О вопросах применения гидротурбин микрогидроэлектростанций в соответствии с гидравлическими напорами

Основные тенденции современного гидротурбостроения. Уменьшение пульсаций давления в проточной части и сопутствующих им вибраций агрегата. Разработка новых схем проточной части и конструкций гидротурбин с улучшенными энергетическими характеристиками.

Рубрика Физика и энергетика
Вид статья
Язык русский
Дата добавления 20.01.2018
Размер файла 236,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

О вопросах применения гидротурбин микрогидроэлектростанций в соответствии с гидравлическими напорами

Касымов У.Т., Серикбаев А.У.

Современное гидротурбостроение развивается с учетом следующих основных тенденций:

· повышения экономичности и надежности в эксплуатации;

· дальнейшего увеличения быстроходности гидротурбин с целью обеспечения требуемой расчетной мощности при меньших габаритах и весах гидроагрегатов, что обеспечивает снижение стоимости энергетического оборудования и здания ГЭС;

· улучшения энергетических характеристик гидротурбин и повышения среднеэксплуатационного КПД агрегатов при работе на нерасчетных нагрузках и напоре;

· улучшения кавитационных характеристик с целью уменьшения разрушений проточной части и снижения отметки установки турбины по отношению к нижнему бьефу, что приводит к существенному уменьшению стоимости строительных работ по зданию ГЭС;

· уменьшения пульсаций давления в проточной части (особенна за рабочим колесом радиально-осевой гидротурбины) и сопутствующих им вибраций агрегата;

· дальнейшего роста единичных мощностей гидроагрегатов; применение на ГЭС мощных гидроагрегатов позволяет уменьшить их число, повысить КПД и снизить стоимость энергетического оборудования и здания[1-3].

Разработку высокоэффективного энергетического оборудования ведут в двух направлениях:

1. Дальнейшее совершенствование проточной части, технико-экономических характеристик и увеличение быстроходности обычных типов гидротурбин -- вертикальных осевых поворотнолопастных, радиально-осевых и ковшовых турбин.

2. Разработка новых схем проточной части и конструкций гидротурбин с улучшенными энергетическими и кавитационными характеристиками.

В последние годы достигнуты большие успехи в расширении диапазона применения обычных реактивных гидротурбин по напорам. В настоящее время вертикальные осевые поворотнолопастные гидротурбины применяют на напоры 10 ч 80 м. Следует заметить, что целесообразность применения вертикальных осевых турбин на низкие (Н < 10 м) или высокие напоры (Н > 60 м) не является бесспорной. Так, применение вертикальных осевых гидротурбин на низкие напоры Н = 3 м - 10м связано с чрезмерным увеличением размеров и веса агрегата, удорожанием здания ГЭС. Поэтому для диапазона напоров Н = 3 ч 15 м в последние годы разработаны более быстроходные и экономичные горизонтальные капсульные агрегаты. У радиально-осевых гидротурбин в таких условиях падает среднеэксплуатационный КПД и уменьшается выработка энергии. С другой стороны, высоконапорные вертикальные осевые гидротурбины имеют худшие кавитационные качества, что ограничивает их применение на высокие напоры[4]. В связи с этим возникла потребность в новом типе гидротурбины, которая объединяла бы в себе преимущества осевой поворотнолопастной (малое изменение КПД при значительных колебаниях напора и нагрузки) и радиально-осевой гидротурбины (хорошие кавитационные качества, небольшое заглубление турбины). Такие гидротурбины, называемые диагональными поворотнолопастными, были созданы и получают в настоящее время все большее применение в практике гидроэнергостроительства при напорах Н = 50 ч 200 м. Радиально-осевые гидротурбины в настоящее время используют при напорах от 30 до 700 м.

Общая классификация гидротурбин различных типов по напорам представлена в таблице.

