Определение точки росы методом пьезокварцевого микровзвешивания
Исследование сорбции паров воды на пленочных покрытиях электродов пьезокварцевых резонаторов в широком интервале температур и концентраций. Выбор условий микровзвешивания паров воды и создание макета высокоточного устройства для определения точки росы.
Рубрика | Физика и энергетика |
Вид | статья |
Язык | русский |
Дата добавления | 23.01.2018 |
Размер файла | 122,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Определение точки росы методом пьезокварцевого микровзвешивания
Кочетова Ж.Ю.,
Базарский О.В.,
Кучменко Т.А.
К перспективным измерителям точки росы следует отнести устройства, действие которых основано на принципе пьезокварцевого микровзвешивания. Чувствительным элементом в таких устройствах является пьезоэлектрический кварцевый резонатор (ПКР), характеризующийся низким температурным коэффициентом, высокой чувствительностью и экономичностью.
ПКР реагирует изменением собственной частоты колебаний при варьировании массы адсорбированного на его поверхности газообразного вещества. При этом изменение массы адсорбата, а, следовательно, и частоты колебаний резонатора, зависят от концентрации и состава адсорбируемых газовых сред [1, 2]. Принцип действия ПКР заключается в преобразовании аналитического сигнала, возникающего в результате взаимодействия исследуемой пробы с модификатором электродов резонатора, используемым для повышения чувствительности и селективности микровзвешивания газов, в физический сигнал - частоту колебаний F, Гц.
Цель работы - изучение сорбции паров воды на пленочных покрытиях электродов пьезокварцевых резонаторов в широком интервале температур и концентраций; обоснование выбора условий микровзвешивания паров воды и создание макета высокоточного устройства для определения точки росы.
Эксперимент проводили на одноканальном анализаторе газов «САГО» (ООО «Сенсорные технологии» [3]) в статическом инжекторном режиме. Анализатор состоит из герметичной термостатируемой ячейки детектирования (объем 25 см3) с держателем для ПКР; схемы возбуждения колебаний резонатора; частотомера; блока питания; дисплея с показанием изменения частоты колебаний ПКР. Для изучения сорбции паров воды газоанализатор был оснащен элементом Пельтье (ТЭМ 127 1,4-16), электронным термометром и блоком регенерации ячейки детектирования (рис. 1).
Насыщенные пары воды получали в герметично закрытых самоуплотняющимися пробками термостатируемых колбах. Диффузионное время релаксации паров вычисляли по уравнению Фика [4]. Насыщенные пары с рассчитанной по справочным данным концентрацией [5] отбирали пробоотборником и инжектировали в генератор газов [3]. Температуру паров tп в исходных источниках веществ и генераторе контролировали термометром в интервале от -2,0 до +50,0 С. Время перемешивания газа в генераторе составляло 3 мини [4]. Во избежание конденсации газов на стенках пробоотборника (медицинского шприца объемом 10 см3 с силиконовым уплотнителем) и ячейки детектирования, их предварительно термостатировали при температуре, равной tп. Правильность концентраций смесей, приготовленных в генераторе, проверяли методом газовой хроматографии.
1 - ячейка детектирования; 2 - держатель ПКР; 3 - ПКР; 4 - схема возбуждения колебаний ПКР; 5 - блок питания; 6 - дисплей; 7 - патрубки для ввода-вывода пробы и регенерации ячейки детектирования; 8 - элемент Пельтье; 9 - электронный термометр; 10 - насос; 11 - осушитель (силикагель)
Рис. 1 - Схема экспериментальной установки
Рассчитанный объем газообразной пробы отбирали из генератора и инжектировали шприцем в ячейку детектирования. Наиболее высокие и воспроизводимые аналитические сигналы зафиксированы в ячейках с перпендикулярно направленным потоком газа к электродам сенсора. При параллельном направлении анализируемой пробы по отношению к электродам ПКР чувствительность микровзвешивания уменьшается в 2 раза, что согласуется с ранее установленными закономерностями сорбции в проточных ячейках детектирования [6].
Применяли пьезорезонаторы АТ-среза с серебряными электродами и собственной частотой колебаний 15 МГц. Предварительно оба электрода ПКР модифицировали методом погружения кварца в раствор сорбента с последующим статическим испарением несвязанного растворителя до получения устойчивой пленки. Полноту удаления несвязанного растворителя из пленочного покрытия электродов контролировали по стабильности аналитического сигнала во времени: дрейф частоты колебаний кварца не должен превышать уровень шума ( 2 Гц/мин).
