Хемотермические технологии аккумулирования энергии ядерных энергоисточников

Обоснование технических разработок хемотермических систем и технологий аккумулирования энергии ядерных реакторов. Оценка их значения для расширения сферы применения и повышения эффективности ядерных энергоисточников на базе производства водорода.

Рубрика Физика и энергетика
Вид автореферат
Язык русский
Дата добавления 12.02.2018
Размер файла 1,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Таким образом, на данной стадии разработки показано, что радиационные последствия, связанные с попаданием парогазовой смеси из аварийного ТКА, размещенного в первом контуре, не выходят за допустимые пределы, что позволяет обеспечить ядерную безопасность данного проектного варианта.

Важный вопрос, связанный с рассмотрением возможности размещения ТКА в первом контуре, -- предотвращение загрязнения технологической продукции (конвертированного газа) радионуклидами, генерируемыми в первом контуре.

Наиболее важным радионуклидом с этой точки зрения является тритий вследствие его относительно большого периода полураспада (12.46 года), генетической значимости и высокой диффузионной проникающей способности.

Для МГР-Т приняты следующие параметры, определяющие потоки трития:

Общая масса графитовых конструкций реактора составляет ~ 860 т, из них:

~ 400 т составляют блоки графитовой кладки, срок службы которых 60 лет; ~ 460 т составляют графитовые блоки активной зоны (блоки ТВС и заменяемого отражателя), включая блоки ТВС типа 1 (без отверстия для ПС СУЗ или ПЭЛ РСО) - 88,27 т, блоки ТВС типа 2 (с отверстием для ПС СУЗ или ПЭЛ РСО) - 27,6 т (срок пребывания в реакторе - 900 сут); блоки заменяемого отражателя с различным сроком службы: 3 года - блоки ЦЗО массой 40,89 т; 6 лет - блоки НЗО и часть блоков БЗО массой 87,2 т; 15 лет - для блоки ЦЗО массой 78,4 т; 30 лет - для блоки ВЗО и часть блоков БЗО массой 136,96 т.

Ориентировочное содержание Li6 в реакторном графите составляет от 0,1 ppm до 1 ppm при точности измерения нейтронно-активационным методом 0,04 ppm.

Воздействию нейтронного потока в реакторе подвергается В-10, содержащийся в материале поглотителя В4С в ТВС, ПС СУЗ, верхнем слое блоков а.з., блоках графитовой кладки, а также в виде примесей в графитовых конструкциях. Содержание В-10 в указанных элементах конструкции составляет: в ТВС а.з. 3 кг; в верхнем слое блоков а.з. 160 кг; в виде примесей в графитовых блоках 0,2 кг; во всех ПС СУЗ 300 кг; в блоках графитовой кладки 260 кг.

Масса гелия в первом контуре (реактор, ВТО, БПЭ, газоходы) ~ 5000 кг. Расход теплоносителя на систему очистки (СО) ~ 700 кг/ч (включение СО по мере необходимости).

Генерация Т в первом контуре МГР-Т проходит по следующим основным каналам : деление (тройное) ядерного топлива 23S U (~10-4 ат.Т/дел); реакция 3Не (п, р) Т при облучении гелия нейтронами (уа ~ 5,400 б); реакции 6Li(п, а)Т и 7Li(и, п,а)Т (при взаимодействии с примесями лития в реакторном графите); за счет 10В, облучаемого тепловыми и быстрыми нейтронами (стержни СУЗ, пэлы, примеси в графите); за счет 9Ве, 12С и других нуклидов.

Вклад Т по третьему каналу определяется в основном содержанием Li в реакторном графите и темпом перегрузки активной зоны. Содержание Li в реакторном графите лежит на уровне технически достижимой чистоты 10-6 - 10-5 %. В результате при темпе перегрузки графитовых элементов активной зоны ~ 155 кг ТВС в сутки расход Li составит около 16.10-3 г, или в пересчете на 6Li (уа ~ 930 б) примерно 1.10-3 г. При полной конверсии этого изотопа, в пренебрежении реакцией 7Li (п, п', б) Т, образуется 5.10-4 г Т активностью 725 Ки (в пересчете на год).

Активность Т, генерируемого за счет 10В, составит 138- 127 Ки/год. Принято, что в контуре ВТГР на вклад деления приходится 51%, лития - 34% и теплоносителя - 15%.

Bсе расчеты проводились в консервативном допущении о содержании 3Не в теплоносителе (брался состав гелия, получаемого из воздуха, а не из природного газа, являющегося основным природным промышленным сырьем производства гелия, в котором изотопа 3Не на порядок меньше).

Из результатов работы опытных реакторов типа ВТГР в США и ФРГ известно, что большая часть (~ 65 %) Т, генерируемого в топливе, выходит из микротвэлов и перераспределяется в графите, несмотря на малую долю (менее 1 %) микрочастиц, получивших повреждение покрытия. В то же время исследование балансов Т в контурах ВТГР (с учетом адсорбции в графите) показало, что, например, в реакторе "Форт-Сент-Врейн" в теплоносителе и в системе очистки около 85 % трития определяется реакцией 3Не (n, р) Т, остальное количество: реакцией 6 Li (n, б ) Т (~ 4 %); тройным делением 23S U (~ 10%); генерацией из 10В (~ 1 %).