гидротурбостроение давление проточный вибрация

Наиболее широкое применение среди горизонтальных лопастных гидротурбин в микрогэс получили миникапсульные. Генератор капсульного агрегата расположен в капсуле. Габариты блока по высоте и в плане значительно меньше по сравнению с вертикальной осевой гидротурбиной такой же мощности, что приводит к снижению стоимости на 25--40%. При тех же напорах и диаметрах рабочих колес мощность капсульных гидротурбин на 10-- 25% больше, чем осевых вертикальных их КПД в оптимуме выше на 2--3%, а при режиме номинальной мощности разница в КПД еще больше. Работа вертикальной осевой гидротурбины при форсированных расходах сопровождается вибрацией и большими потерями энергии, особенно в отсасывающей трубе, в то время как в капсульных гидроагрегатах при больших расходах эти явления проявляются значительно меньше. На низкие напоры (Н = 1ч15 м) применяются в основном капсульные гидроагрегаты, как более совершенные. Капсульные микроэлектростанции выполняют схемой размещения непосредственно в потоке, при этом сама капсула полностью герметична и имеет только кабельные выводы или с вынесением электрической части снаружи потока, при этом гидротурбина с мультипликатором находится непосредственно в потоке. Прямоточная схема капсульного агрегата целесообразна при малых мощностях и стоимости МКГЭС, но при этом усложняется проведение регламентных и профилактическо-ремонтных работ. Капсульные агрегаты в настоящее время применяют на напоры Н = 1-15 м. Современной тенденцией в развитии гидротурбин микрогидроэлектростанций является дальнейшее их продвижение в зону более высоких мощностей и низких напоров с помощью применения каскадных схем размещения оборудования станций. Исследования и проектно-конструкторские разработки необходимо вести в двух направлениях: разработка конструкций гидроагрегатов, использующих гидроэнергетический потенциал различных локальных водоводов и бесплотинных нестационарных агрегатов для равнинных участков малых рек с помощью каскадных схем.

Литература

1. А.М. Антонова, Б.Ф. Калугин, М.А. Вагнер. Общая Энергетика. Томск 2003 г. 387 с.

2. В.В. Парлит. Гидравлические турбины. -М. 1987 г. 328 с.

3. uhm.chat.ru

4. biblus.ru

Размещено на Allbest.ru

...

Подобные документы

  • Приминение гидротурбины как двигателя, преобразующего энергию движущейся воды в механическую энергию вращения. Классификация гидротурбин. Использование различных типов гидротурбин в соответствии с напорами. Типы гидротурбин и обратимые гидроагрегаты.

    курсовая работа [3,0 M], добавлен 24.05.2009

  • Общая характеристика газоперекачивающих агрегатов с газотурбинным приводом. Анализ способов определения степени загрязнения проточной части осевого компрессора газоперекачивающего агрегата с однокаскадными двигателем в условиях работающей станции.

    контрольная работа [272,6 K], добавлен 01.12.2013

  • Способы определения параметров дренажей. Знакомство с этапами расчета тепловой схемы и проточной части паровой турбины К-160-130. Анализ графика распределения теплоперепада, диаметра и характеристического коэффициента. Особенности силового многоугольника.

    дипломная работа [481,0 K], добавлен 26.12.2016

  • Особенности применения газотурбинных установок (ГТУ) в качестве источников энергии в стационарной энергетике на тепловых электрических станциях. Выбор оптимальной степени повышения давления в компрессоре ГТУ. Расчёт тепловой схемы ГТУ с регенерацией.

    курсовая работа [735,3 K], добавлен 27.05.2015

  • Выбор параметров и термогазодинамический расчет двигателя. Формирование "облика" проточной части турбокомпрессора, согласование параметров компрессора и турбины. Газодинамический расчет узлов и профилирование лопатки рабочего колеса первой ступени КВД.

    дипломная работа [895,3 K], добавлен 30.06.2011

  • Способы регулирования температуры воды в электрических водонагревателях. Методы интенсификации тепломассообмена. Расчет проточной части котла, максимальной мощности теплоотдачи конвектора. Разработка экономичного режима работы электродного котла в Matlab.

    магистерская работа [2,5 M], добавлен 20.03.2017

  • Проектирование контактной газотурбинной установки. Схема, цикл, и конструкция КГТУ. Расчёт проточной части турбины. Выбор основных параметров установки, распределение теплоперепадов по ступеням. Определение размеров диффузора, потерь энергии и КПД.

