характеристикам близкую к R12 и растворимую в минеральных маслах. Не требуется изменения конструкций холодильных машин, применения новых смазочных масел и переоснащения производства.

Хладагент СМ1 предлагается также использовать в торговом и промышленном холодильном оборудовании, выпускаемом в настоящее время для работы на R12, а также для ретрофита части действующего парка холодильных машин.

Примерная потребность хладагента СМ1 (в новом производстве и при ретрофите) в 2000г.:

в бытовой холодильной технике 900 т;

в торговых холодильных машинах с воздушным охлаждением конденсаторов 600 т;

в промышленных холодильных машинах с воздушным охлаждением конденсатора 500 т.

Вместе с тем при имеющейся сырьевой базе промышленное производство хладагента СМ1 пока не организовано.

Альтернативные однокомпонентные хладагенты

Хладагент R717. Химическая формула NH3 (аммиак). Относится к группе ГФУ (HFC). Из "натуральных" хладагентов R717 стоит на одном из первых мест в качестве альтернативы R22 и R502. Производство аммиака в мире достигает 120 млн. т, и лишь малая часть его (до 5%) используется в холодильной технике.

Аммиак не разрушает озоновый слой (ODP = 0) и не вносит прямого вклада в увеличение парникового эффекта (GWP = 0). Газ с резким удушливым запахом, вредный для организма человека. Предельно допустимая концентрация в воздухе 0,02 мг/дм3, что соответствует объемной доле его 0,0028%. В соединении с воздухом при объемной доле 16...26,8% и наличии открытого пламени аммиак взрывоопасен.

Пары аммиака легче воздуха, он хорошо растворяется в воде (один объем воды может растворить 700 объемов аммиака, что исключает замерзание влаги в системе). Минеральные масла аммиак почти не растворяет. На черные металлы, алюминий и фосфористую бронзу не действует, однако в присутствии влаги разрушает цветные металлы (цинк, медь и ее сплавы). Массовая доля влаги в аммиаке не должна превышать 0,2%.

По термодинамическим свойствам аммиак - один из лучших хладагентов: по объемной холодопроизводительности он значительно превышает R12, R11, R22 и R502, имеет более высокий коэффициент теплоотдачи, что позволяет применять в теплообменных аппаратах трубы меньшего диаметра при заданной холодопроизводительности. Из-за резкого запаха аммиака появление течи в холодильной системе легко обнаруживается обслуживающим персоналом. Именно по этим причинам R717 нашел широкое применение в крупных холодильных установках. Хладагент R717 имеет низкую стоимость.

Один из недостатков аммиака - более высокое значение показателя адиабаты (1,31) по сравнению с R22 (1,18) и R12 (1,14), что приводит к значительному увеличению температуры нагнетания. В связи с этим предъявляют жесткие требования к термической стабильности холодильных масел, используемых в сочетании с аммиаком в течение длительного времени при эксплуатации установки. Конденсатор должен иметь развитую поверхность теплообмена, в результате чего возрастает его металлоемкость.

Характеристики хладагента R717, относящегося к группе ГФУ, а также некоторых хладагентов групп ХФУ и ГХФУ на линии насыщения приведены в таблице.

Аммиак имеет чрезвычайно высокое значение теплоты парообразования, вследствие чего сравнительно мал массовый расход циркулирующего хладагента (13... 15% по сравнению с R22). Это благоприятное качество для крупных холодильных установок, но затрудняет регулировку подачи аммиака в испаритель при малых мощностях.

Дополнительные сложности при создании холодильного оборудования вызывает высокая активность аммиака по отношению к меди и медным сплавам, поэтому трубопроводы, теплообменники и арматуру выполняют из стали. Из-за высокой токсичности и горючести аммиака сварные соединения тщательно контролируют. Вследствие высокой электропроводности R717 затруднено создание полугерметичных и герметичных компрессоров. Вместе с тем для промышленных холодильных установок мощностью более 20 кВт аммиак - лучшая альтернатива.

На аммиаке работают многие тепловые насосы. Ожидается применение аммиака в малых холодильных машинах для коммерческих установок.