Соответствующий баланс для ВТГР типа МГР-Т мощностью 600 МВт (тепл.) дает выход Т в контур (RI) на уровне 250-300 Ки/год. В дальнейшем используется верхняя оценка (300 Ки).

В величину удельной активности первого контура (CI), как было показано, даже при весьма завышенной диффузионной утечке Т из первого контура основной вклад вносит баланс "источник--система очистки". В связи с этим

CI = RI /G 1CO = 12.10-5 Ки/кг (18)

В расчете принята система очистки с расходом G 1CO 0.1 кг/с (r=0.072). В пересчете на удельную активность СI= 35.10-5 Ки/м3, при этом парциальное давление Т составит около 1.3.10-9 МПа. Это значение примерно соответствует экспериментально полученному значению для реактора AVR, что можно считать далее консервативной оценкой в связи с существенно более низкой кратностью очистки на реакторе AVR (r = 0,025). В то же время расчетная объемная концентрация Т в первом контуре сопоставима с опытом работы АЭС с ВТГР «Пич-Боттом», характерные концентрации трития в теплоносителе которой составляли 10-6 -10-5 Ки/м3 /GEFR-00602/. Интересно отметить, что утечка Т в парогенератор и атмосферу на этой АЭС не превышала 0.4-0.67 Ки/МВттепл.год.

Соответствующий выброс трития с гелием, утекающим из первого контура, составит для МГР-Т (при средней скорости утечки гелия, включающей перегрузки, неорганизованные протечки, профилактику и замену оборудования, уплотнения и т.д., на уровне 0.5 кг гелия /ч ) не более 6. 10-5 Ки/ч.

Удельный поток трития в ТКА определен как:

IT=2.04 exp(-7450/Tэфф).1/2.56 ~7.5 мкКи.мм/(м2.ч) (19)

Для условий стационарного установившегося потока трития IУ=3.75.10-3 Ки/ч.

В расчете на производимый влажный конвертированный газ концентрация трития составит:

СКГ=3.75. 10-3 /0.15.106 =2.5.10-8 Ки/м3 ; (20)

принимая, что весь тритий связан в газе в СН3Т, НТО, НТ и единственный канал его выхода - вместе с производимым водородом.

Полученное значение удельной активности не превышает международных и национальных норм по ПДК в воздухе для населения, поэтому с учетом неизбежного разбавления водорода при его утечке в атмосферу следует признать рассчитанный уровень активности вполне безопасным.

Оксидные пленки, образующиеся на теплообменных поверхностях, диффузионный поток трития, как показал автор, снижают, что подтвердили эксперименты на стенде МИКСЕР в РНЦ «Курчатовский институт», в которых присутствие оксидной пленки на металле снизило при температурах выше 600 оС диффузионный поток изотопов водорода примерно на 3-4 порядка.

Допустимой концентрации содержания трития в атмосферном воздухе CА=7 Бк/л соответствует массовая концентрация 1.9·10-8 мг/м3. Содержанию трития в воде CВ=6.3·104 Бк/л соответствует массовая концентрация 1.7·10-10 г/л.

В соответствии с НРБ-99 ДОАнас по тритию для воздуха составляет 1.9 Бк/л или 5.1.10-11Ки/л или 5.1.10-8 Ки/м3. Коэффициент пересчета принят равным 2.7х10-10 Зв/Бк.

Поскольку даже консервативная концентрация трития в газовом продукте составляет 2.5.10-8 Ки/м3 следует считать, что при производстве водорода на ЯТК с МГР-Т в варианте ПКМ с прямой передачей тепла без использования промежуточного контура критерии, предъявляемые НРБ-99, выполнены.

Возможность утечки конвертированного газа потребует создания в закрытых помещениях усиленной вентиляции, мер по пожаровзрывобезопасности (например, использования каталитических окислителей) и т.д., что дополнительно обеспечит защиту от тритиевого загрязнения.

Аналогичные оценки, сделанные для утечки НТО, образующейся в метанаторах ХТС, подтвердили, что в этом случае ПДК соблюдаются с достаточным запасом даже при консервативных оценках.

Анализ показывает, что все другие варианты энерготехнологического использования ЯТК (дальнее теплоснабжение, получение метанола, металлургия и т. д.) также удовлетворяют требованиям чистоты технологического продукта по тритию. Это позволяет сделать вывод о том, что при принятии конструктивно-технологических мер по предотвращению прямого (не диффузионного) попадания радионуклидов первого контура в технологический продукт возможно включение СТТ (ТКА) в первый контур без использования промежуточного контура со своей системой очистки. Аналогичный вывод можно сделать и по результатам исследований возможного диффузионного загрязнения теплоносителя первого контура водородом, поступающим через теплообменные поверхности ВТТ.

В составе среды ХТБ водород занимает доминирующее положение лишь на выходе из ТКА, именно он будет определять химический состав газа, диффузионно проникающего через металлические поверхности ТКА в первый контур ЯЭУ, что обусловлено низкими коэффициентами диффузии всех остальных газовых компонентов среды ХТБ. Наиболее близкую к водороду проницаемость в металле имеет азот, однако его содержание в среде ХТБ невелико, что с учетом соотношения коэффициентов диффузии (Di) азота и водорода (для железа, например, при T= 1173 К Dh2/Dn2 = 2,74.102) позволяет ограничиться в дальнейшем рассмотрении одним водородом.