Уменьшение частоты колебаний пьезокварцевого резонатора F регистрировали с шагом 1 с от момента ввода пробы до установления равновесия в системе сорбат-сорбент или в ячейке детектирования.
Изменение массы покрытия, равномерно распределенной на кристалле вследствие напыления электродов, нанесения пленки модификатора или адсорбции вещества, в зависимости от изменения аналитического сигнала (F, Гц) находили по уравнению Зауербрея [1, 2]
m = -F Кf,
где Кf - градуировочная константа пьезокварцевых микровесов, Гц/мкг; m - масса пленочного покрытия микровесов или адсорбата, мкг.
Оптимальные массы пленок-модификаторов электродов ПКР были установлены ранее по критериям наибольшей чувствительности микровзвешивания, воспроизводимости результатов анализа и устойчивости при многократно повторяющихся циклах сорбции-десорбции. Для выбранного сорбента m= 15-25 мкг [7].
Характеристики пьезокварцевого микровзвешивания главным образом зависят от природы модификатора электродов резонатора [6]. На основании полученных экспериментальных данных в качестве пленки-модификатора электродов ПКР для установления точки росы был выбран сорбент поливинилпирролидон (ПВП) [8]. На первом этапе работ определяли чувствительность микровзвешивания паров воды и сорбционную емкость пленки ПВП. Сорбционную емкость оценивали в жестких условиях сорбции: зонд с пьезосенсором помещали в герметично закрытый сосуд с нагретой до 50 ± 0,1 С водой. Экспонирование пьезосенсора в насыщенных парах воды (равновесная концентрация в газовой фазе составляла 111,8 г/м3) продолжали до установления равновесия в системе сорбат-сорбент. Пьезосенсоры на основе ПВП характеризуются высокими чувствительностью к парам воды (64 1 Гцм3/г), сорбционной емкостью (5,4 10-2), точностью микровзвешивания (Sr < 3 %), а также стабильностью базовой линии при многократно повторяющихся циклах сорбции-десорбции.
Для оценки селективности выбранного сорбента проводили микровзвешивание паров некоторых неорганических газов (диоксиды азота и серы, аммиак, сероводород), а также органических соединений различных классов (спирты, азотсодержащие соединения, фенолы, кетоны, альдегиды) с концентрациями, равными предельно допустимым в рабочей зоне [9]. Измерение аналитического сигнала сорбции паров химических веществ проводили в тех же условиях, что и паров воды. Концентрация воды соответствовала нормальному уровню относительной влажности (50-55 % относит.). Установлено, что ПВП проявляет высокое сорбционное сродство ко всем тестируемым соединениям, кроме оксидов серы и азота. Полярные молекулы органических соединений адсорбируются на пленке изученного модификатора более интенсивно, чем пары воды.
Проблема неселективности метода пьезокварцевого микровзвешивания решается с применением различных подходов:
1) разработка матрицы из нескольких пьезосенсоров с перекрестной чувствительностью к соединениям различной природы. Применение мультсенсорной матрицы значительно усложняет способ определения относительной влажности воздуха: требуются от 3 до 8 различных пьезосенсоров; необходима специальная программа визуализации и обработки массива откликов пьезосенсоров для проведения качественного и количественного анализов; увеличиваются энергопотребление датчика и его габаритные размеры, снижается мобильность; уменьшаются точность и надежность анализа вследствие различного «поведения» пленочных покрытий при перепадах температур [10, 11];
2) фиксированное время считывания аналитического сигнала для определения анализируемого компонента. Такой подход возможен при подборе пленочного покрытия электродов с кинетикой сорбции анализируемого компонента отличной от сопутствующих компонентов [7]. Для оценки кинетических особенностей сорбции изученных соединений строили хроночастотограммы.
Установлено, что пары воды на тонких пленках ПВП адсорбируются в первые 5 с после инжектирования пробы влажного воздуха в ячейку детектирования. В системе «ПВП - пары воды» за этот интервал времени устанавливается адсорбционное равновесие, т.е. аналитический сигнал далее не изменяется во времени.
Интенсивная сорбция тестируемых сопутствующих соединений происходит через 10-15 с после инжектирования проб в ячейку детектирования. Следовательно, в начальный момент детектирования (до 5 с) сопутствующие компоненты не мешают определению воды.