Используемые в настоящее время масла не растворяются в аммиаке, поэтому в схему холодильной машины приходится включать маслоотделители, что увеличивает ее стоимость. В последние годы ведутся интенсивные исследования по разработке растворимого в аммиаке масла и созданию холодильного оборудования с "сухим" испарителем. Растворимость масла в аммиаке исключает образование пленки масла на теплообменных поверхностях, что повышает коэффициент теплоотдачи с 2700 до 9100 Вт/(м2*К).

Достигнутый в последние годы прогресс в разработке растворимых в аммиаке R717 холодильных масел может кардинально изменить тенденции в развитии холодильного машиностроения.

Хладагент R744. Химическая формула СО2 (диоксид углерода). Относится к группе ГФУ (HFC). Дешевое нетоксичное негорючее и экологически чистое (ODP = 0, GWP= 1) вещество. Стоимость диоксида углерода в 100...120 раз ниже, чем R134a.

Диоксид углерода имеет низкую критическую температуру (31 oС), сравнительно высокую температуру тройной точки (-56 oС), большие давления в тройной точке (более 0,5 МПа) и критическое (7,39 МПа). Может служить альтернативным хладагентом. Содержится в атмосфере и биосфере Земли, имеет следующие преимущества: низкая цена, простое обслуживание, совместимость с минеральными маслами, электроизоляционными и конструкционными материалами. Вместе с тем при использовании диоксида углерода требуется водяное охлаждение конденсатора холодильной машины, увеличивается металлоемкость холодильной установки (по сравнению с металлоемкостью установок, работающих на галоидопроизводных хладагентах). Высокое критическое давление имеет и положительный аспект, связанный с низкой степенью сжатия, вследствие чего эффективность компрессора становится значительной. Возможны перспективы применения диоксида углерода в низкотемпературных двухкаскадных установках и системах кондиционирования воздуха автомобилей и поездов. Его предлагают использовать также в бытовых холодильниках и тепловых насосах.

Хладагент R728. Химическая формула N2. Относится к группе ГФУ (HFC). Жидкий азот применяют в качестве криогенного охлаждающего средства в некоторых странах (Англия, США и др.). При атмосферном давлении температура кипения азота составляет -196 oС. Нетоксичный и экологически чистый (ODP = О, GWP = 0) хладагент. Криогенный метод охлаждения жидким азотом предусматривает одноразовое его использование. Этот метод реализуется в безмашинной проточной системе, в которой рабочее вещество не совершает замкнутого кругового процесса.

В связи с открытием в России значительных запасов (около 340 млрд м3) подземных газов с высоким содержанием азота себестоимость природного азота становится на порядок ниже, чем азота, полученного методом сжижения и разделения воздуха, что позволит применять в промышленных масштабах безмашинный способ охлаждения в аппаратах для быстрого замораживания пищевых продуктов. Для повышения степени использо...


Подобные документы

  • Предпочтительные направления пробоя в диэлектриках с кристаллической решёткой. Рост силы тока, сопровождающей пробой, по экспоненциальному закону, характерному для процесса образования лавины. Медленные электроны как основные активные агенты ионизации.

    реферат [422,5 K], добавлен 22.04.2015

  • Задачи и их решения по теме: процессы истечения водяного пара. Дросселирование пара под определенным давлением. Прямой цикл – цикл теплового двигателя. Нагревание и охлаждение. Паротурбинные установки. Холодильные циклы. Эффективность цикла Ренкина.

    реферат [176,7 K], добавлен 25.01.2009

  • Изучение опыта использования возобновляемых источников энергии в разных странах. Анализ перспектив их массового использования в РФ. Основные преимущества возобновляемых альтернативных энергоносителей. Технические характеристики основных типов генераторов.

    реферат [536,4 K], добавлен 07.05.2009

  • Технологическая схема топливоподачи. Грохоты и молотковые дробилки. Металлоискатели и металлоуловители. Пробоотборные установки и проборазделочные машины. Состав и состояние парка котельного оборудования. Состав и состояние парка турбинного оборудования.

    отчет по практике [3,5 M], добавлен 17.05.2012

  • Экономия энергии как эффективное использование энергоресурсов за счет применения инновационных решений. Знакомство с особенностями применения современных энергосберегающих технологий в строительстве. Общая характеристика альтернативных источников энергии.

    курсовая работа [35,3 K], добавлен 27.03.2019

  • Исследование технических, химических и механических средств дезактивации и дезактивирующих растворов. Изучение способов удаления радиоактивных веществ с заражённой территории, сооружений, техники, одежды и воды. Метод лазерной очистки и дезактивации.