Экспериментально автором были определены значения коэффициента диффузии водорода D по методике (см. Журн. ФХММ, 1972, № 1. С. 95 - 99), заключающейся в определении D из зависимости I(ф), где ф -время, на основании уравнения Беррера:

D = д 2/6 ф 3. (21)

Здесь д - толщина образца; ф 3 - время "запаздывания" при выходе потока на установившееся значение. Приведем полученные значения параметра D (средние): 3.61.10-10 м2/с при Т =823 К; 3.80. 10-10 м2/с при Т = 873К.

Сопоставляя эти значения с результатами экспериментального изучения диффузии водорода через керамические материалы, можно прийти к выводу об относительно слабом влиянии окисной пленки на результирующее значение коэффициента диффузии, приведенное выше. Так, для А12О3 при Т = 873 К ,D= 10-14 - 10-16 м2 .с-1 , что обусловлено молекулярным характером диффузии водорода через керамические материалы, в которых он не растворяется.

Таким образом, толщина окисной пленки, образовавшейся за счет окисления образца примесями гелия, не превысила нескольких микрометров.

Образование в среде влажного конвертированного газа окисных пленок приводит к снижению водородопроницаемости на 3-4 порядка. Новое значение водородопроницаемости устанавливается за период 0.5 - 30 сут в зависимости от материала, среды и температуры. Аналогичные значения (снижение на 2-3 порядка диффузии для окисленных поверхностей) приняты и в разработках, проводимых Центром в Юлихе, в частности, применительно к условиям стыковки аппарата ПКМ на реакторе НТТR.

Основным источником водорода в первом контуре ЯЭУ МГР-Т является СТТ (при отсутствии промежуточного контура передачи тепла от активной зоны к СТТ). В связи с этим, а также с учетом того, что водород -- одна из основных примесей теплоносителя первого контура, ответственных за массоперенос и коррозионное повреждение материалов активной зоны, оценка возможных значений диффузионных потоков водорода из СТТ в первый контур приобретает важное значение для выбора перспективных схем и параметров ЯТК.

Для п труб СТТ с длиной "активной части" L радиусом Rтр и толщиной дтр интегральный диффузионный поток водорода IУ можно записать в виде

IУ = 2 р Rтр n K0 / дтр 0?L ехр [- Q a/RT(x)] v PH2(x)/dx, (22)

Переходя к новой переменной х = х/L и учитывая, что зависимости Т(х) иРH2 (х) для CТТ удовлетворительно аппроксимируются формулами

T(x)= То + (T1 - То) vx, (23)

PH2(x) = Pвых vx, (24)

где То - минимальная температура стенки CТТ; Т1 - максимальная температура стенки CТТ; Pвых - давление водорода на выходе из ВТТ, получаем

IУ = 2 р Rтр n K0 vPвых / дтр 0?1 ехр {- Q a/R[T0 +(T1 - T0) vx]}x 0.25dx, (25)

Для ориентировочных конструктивных параметров СТТ (n, дтр , Rтр ), приведенных в предыдущих разделах для диаметра трубки 30 мм, толщины трубки 2 мм и выходном парциальном давлении водорода во влажном конвертированном газе около 3.0 МПа при общей поверхности СТТ 103 м2, задавая среднюю длину трубки в спиральном змеевике 30м, суммарное количество трубок равно около 360. Поток IУ составит для условий окисленного металла типа ХН55МВЦ около 0.025. 10-3 м3/с или около 8 г/ч.

Уравнение баланса водорода в 1ом контуре может быть записано как:

IУ= RHe/RH2 . CH2 . GУCO, (26)

Для CH2 , заданной в ТЗ на разработку на уровне 35 vpm:

GУCO =0.12 кг/с, т.е. 432 кг/ч, что означает, что принятая в МГР-Т система очистки с расходом 700 кг/ч обеспечит непревышение заданной концентрации водорода в первом контуре.

В схеме ЯТК МГР-Т нет парогенератора и кроме диффузии водорода в первый контур из реакционных объемов CТТ другими источниками поступления водорода в первый контур могут стать только, в частности, окисление графита активной зоны примесями водяного пара, за счет протечек воды из системы водяного охлаждения (СОВ) гелиевых потоков в БПЭ. Более жесткие требования может накладывать на систему очистки необходимость снижения концентрации трития в первом контуре. В этой связи следует, по-видимому, признать, что наличие системы очистки суммарной производительностью около 1 кг гелия в секунду (типа ОГ-1-50) будет достаточно для поддержания концентрации водорода и трития в реакторном контуре на требуемом уровне (~ 0,005 %), даже при размещении ТКА в первом контуре АС.

Для ХТБ в составе АЭТС с МГР-Т применительно к производству водорода методом ПКМ возможность образования взрывоопасных концентраций возникает только в отделении выделения водорода методом КБА, которое располагается обычно на расстояниях 25-35 м от ТКА. В этой связи должен учитываться возможный процесс выхода метана или водорода из аппарата и образование ГВС с последующим ее взрывным сгоранием.

Согласно диаграмме горючести смесей «водород-водяной пар-воздух» при наличии водяного пара в концентрации более 60% пределы начала возгорания не достигаются в рассматриваемых условиях возможного образования смесей.