Аномально высокие аналитические сигналы при сорбции паров воды на пленке ПВП и стабильность аналитического сигнала (отсутствие самопроизвольной десорбции при недостигнутом термодинамическом равновесии в ячейке детектирования) объясняется образованием в системе сорбат-сорбент водородных связей [5]. Принудительная регенерация пьезосенсора чистым осушенным лабораторным воздухом протекает в течение 1-2 мин, масса и структура пленочного покрытия ПВП при проведении 2500 циклов сорбция-десорбция изменяется незначительно (m = 0,6 %). Нагревание воздуха до 40 С ускоряет время регенерации пленочного покрытия ПВП в 2-2,5 раза.
Построены изотермы сорбции паров воды с температурами tп = 5, 20 и 40 С при соответствующих температурах в ячейке детектирования. Изотермы имеют вид s-образных кривых. При сорбции паров воды с tп = 5 С наблюдается увеличение аналитического сигнала. В то же время собственная частота колебаний пьезосенсора остается постоянной при понижении температуры без нагрузки парами воды, что согласуется с ранее полученными данными [1, 2]. Таким образом, увеличение F вызвано не изменением частотных характеристик ПКР при низких температурах, а известными аномалиями свойств воды в диапазоне от 0 до 4 С.
Изучена зависимость аналитического сигнала сорбции от температуры паров воды в интервале (-2 5) 0,1 С. При понижении температуры до 0 С аналитический сигнал сорбции незначительно возрастает, затем остается постоянным. В методе пьезокварцевого микровзвешивания F зависит от массы сорбата и не должно существенно отличаться при изменении его температуры. В то же время известно, что в газовой фазе могут содержаться димеры воды H4O2, причем с понижением температуры соотношение количества димеров к количеству мономеров повышается и может достигать 0,5 % [12]. Следует отметить, что вопрос влияния структурного состава паров воды на характеристики сорбции мало изучен. Благодаря высокой чувствительности (10-12 - 10-7 г/см2) и низкому температурному коэффициенту [1] метод пьезокварцевого микровзвешивания наиболее перспективен для решения этой задачи.
Для определения начала фазового перехода воды (точки росы) проводили сорбцию паров с начальной температурой tп = 20 С. Аналитический сигнал измеряли при температурах в ячейке детектирования от 5 до -2 С. В ячейку детектирования, содержащую ненасыщенный водяной пар с массой m0 = = 217,510-6 г, инжектировали насыщенные пары воды с массой m1 = 285,510-6 г. Относительная влажность в ячейке детектирования после инжектирования пробы составляла 84,1 %, что соответствует точке росы при температуре 3 С [13]. Экспериментально точка росы была установлена по возрастанию аналитического сигнала (рис. 2): F скачкообразно увеличивается при температуре начала конденсации паров воды 4,0 С, затем плавно повышается до 0 С. При отрицательных температурах F незначительно убывает.
Рис. 2 - Изостера сорбции на пленке ПВП паров воды с концентрацией 11,5 г/м3
На аналитический сигнал в значительной степени влияет выделение тепловой энергии во время фазового перехода водяного пара в жидкое состояние при достижении температуры точки росы (r = 2,48 МДж/кг), при этом повышается давление водяного пара.
Расчет тепловой энергии Q (МДж), выделяющейся в ячейке детектирования при фазовом переходе воды, для изохорного процесса проводили по уравнению:
Q = (m0+m1) cT,
где сv - теплоемкость пара при постоянном объеме, Дж/Ккг; T - приращение температуры при выделении теплоты фазового перехода.
Теплоемкость пара рассчитывали по соотношению:
c = iR/2M,
где i = 6 - число степеней свободы водяного пара; М - молярная масса водяного пара, кг/моль; R - универсальная газовая постоянная, Дж/(моль К).
Следовательно, изменение температуры при конденсации паров воды зависит от соотношения m0/m1 и рассчитывается по уравнению (табл. 1):
t = m1 rM / (3R(m0+m1)) = rM / (3R (1 +m0/m1)).
Таким образом, приращение температуры может достигать 2 С. Для соотношения масс ненасыщенного и насыщенного паров воды m0/m1 = 1,3 температура на пленке ПВП повышается на 0,78 С. Этот эффект значительно влияет на увеличение аналитического сигнала при температуре 4 С.