    реферат [55,3 K], добавлен 22.02.2013

  • Жидкие кристаллы как фазовое состояние, в которое переходят некоторые вещества при определенных условиях, их основные физические свойства и факторы, на них влияющие. История исследования, типы, использование жидких кристаллов в производстве мониторов.

    контрольная работа [585,0 K], добавлен 06.12.2013

  • Анализ структуры и расчет мощности автотракторных средств, электроэнергетического и электротехнического, теплоэнергетического оборудования. Расчет затрат труда и числа исполнителей для технической эксплуатации по группам энергетических средств.

    контрольная работа [197,2 K], добавлен 15.12.2010

  • Основные типы связей в твёрдом теле. Особенности строения ионных кристаллов. Схема образования диполь-дипольной связи. Общие закономерности построения кристаллов, характеристика сил, которые удерживают в них атомы. Плотноупакованные структуры металла.

    контрольная работа [54,7 K], добавлен 09.03.2013

  • Характеристика оборудования и основные технологические операции промежуточной НПС без резервуарного парка. Компоновка насосного цеха. Оборудование основной магистральной насосной. Характеристика вспомогательных систем. Расчет системы сбора утечек.

    курсовая работа [1,5 M], добавлен 03.05.2014

  • Состав энергопотребляющих технических систем зданий и особенности их работы. Рекомендации по определению показателей энергетической эффективности энергопотребляющего оборудования. Типы энергопотребляющего оборудования общепромышленного применения.

    реферат [31,1 K], добавлен 16.09.2010

  • Индикаторы для оценки функционирования и основные принципы устойчивого развития в сфере электроэнергетики и использования альтернативных источников энергии. Характеристика развития электроэнергетики в Швеции и Литве, экосертификация электроэнергии.

    практическая работа [104,2 K], добавлен 07.02.2013

  • Основа уравнения, описывающего давление веществ в состоянии насыщения. Уравнения для описания зависимости упругости пара от температуры. Оценка точности новой температурной зависимости давления пара. Методы измерения давления при разных температурах.

    контрольная работа [918,2 K], добавлен 16.09.2015

  • История появления новой релятивистской физики, положения которой изложены в работах А. Эйнштейна. Преобразования Лоренца и их сравнение с преобразованиями Галилея. Некоторые эффекты теории относительности. Основной закон и формулы релятивистской динамики.

    контрольная работа [90,2 K], добавлен 01.11.2013

  • Ценообразование и себестоимость в строительно-монтажном производстве. Состав оборудования теплопункта. Расчет электрических нагрузок оборудования. Расчет электрических нагрузок, автоматическое управление электрооборудованием. Схема аварийной сигнализации.

    курсовая работа [1,4 M], добавлен 28.02.2010

  • Классификация альтернативных источников энергии. Возможности использования альтернативных источников энергии в России. Энергия ветра (ветровая энергетика). Малая гидроэнергетика, солнечная энергия. Использование энергии биомассы в энергетических целях.

    курсовая работа [3,9 M], добавлен 30.07.2012

  • Возобновление как преимущество альтернативных источников энергии. Энергетическая и сырьевая проблемы в России. Энергия солнца, ветра, приливов, глубинное тепло Земли, топливо из биомассы. Исследования в области применения биотоплива вместо нефти.

    реферат [25,8 K], добавлен 05.01.2010

  • Характеристика парка электротехнического оборудования и условий его эксплуатации. Составление эксплуатационной карты ЭО, годовой производственной программы. Разработка материально-технической базы. Разработка прибора-определителя последовательности фаз.

    курсовая работа [293,5 K], добавлен 19.04.2014

  • Обзор развития современной энергетики и ее проблемы. Общая характеристика альтернативных источников получения энергии, возможности их применения, достоинства и недостатки. Разработки, применяемые в настоящее время для нетрадиционного получения энергии.

    реферат [4,5 M], добавлен 29.03.2011

  • Основные, дополнительные и производные единицы системы СИ. Правила написания обозначений единиц. Альтернативные современные системы физических единиц. Эталонные меры в институтах метрологии. Специфика применения единиц СИ в области физики и техники.

    презентация [1,6 M], добавлен 02.12.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.