Таким образом, не возникает дополнительных требований к включению в состав системы передачи тепла к ХТБ промежуточного контура по соображениям удаления ТКА, поскольку формирование ГВС, опасных с точки зрения детонации, возникает только в отделениях ХТЧ, не связанных по передаче тепла с РУ, что позволяет отнести их на необходимое расстояние (100-200 м) от Главного здания АЭТС.

В Главе 4 представлены результаты исследования и разработки сорбционных систем утилизации низкопотенциального тепла.

В разделе 4.1 рассмотрены низкотемпературные циклы накопления энергии. Автором предложены и разработаны технологии и технические средства электро- и теплогенерации в модульном исполнении на основе высокоэффективных аккумулирующих углекислотных циклов высокого давления с сорбционным накоплением рабочего тела (САУ - сорбционных аккумулирующих установок), утилизирующих сбросное тепло основной энергоустановки., основанные на синтезе технологических решений, отработанных для проектов теплонасосных установок (ТНУ), геотермальных электростанций (ГТЭС) и углекислотных турбоблоков.

Следует отметить, что в отличие от зарубежной практики, в последнее десятилетие накопители ни одного из рассмотренных типов в России не только не строятся, но и не проектируются. Отсутствие проектного и строительного задела приведет к значительным проблемам в ближайшем будущем, для смягчения которых необходимо форсировать работы по этому направлению энергетического строительства.

Разработанная энергоустановка САУ с высокоэффективным аккумулирующим углекислотным циклом высокого давления с сорбционным накоплением рабочего тела, утилизирующим сбросное тепло основной энергоустановки основана на концепции хемотермических системы (ХТС) накопления и передачи энергии, непосредственно сопрягаемых с теплоисточниками различного типа по теплоносителю умеренной температуры. Рассмотрены различные инженерные решения для САУ с целью обеспечения профилированного профиля температур теплоносителя, проходящего через слой свободной засыпки сорбента аккумулятора рабочего тела (АРТ).

Электростанцию (ЭС), включающую САУ предполагается разместить на площадках, допускающих расширение, соизмеримое по площади с основной ЭС, в том числе с максимально уплотненной петлевой компоновкой оборудования, при этом использовать отработанные конструктивные решения для углекислотных систем, турбоустановки и АРТ. Принципиальная схема САУ - двухконтурная, с использованием во втором контуре углекислотным циклом высокого давления с сорбционным накоплением рабочего тела для обеспечения высоких значений КПД накопления энергии.

Основные требования, предъявляемые к САУ: повышение мощности ЭУ за счёт углекислотной турбины и общей вырабатываемой пиковой энергии; требуемый расход тепловой энергии, подводимой в пиковом режиме от стороннего энергоисточника, не должен превышать 20-30% от тепла, подводимого к рабочему телу от стороннего источника в рассматриваемом техническом решении; повышенная надежность работы установки и снижение стоимости производства энергии за счет резкого (на несколько порядков) снижения подпитки рабочего тела в установку, подаваемого со стороны, исключение зависимости от подвозки рабочего тела на площадку размещения установки; обеспечение полной экологическая безопасность энергоаккумулирующей установки поскольку рабочее тело не выбрасывается в окружающую среду; запасение с помощью тепловых аккумуляторов установки любого требуемого количества энергии, достаточного для обеспечения стабильной бесперебойной работы установки даже в периоды перерыва в подводе тепловой энергии от стороннего источника; обеспечение возможности применения данной установки для выработки пиковой электроэнергии и одновременного снабжения различных объектов тепловой энергией и холодом в режиме разуплотненного графика их потребления; обеспечение возможности аккумулирования провальной ночной энергии, отпускаемой по сниженному тарифу; обеспечение возможности эффективной утилизации сбросного тепла различных тепловых двигателей, а также расширение возможности применения возобновляемых природных источников энергии, обладающих значительным ресурсным потенциалом и, в то же время, высокой неравномерностью поступления их энергии, а также дополнительного повышения эффективности установки в холодные климатические периоды; повышение надежности работы и снижение стоимости изготовления установки за счет умеренных по температуре и давлению параметров рабочего тела; возможность использования уже существующих материалов, технических решений и оборудования, необходимых для её создания; капитальные затраты на сооружение блока с САУ должны быть не выше удельных капитальных затрат, характерных для основного энергоблока.

Концепция САУ является принципиально новой, однако основывается на в значительной степени уже отработанных в России и в мире технологиях углекислотных циклов высокого давления, а также сорбционных систем хранения газа.

В разделе 4.2 представлены результаты разработки водоаммиачных регуляторов мощности. Показано, что наибольшая маневренность АЭС при использовании водо-аммиачных систем может быть достигнута при создании водоаммиачных регуляторов мощности (ВАРМ), в которых вся запасенная в период провала нагрузки тепловая энергия срабатывается в периоды увеличения нагрузки АЭС в сателлитной аммиачной турбине.

Как показали проектные проработки ВАРМ, выполненные применительно к одному из блоков Ленинградской АЭС (ЛАЭС), возможно частичное совмещение функций абсорбера и генератора в одном конструктивном узле, что сокращает потребное количество колонн и снижает затраты на металл.

Хранение реагентов - аммиака и слабого водоаммиачного раствора - осуществляется при близких к нормальным температуре и давлении и базируется на отработанной технологии создания и эксплуатации сферических емкостей большого объема, в том числе с жидким аммиаком.