Таблица 1 - Приращение температуры в ячейке детектирования при конденсации паров воды
m0/m1 |
0,25 |
0,5 |
1,0 |
1,5 |
2,0 |
2,5 |
3,0 |
|
t, С |
1,43 |
1,19 |
0,90 |
0,72 |
0,60 |
0,51 |
0,45 |
Дальнейшее увеличение F при температуре 2 С можно объяснить с точки зрения Максвелловского распределения скоростей молекул пара в ячейке детектирования. Полностью конденсация имеющегося насыщенного и ненасыщенного пара происходит в интервале температур от 1 до 2 С. Сначала конденсируются молекулы части насыщенного пара с низкими скоростями теплового движения (дигидроли). В это же время происходит охлаждение ненасыщенного пара до точки росы. На втором этапе конденсируется оставшаяся часть водяного пара с дальнейшим повышением температуры, и соответственно, возрастанием аналитического сигнала. Температуры конденсации для моно-, ди- и тригидролей воды могут быть разными и практически не изучены. Для разрыва дополнительных связей в кластерах воды требуется дополнительная энергия, и за точку росы можно условно принять середину интервала конденсации (3 С), что соответствует расчетным данным.
При дальнейшем понижении температуры от 2 до 0 С в системе «вода-насыщенные пары воды» наблюдается следующий фазовый переход - кристаллизация с выделением теплоты, равной 335 кДж/кг. Как и в случае конденсации сначала в твердую фазу переходят ди-, затем моногидроли. При этом происходит дальнейшее увеличение аналитического сигнала за счет энергии второго фазового перехода. При отрицательных температурах (до -2С), достигнутых в эксперименте, аналитический сигнал медленно убывает в соответствии с уменьшением давления насыщенных паров над поверхностью льда, что согласуется с расчетными значениями.
Полученные экспериментальные данные легли в основу разработки нового устройства на основе пьезорезонатора, позволяющего с высокой точностью и надежностью определять точку росы. Понятие точки росы является наиболее удобным техническим параметром для измерения влажности воздуха. Метод пьезокварцевого микровзвешивания с большей точностью, чем известные позволяет определить точку росы для такого сложноструктурированного вещества как вода. При этом определяется температура начала конденсации паров воды в пленочном покрытии электродов ПКР, поэтому величина аналитического сигнала и процесс конденсации паров воды на стенках ячейки детектирования на точность анализа не влияют.
Для построения дифференциальных кривых сорбции (рис. 3) методом последовательного разбавления готовили растворы паровоздушных смесей с концентрациями 3,2-32 г/м3. Начальная температура в ячейке детектирования 30 С была равна температуре инжектируемых паров воды. Охлаждение ячейки детектирования осуществляли элементом Пельтье, начиная с момента ввода пробы.
Рисунок 3 - Дифференциальные кривые сорбции (пик I) и конденсации (пик II) паров воды с концентрациями: 1 - 4,6; 2 - 11,5; 3 - 20,7 г/м3
Для полученных зависимостей характерны 2 пика: I) сорбция паров воды (до 5 с); II) капиллярная конденсация. Капиллярная конденсация начинает проявляться при определенном значении давления пара, характерном для данной системы. К моменту снижения температуры до точки росы Тр (С) поверхностная энергия адсорбента практически полностью скомпенсирована в результате полимолекулярной адсорбции, а микропоры заполнены молекулами воды. При дальнейшем уменьшении температуры конденсация происходит не только в порах ПВП с минимальными размерами, но и в более крупных. Таким образом, конденсация увеличивает поглощение (сорбцию) паров пористыми телами, что и объясняет появление второго пика на кинетических кривых сорбции. Величина и время выхода пиков зависят от концентрации паров воды. Температуру точки росы определяли по максимумам пиков (II) на полученных дифференциальных кривых сорбции; соответствующую ей относительную влажность воздуха - по справочным данным [13]. Скорость охлаждения ячейки детектирования варьируется в зависимости от измеряемого диапазона относительной влажности воздуха: с увеличением концентрации паров воды время сорбции возрастает, поэтому для получения второго пика ее необходимо уменьшать.
Правильность определения проверяли методом «введено-найдено» (табл. 2).
электрод резонатор пар вода
Таблица 2 - Оценка правильности определения относительной влажности воздуха
Введено RH, % |
Найдено |
Sr, % |
||
Тр, С |
RH, % |
|||
20 |
1,5 0,5 |
21,0 0,8 |
1,8 |
|
50 |
13,5 0,5 |
51,7 2,4 |
3,3 |
|
90 |
23,5 0,5 |
90,0 2,0 |
4,0 |
Предлагаемый способ измерения точки росы с применением пьезокварцевых резонаторов точен (Sr 4,0), позволяет определять относительную влажность воздуха по точке росы во всем диапазоне относительной влажности воздуха от 0 до 100 %; характеризуется простотой аппаратурного оформления и обработки результатов анализа; экономичностью; быстротой (время анализа не превышает 2 мин).