    курсовая работа [2,0 M], добавлен 02.08.2015

  • Конструктивное оформление парогенератора. Расчёт температуры ядерного горючего. Компоновка проточной части и расчет скоростей сред. Расчет ионообменного фильтра. Проверка теплотехнической надежности активной зоны. Монтаж реактора и парогенераторов.

    курсовая работа [2,1 M], добавлен 18.07.2014

  • Расчётный режим работы турбины. Частота вращения ротора. Расчет проточной части многоступенчатой паровой турбины с сопловым регулированием. Треугольники скоростей и потери в решётках регулирующей ступени. Определение размеров патрубков отбора пара.

    курсовая работа [2,2 M], добавлен 13.01.2016

  • Турбина К-1200-240, конструкция проточной части ЦВД. Предварительное построение теплового процесса турбины в h-S диаграмме. Процесс расширения пара в турбине. Основные параметры воды и пара для расчета системы регенеративного подогрева питательной воды.

    контрольная работа [1,6 M], добавлен 03.03.2011

  • Состав продуктов сгорания топливного газа. Расчет осевого компрессора и газовой турбины, цикла, мощности и количества рабочего тела. Определение диаметров рабочих лопаток, числа ступеней. Технические характеристики агрегатов ГТНР-16 и ГПА "Надежда".

    курсовая работа [3,1 M], добавлен 16.04.2014

  • Получение энергии в виде ее электрической и тепловой форм. Обзор существующих электродных котлов. Исследование тепломеханической энергии в проточной части котла. Расчет коэффициента эффективности электродного котла. Компьютерное моделирование процесса.

    дипломная работа [1,6 M], добавлен 20.03.2017

  • Расчёт переменных режимов газовой турбины на основе проекта проточной части и основных характеристик на номинальном режиме работы турбины. Принципиальная тепловая схема ГТУ с регенерацией. Методика расчёта переменных режимов, построение графиков.

    курсовая работа [1,2 M], добавлен 06.06.2013

  • Оценка расширения пара в проточной части турбины, расчет энтальпий пара в регенеративных отборах и значений теплоперепадов в каждом отсеке паровой турбины. Оценка расхода питательной воды, суммарной расчетной электрической нагрузки, вырабатываемой ею.

    задача [103,5 K], добавлен 16.10.2013

  • Расчёт газовой турбины на переменные режимы (на основе расчёта проекта проточной части и основных характеристик на номинальном режиме работы газовой турбины). Методика расчёта переменных режимов. Количественный способ регулирования мощности турбины.

    курсовая работа [453,0 K], добавлен 11.11.2014

  • Предварительный расчет параметров компрессора и турбины газогенератора. Показатель политропы сжатия в компрессоре. Детальный расчет турбины одновального газогенератора. Эскиз проточной части турбины. Поступенчатый расчет турбины по среднему диаметру.

    курсовая работа [1,2 M], добавлен 30.05.2012

  • Перспективы использования водных ресурсов. Способы преобразования энергии приливов. Классификация и принцип работы гидроэлектростанций. Типы и классы гидротурбин. Оборудование и устройство деривационных туннелей. Требование при строительстве плотины.

    презентация [27,3 M], добавлен 11.10.2019

  • Выбор оборудования и разработка вариантов схем выдачи энергии. Технико-экономическое сравнение структурных схем выдачи электроэнергии. Разработка главной схемы электрических соединений. Расчёт электрической части ТЭЦ с установленной мощностью 220 МВт.

    курсовая работа [2,4 M], добавлен 19.03.2013

  • Анализ вариантов технических решений по силовой части преобразователя. Разработка схемы электрической функциональной системы управления. Способы коммутации тиристоров. Математическое моделирование силовой части. Расчет электромагнитных процессов.

    курсовая работа [1,2 M], добавлен 05.06.2013

  • Исследование динамических свойств механической части электропривода на примере трехмассовых и эквивалентных им двухмассовых расчетных схем. Сравнение графиков переходных процессов в относительных и абсолютных единицах по форме и характеру моделей.

    лабораторная работа [511,5 K], добавлен 14.04.2019

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.