Чтобы использовать аммиак после турбины в абсорбере без дополнительных потерь, давление в абсорбере было выбрано 0,2 МПа, однако относительно низкое давление снижает максимальную температуру абсорбции и это не позволяет перегреть аммиак до нужной температуры. В этой связи в схему включён пароперегреватель, перегрев аммиака в котором проводится острым паром турбины, что, как показали проведенные исследования, не является экономически целесообразным. С этой точки зрения более привлекательны турбины, имеющие высокое разделительное давление перед цилиндром низкого давления, что позволит отбирать пар, имеющий меньшую эксергетическую ценность и, следовательно, повысить общую эффективность аккумулирования. К таким турбинам для АЭС с ВВЭР относится K-1000-60/1500 (ПОАТ ХТЗ) с разделительным давлением 10.5 ата, а также ее аналог K-1000-60/1500-2, в которой на один недоотпущенный кВт.ч электроэнергии при отборе пара перед цилиндром низкого давления (ЦНД ) запасается около 4 кВт.ч тепловой энергии, подаваемой в десорбер. Для увеличения глубины разгрузки желательно переключение всего расхода пара, идущего на ЦНД (оставив лишь вентиляционный расход), для подогрева воды промежуточного контура, передающего тепло к теплоприемникам (десорберам) установки ВАРМ.

На рис.8 изображена схема накопителя и пикового контура АЭС, в котором перегрев аммиака проводится в дополнительном водо-аммиачном контуре, давление в абсорбере которого 1,9 МПа, что позволяет перегреть аммиак до 160°С (а не до 85°С, как в более ранних разработках). В конце 80-х годов ХХ века в соответствии с заданием Минатомэнергопрома СССР по схеме и технологии предложенной автором проведены технико-экономические исследования по использованию ВАРМ применительно к блоку РБМК-1000 (ЛАЭС).

Основные проектные проработки были нацелены на многовариантные технические решения по теплотехнологическому оборудованию ВАРМ.

Таблица 5 - Термодинамические характеристики растворов (см. рис.8)

Номера точек

Давление МПа

Температура °С

Концентрация

кг NH3/кг

Энтальпия ккал/кг

Расход,

кг/кг раствора

I

2

3

4

5

6

1

1,0

20

0,433

-34,2

1,0

1

2

3

4

5

6

1'

1,0

73.3

0,438

19,2

1,00

2

1,0

170

0,030

167

0,57

3

19,10

172

0,03

-7,4

0,57

3'

19,10

105

0,41

57,2

0,95

4

19.10

25

0,438

-59,6

1

5

1,0

57,4

0,990

332

0.43

5'

1,0

73.3

0,438

346

0,44

6

1,0

25

1,0

25,8

0, 43

8

19,1

47,4

1,0

309

0,43

9

1.0

73

0,438

19,2

0,01

Разработаны конструкции основного оборудования (генератор - адсорбер, ректификационные колонны, сепараторы, теплообменники, пароперегреватель и т.д.), сделан выбор стандартного оборудования (насосы и т.д.) и проведен сметный расчет.

Несколько больший опыт имеется в стране по разработке турбин, работающих на углекислом газе, что заставило рассмотреть вариант ВАРМ-CO2, в котором в качестве испаряемого компонента и рабочего тела турбины служит не аммиак, а углекислота. В этом варианте в качестве абсорбента используют 20-30% водный раствор аммиака либо твёрдые сорбенты (цеолиты или активированные угли). Хранение и транспорт жидкой углекислоты хорошо освоены в промышленности.

Следует отметить, что в связи с низкой теплотой испарения СО2 и высокой теплотой поглощения СО2 в аммиачном растворе в режиме разрядки возникает необходимость утилизации избыточного тепла абсорбции (около 800-900 кДж/кг СО2 ). Один из вариантов - отвод этого тепла на нагрев питательной воды в основной турбине (К-600-6,9/50 или КТ-600-6,9/25) при отключении подогревателей низкого давления, увеличении пропуска на выхлоп и соответствующем увеличении мощности на клеммах генератора. По данным заводов, определенный резерв (до 50%) по пропуску пара в ЦНД имеется.

В этом случае, как и варианте ВАРМ, к.п.д. аккумуляции составит до 80-85%, что даст дополнительную мощность на "пиковой" турбине до 120-150 МВт(эл.) в расчете на один блок при снижении ночной нагрузки блока на 8 ч и работе "пиковой" турбины днем в течение 8-10 ч или 250-300 МВт при работе на пиковой мощности в течение 5 ч при зарядке ночью в течение 10-12 ч.

Проработка BAРM-CO2 велась для схемы, приведенной на рис. 9.

На 1 кг СО2 одновременно в генераторе отгоняются 0,386 кг NH3 и по равновесию с крепким раствором (yNH3 =0,32,yco2 =0,63) определяется количество флегмы (2,4 кг/кг), что в конечном счете дает расчетное значение тепловой нагрузки генератора (около 10000 кДж/кг NH3 или 3860 кДж/кг С02).

При этом в расчете на 1 кг СО2 при степени карбонизации К=200% полная теплота абсорбции при 40°С составляет 1350 кДж/кт CО2, что и определяет тепловой режим разрядки.