Список литературы
1. Малов В.В. Пьезорезонансные датчики. - М.: Энергоатомиздат, 1989. - 272 с. - ISBN 5-283-01507-6.
2. Кучменко Т.А. Применение метода пьезокварцевого микровзвешивания в аналитической химии. - Воронеж: Воронеж. гос. технол. акад., 2001. - 280 с.
3. Кучменко Т. А. Аппаратный комплекс пьезокварцевого микровзвешивания. Новое в мире "Электронных насосов". - Воронеж: ВГТА, ООО "Сенсорные технологии", 2009. - 155 с. - ISBN 978-5-89448-601-7.
4. Трофимова Г.И. Курс общей физики. - М.: Высшая школа, 1998. - 416 c. - ISBN 5-06-003634-0.
5. Справочник химика. Химическое равновесие и кинетика. Свойства растворов. Электродные реакции в растворах / Под ред. Н. И. Никельсона. - М.: Химия, 1966. - Т. 3. - С. 124-144.
6. Кучменко Т.А., Кочетова Ж.Ю., Силина Ю.Е. и др. Определение микроконцентраций сероводорода в потоке газа с применением пьезодетектора // Журнал аналитической химии. 2007. Т. 62. № 8. С. 866-874.
7. Кучменко Т.А. Метод пьезокварцевого микровзвешивания в газовом органическом анализе: Дис. … д-ра хим. наук. Саратов, 2003. - 475 с.
8. Кочетова Ж.Ю. Определение легколетучих органических соединений в газовой фазе с применением пьезосорбционных сенсоров на основе синтетических и природных полимеров. Автореф. дис.... к-та хим. наук. Саратов, 2003. - 18 c.
9. Беспамятнов Г.П., Кротов Ю.А. Предельно допустимые концентрации химических веществ в окружающей среде: Справочник. - Л.: Химия, 1985. - 528 с.
10. Кучменко Т.А., Кочетова Ж.Ю., Коренман Я.И. Новые возможности анализа многокомпонентных газовых смесей с применением матрицы пьезосенсоров // Каталог рефератов и статей Международного Форума «Аналитика и Аналитики». 2003. Т. 1. С. 253.
11. Хидекели А. Какой нюх // Поиск. 1999. № 47. С. 4.
12. Мосин О.В. Молекулярная физика в трех ее агрегатных состояниях [Электронный ресурс] // Портал o8ode.ru [сайт]. URL: http://www.o8ode.ru/ article/water/molekularnaa_fizika_vody.htm.
13. Метеорологические измерения на аэродромах. - СПб.: Гидрометеоиздат, 2008. - 427 с.
Размещено на Allbest.ru
...Подобные документы
Влажность как мера, характеризующая содержание водяных паров в воздухе. Абсолютная и относительная влажность. Температура, при которой пар, находящийся в воздухе, становится насыщенным (точка росы). Приборы для измерения влажности: гигрометр и психрометр.
презентация [808,1 K], добавлен 06.04.2012Магнитные вещества, фазовые переходы второго рода и температура Кюри. Основные методы определения температуры Кюри ферро- и ферримагнетиков по температурной зависимости динамической восприимчивости в слабых полях. Установка для определения точки Кюри.
курсовая работа [103,2 K], добавлен 16.04.2015Определение КПД котельного агрегата брутто и нетто по данным испытаний, сравнение с нормативным значением. Расчет часового расхода топлива, температуры точки росы, мощности электродвигателей тягодутьевых машин и питательного насоса. Составление схемы.
курсовая работа [265,4 K], добавлен 28.03.2010Физические и химические свойства воды. Распространенность воды на Земле. Вода и живые организмы. Экспериментальное исследование зависимости времени закипания воды от ее качества. Определение наиболее экономически выгодного способа нагревания воды.
курсовая работа [1,4 M], добавлен 18.01.2011Исследование структурных свойств воды при быстром переохлаждении. Разработка алгоритмов моделирования молекулярной динамики воды на основе модельного mW-потенциала. Расчет температурной зависимости поверхностного натяжения капель воды водяного пара.