В разрядке тепло абсорбции СО2 в растворе аммиака расходуется на испарение и перегрев СО2 перед турбиной 14 и на нагрев воды промежуточного контура, передающего тепло в тракт нагрева питательной воды III (в теплообменник ППВ, см. рис.9).

Рассчитан процесс 4-ступенчатого близкого к адиабатическому сжатия СО2 со ступенями 0,2; 0,4; 0,6; 0,8 и 1,0 МПа. Соответствующая сумма работ по ступеням равна 140 кДж, тепло отведенное суммарное - 153 кДж (в расчете на 1 кг СО2). Следовательно, для ВАРМ-СО2 с параметрами по табл.5 1ож* = 208-141=67 кДж/кг q=363-153=210 кДж/кг.

Отношение вырабатываемой при разрядке энергии к запасенной (затраченной) при зарядке составит таким образом (31,5+40)/(120+20,2)=0,51, что соответствует характерным значениям альтернативных вариантов энергоаккумуляторов. Важно отметить, что при фиксированных удельных затратах (ценах) прирост к.п.д. должен опережать соответствующий рост капитальных вложений в энергоаккумулятор. Это один из основных критериев при сопоставлении вариантов.

В качестве сорбента СО2 могут использоваться не только водоаммиачные растворы, но и твердые углеродные и цеолитовые сорбенты (рис. 10).

На основании результатов проектирования углекислотных энергоустановок (ПОАТ ХТЗ, КиевТЭП, ОПИ, ЛФ Оргэнергострой и др.) было показано, что при переходе от больших (500 МВт) к малым (50 МВт) единичным мощностям технико-экономические показатели углекислотных турбин меняются не так резко, как пароводяных установках. Проектная турбина низкого давления установки УКЭУ-50 имеет мощность 44 МВт при к.п.д. 89,5%. Начальное давление турбины низкого давления - 5,76 МПа.

В расчете на дополнительную мощность, вырабатываемую АЭС в режиме разрядки САУ-CO2 (71,5 МВт), удельные капиталовложения в установку составят около 73 дол/кВт. Эта цифра лежит существенно ниже соответствующих показателей альтернативных систем энергоаккумулирования и может рассматриваться как отвечающая требованиям по конкурентоспособности установки со значительным запасом по эффективности.

В разделе 4.3 даны результаты выбора эффективных циклов сорбционного накопления рабочего тела на основе выполненных схемно-конструктивных разработок энергоустановок с высокоэффективным аккумулирующим углекислотным циклом высокого давления.

Выполнена разработка решений для одного из возможных вариантов исполнения энергоустановке с высокоэффективным аккумулирующим углекислотным циклом для ЭС, конкурентоспособной по безопасности, экономичности и другим параметрам по отношению к альтернативным энергоисточникам, в том числе к перспективным теплоаккумуляторам и электростанциям на органическом топливе.

Основные концептуальные решения рассматриваемого варианта САУ состоят в следующем: а) рабочее тело - диоксид углерода (СО2, R744) высокого давления (4 МПа) с температурой на входе в турбину до 200 оС; б) схема установки двухконтурная, с использованием во втором контуре углекислотного цикла высокого давления с сорбционным накоплением рабочего тела для обеспечения высоких значений КПД накопления энергии; в) компоновка основного оборудования петлевая; г) аккумулятор рабочего тела выполнен в ёмкости большого объёма с размещенными внутри теплообменными поверхностями на основе заполнения сорбентом в виде свободной засыпки с поперечно-осевым течением рабочего тела; д) теплообменники перегрева СО2 размещаются в аппаратах, пристыкованных к источнику утилизируемого тепла; е) парогенераторы СО2 - секционные микроканального сотового типа прямоточного типа с генерацией пара в межпластинчатом пространстве (направление движения рабочего тела снизу вверх).

Энергоустановка САУ использует в качестве источника тепловой энергии сбросное тепло основного энергоисточника, в качестве которого могут быть использованы энергокомплекс с плавучей АЭС (ПАТЭС), установки с возобновляемыми источниками энергии, а также работает в сочетании с газотурбинными (ГТУ) установками или энергоустановками на основе двигателей внутреннего сгорания (ДВС).

Использование в качестве рабочего тела диоксида углерода (СО2, R744) высокого давления (4 МПа), имеющего ряд специфических свойств, создает ряд преимуществ: СО2 не ядовит, не испытывает при работе САУ химических превращений, не диссоциирует, не является пожаро- взрывоопасным, имеет хорошие теплопередающие свойства, не разрушает озоновый слой, имеет самый низкий среди применяемых рабочих веществ потенциал глобального потепления. СО2 в рабочем диапазоне температур и давлений химически инертен, отсутствуют химические реакции с конструкционными материалами.

Локализация рабочего тела при авариях с разгерметизацией рабочего контура и защита САУ от внешних воздействий не требуются. Даже в случае полной потери СО2 отсутствует необходимость в эвакуации населения, проживающего в районе расположения станции.

Показано, что использование вышеназванных технологий позволяет: увеличить КПД аккумулирования энергии, что определяет резкое снижение тепловых сбросов в окружающую среду на единицу произведенной энергии и улучшает технико-экономические показатели; обеспечить высокий уровень безопасности, исключающий ограничение на размещение САУ вблизи крупных населённых пунктов; продемонстрировать конкурентоспособность энергоустановки с САУ на мировом рынке коммерческого производства электроэнергии с более низкой стоимостью производимой электроэнергии по отношению к альтернативным энергоисточникам (электростанциям на органическом топливе, в том числе и к перспективным, использующим комбинированный парогазовый цикл).