дипломная работа [1,8 M], добавлен 09.06.2013Основные источники водяного пара в атмосфере и величины, характеризующие его содержание в воздухе: абсолютная и относительная влажность, упругость. Нахождение точки росы при изобарном охлаждении пара. Принцип использования психрометров и гигрометров.
презентация [577,5 K], добавлен 05.05.2011Термодинамика как наука о взаимопревращениях различных форм энергии и законах этих превращений, предмет и методы ее исследований. Определение теплового эффекта заданной химической реакции и возможность ее протекания в заданном интервале температур.
контрольная работа [269,9 K], добавлен 15.03.2015Определение массы и объёма воды, вытекающей из крана за разные промежутки времени. Расчет количества теплоты, необходимого для нагрева воды с использованием различных энергоресурсов. Оценка материальных потерь частного потребителя воды и электроэнергии.
научная работа [130,8 K], добавлен 01.12.2015Процесс превращения пара в жидкость. Расчет количества теплоты, необходимого для превращения жидкости в пар. Температура конденсации паров вещества. Конденсация насыщенных паров. Определение теплоты фазового перехода при квазистатическом процессе.
презентация [784,4 K], добавлен 25.02.2015Фотопроцессы в растворах и пленках с высокими концентрациями наночастиц CdSe/ZnS, индуцированных лазерным излучением видимого диапазона в широком интервале плотностей мощности излучения и температур. Возможность создание новых твердофазных люминофоров.
автореферат [1,0 M], добавлен 04.12.2007Построение траектории движения точки. Определение скорости и ускорения точки в зависимости от времени. Расчет положения точки и ее кинематических характеристик. Радиус кривизны траектории. Направленность вектора по отношению к оси, его ускорение.
задача [27,6 K], добавлен 12.10.2014Определение линейного теплового потока методом последовательных приближений. Определение температуры стенки со стороны воды и температуры между слоями. График изменения температуры при теплопередаче. Число Рейнольдса и Нусельта для газов и воды.
контрольная работа [397,9 K], добавлен 18.03.2013Исторические сведения о воде. Круговорот воды в природе. Виды образования от разных изменений. Скорость обновления воды, ее типы и свойства. Вода как диполь и растворитель. Вязкость, теплоемкость, электропроводность воды. Влияние музыки на кристаллы воды.
реферат [4,6 M], добавлен 13.11.2014Принцип работы и конструкция лопастного ротационного счетчика количества воды. Определение по счетчику объема воды, поступившей в емкость за время между включением и выключением секундомера. Расчет относительной погрешности измерений счетчика СГВ-20.
лабораторная работа [496,8 K], добавлен 26.09.2013Характеристика движения объекта в пространстве. Анализ естественного, векторного и координатного способов задания движения точки. Закон движения точки по траектории. Годограф скорости. Определение уравнения движения и траектории точки колеса электровоза.
презентация [391,9 K], добавлен 08.12.2013Принцип работы тахометрического счетчика воды. Коллективный, общий и индивидуальный прибор учета. Счетчики воды мокрого типа. Как остановить, отмотать и обмануть счетчик воды. Тарифы на холодную и горячую воду для населения. Нормативы потребления воды.
контрольная работа [22,0 K], добавлен 17.03.2017Технологические показатели качества воды. Расчет солесодержания и рН исходной среды. Масса осадка после термического умягчения воды. Количество реагентов, необходимых для умягчения методом осаждения. Солесодержание после катионирования и анионирования.
контрольная работа [71,6 K], добавлен 05.08.2013Подогреватели сетевой воды вертикальные. Расчет средней температуры воды. Определение теплоемкости воды, теплового потока, получаемого водой. Коэффициент теплоотдачи от стенки трубы. Теплофизические параметры конденсата при средней температуре конденсата.
курсовая работа [507,5 K], добавлен 28.11.2012Распространенность, физическая характеристика и свойства воды, ее агрегатные состояния, поверхностное натяжение. Схема образования молекулы воды. Теплоёмкость водоёмов и их роль в природе. Фотографии замороженной воды. Преломление изображения в ней.
презентация [2,7 M], добавлен 28.02.2011Установление эксплуатационной нормы водопотребления жильцами и определение величины потерь воды в жилом здании и в жилом районе. Определение нормируемого ночного расхода воды. Собственные нужды жилищного фонда. Измерения расходов воды и свободных напоров.
контрольная работа [186,3 K], добавлен 16.12.2012