Основные технические характеристики реакторной установки САУ приведены в таблице 6.

Таблица 6 - Основные технические характеристики энергетической установки САУ (в варианте применительно к одной РУ КЛТ-40 на ПАТЭС)

Наименование

Значение

1. Тип турбины

Углекислотная с противодавлением

2. Схема преобразования энергии

Двухконтурная с выработкой газообразного СО2 высокого давления и низких температурных параметров

3. Электрическая мощность установки, максимальная, МВт

26

4. Тепловая мощность, подводимая от РУ, МВт:

в пиковом режиме

в режиме ночного снижения

30

15

5. контур подвода тепла

5.1. Теплоноситель первого контура

вода

5.2. Давление контура, МПа

5.3

5.3. Температура пара первого контура на входе

285

5.4. Потери давления, МПа, не более

0,5

5. Углекислотный контур

5.2. Рабочее тело

СО2 высокого давления

5.3. Мощность турбины (детандера), МВт

26

5.3. Давление перегретого СО2 за ПГ, МПа

4.0

5.4. Температура перегретого СО2 за ПГ, С

180

5.5. Температура СО2 на выходе из ХРТ, С

-0.4

5.6. Давление СО2 на входе в АРТ, МПа

0.2

5.7. Температура СО2 на входе / выходе компрессора , С

20/111

6. Базовый режим работы

100%Nном

7. Назначенный срок службы, лет

60

8. Средний за срок службы КИМ, не менее

0,87

Рис. 1. Диаграмма равновесия (сухой конвертированный газ)

Рис. 2. Схема пиковой генерации пара

Рис. 3. Q--Т-диаграмма вспомогательного парогенератора-метанатора

Рис. 4. Принципиальная тепловая схема. 1 - реактор; 2- высокотемпературный теплообменник; 3 - газовая турбина; 4- компрессор; 5- основной парии генератор; 6-паровая турбина; 7 -паровой пароперегреватель; 8 - подогреватель низкого давления; 9- аппарат утилизации теплоты; 10 - парогенератор низкого давления; // - регенератор; 12 - влагоотделитель; 13- газохранилище; 14- метанатор; 15 - вспомогательный парогенератор; 16 - химическая очистка отсепарированной воды; 17-электрический генератор паротурбинной установки; 18 - конденсатор; 19 - питательный насос; 20 - электрический генератор ГТУ; / -- гелий; // -- вода; /// -- пар; IV-СН4; V-CO+3H2.

Рис. 5. Связь параметров и показателей установки в базовом режиме.

Рис.6. Диаграмма режимов установки

Рис. 7. Принципиальная схема АТЭЦ с ВТГР на базе ГТУ: 1 -ВТГР; 2 -- турбина; 3 - паровой охладитель газа; 4 - сетевой охладитель газа; 5 - концевой охладитель газа; 6 и 8 - компрессоры; 7 - промежуточный охладитель газа; 9 - генератор; 10 - насосы; 11 - сухая градирня; 12 - сетевой подогреватель; 13 - парогенератор; 14 - регенератор.

Рис.8. Водоаммиачный накопитель энергии на АЭС: 1 - редукционно-охлаждающее устройство; 2 - теплообменник «пар-вода» промежуточного контура; 3 - насос промежуточного контура; 4 - расширительный бак; 5 - генератор низкого давления; 6 - дефлегматор; 7 - теплообменник «крепкий - слабый раствор»; 8 - насос крепкого раствора; 9- хранилище крепкого раствора; 10 - конденсатор аммиака; 11 - хранилище аммиака;12 - испаритель аммиака; 13 - абсорбер низкого давления; 14 - аммиачная турбина; 15 - охладитель крепкого раствора; 16 - хранилище слабого раствора; 17 - насос аммиака; 19 - пароперегреватель- абсорбер высокого давления; 20 - генератор высокого давления.

Рис.9. Схема ВАРМ-СО2

1 - редукционно-охлаждающее устройство; 2 - теплообменник пар-вода промежуточного контура; 3 - насос промежуточного контура; 4 - расширительный бак; 5 - генератор высокого давления; 6 - дефлегматор; 7 - теплообменник «крепкий - слабый раствор»; 8 - насос крепкого раствора; 9- хранилище крепкого раствора; 10 - конденсатор углекислоты; 11 - хранилище СО2; 12 - испаритель углекислоты; 13 - абсорбер низкого давления; 14 - углекислотная турбина; 15 - охладитель крепкого раствора; 16 - хранилище слабого раствора; 17 - насос аммиака; 19 - пароперегреватель.

Рис. 10. Упрощенная принципиальная схема САУ

Турбина 1, приемник - аккумулятор рабочего тела (АРТ) 2, аккумулятор -хранилище сжиженного рабочего тела (ХРТ) 3, основной нагнетатель -главный циркуляционный насос 4, нагревающий теплообменник -парогенератор-пароперегреватель 5, приемник рабочего тела 2, встроенный теплообменник 51, компрессор 6, охлаждающий теплообменник 7.

Основные выводы

Проведено комплексное системное исследование различных технологий производства водорода, получены оценки их эффективности в приложении к ядерным энергоисточникам, определены ограничения по применимости термохимических циклов разложения воды, в том числе впервые показана практическая неэффективность применения серно-иодного цикла в ядерно-технологическом комплексе производства водорода;

Применительно к реакторной установке МГР-Т мощностью 600 МВт (тепл) определены технологические решения, схема и параметры процесса производства водорода из воды и природного газа.

Проведено комплексное исследование требований и возможностей систем аккумулирования энергии, обеспечивающих увеличение доли АЭС в энергосистемах, показана необходимость создания накопителей энергии с низкими удельными капитальными затратами, суммарная мощность которых для сбалансированности работы энергосистем должна составлять 10-15 % суммарной установленной мощности АЭС и ТЭС.

Разработана схема и определены основные технические решения по маневренной АЭС с ВТГР на основе применения бинарного парогазового цикла с хемотермическим аккумулированием, позволяющего не только получить высокую тепловую экономичность, но и обеспечить процесс конверсии метана технологическим паром, утилизировать теплоту охлаждения смеси Н2 и СО и рационально использовать аккумулированную теплоту. Определены параметры и конструктивные характеристики газовой и паровой турбин.

Показано, что разработанная схема АЭУ позволяет при постоянной мощности реактора в 1000 МВт (тепл) изменять нагрузку блока в диапазоне от 240 до 560 МВт со среднесуточным КПД около 42%.

Применительно к задачам теплофикации предложена схема АТЭЦ на базе ГТУ с ВТГР, исследования которой определили схемы, параметры и способы компоновки оборудования.

Применительно к схеме атомных станций дальнего теплоснабжения с хемотермической передачей тепла определены основные технические решения, схемы и технологические параметры по контуру конверсии метана.

Применительно к разработанной схеме передачи тепла для установки МГР-Т мощностью 600 МВт (тепл) выявлены факторы радиационной и пожаровзрывобезопасности, найдены и рекомендованы технологические решения по их обеспечению применительно к атомно-водородному комплексу производительностью более 400 тыс. т водорода/год..

В результате комплексных исследований найден и рекомендован для практического применения диапазон рабочих параметров сорбционной аккумулирующей установки, обеспечивающих наибольший эффект в режиме аккумулирования низкопотенциального тепла ЯЭИ.

хемотермический аккумулирование ядерный энергоисточник

Основное содержание диссертации отражено в следующих рецензируемых публикациях

1. Столяревский А.Я. Аккумулирование вторичной энергии.- В сб. Атомно-водородная энергетика и технология.- - М.:Энергоатомиздат,1980.вып.4, С.60-126.

2. Столяревский А.Я. Ядерно-технологические комплексы на основе высокотемпературных реакторов. / Монография. - М.:Энергоатомиздат,1988, (С.150, 9.3 п.л.).

3. Столяревский А.Я., Хемотермические циклы и установки аккумулирования энергии. // International Scientific Journal for Alternative Energy and Ecology, IJAEE. -2005.№3(23). С.33-46.

4. A.Stolyarevskiy, Concept and Status of Efforts to Create Nuclear Hydrogen in Russia. Report to ANS Embedded Topical on “Safety and Technology of Nuclear Hydrogen Production, Control and Management” (ST-NH2). Boston, MA, June 26, 2007

a. Stolyarevskiy, The effective technology of hydrogen production in the transition, Report on II International Forum «Hydrogen technologies for the developing world » held in conjunction with 9th meeting of the Steering Committee of the IPHE. April 22-23, 2008. Moscow, «President Hotel»

5. Stolyarevskiy, Novel technology for syn-gas and alternative fuel production, GAFF-2005

6. Stolyarevskiy, Innovative natural gas reforming for hydrogen production, Report to Intnl. Forum “Hydrogen technologies for energy production”, Moscow, 6-10 Febr. 2006.

7. Столяревский А.Я., Технология получения синтез-газа для водородной энергетики// International Scientific Journal for Alternative Energy and Ecology, ISJAEE .-2005.2(22). С.26-32

8. Столяревский А.Я., Бескислородное производство синтез-газа и альтернативных моторных топлив на его основе с использованием адиабатической конверсии природного газа. В сб. тезисов докл. Межд. Конф. «Альтернативные источники энергии для транспорта и энергетики больших городов», М.,2005:Изд-во Прима-Пресс, С.81-83.

9. Столяревский А.Я. Технология производства водородо-метановой смеси для автотранспорта.//Наука и техника в газовой промышленности.№3,2008, С.73-80.

10. Столяревский А.Я. Производство альтернативного топлива на основе ядерных энергоисточников.//Российский химический журнал.№ 6,2008, т.LII. УДК 661.961:621.039.576.

11. Пономарев-Степной Н.Н., Столяревский А.Я., Пахомов В.П.. Атомно-водородная энергетика. Системные аспекты и ключевые проблемы. /Монография.-М.:Энергоатомиздат, 2008. С.108 (вклад автора -4 п.л.)

12. Патент - 2273742 РФ, МПК6 F 01K25/06. Энергоаккумулирующая установка / А.Я.Столяревский; Центр КОРТЭС.- N 2004126596/06; Заяв. 2004.09.03; Опубл. 2006.04.10, Бюл. N 10.

13. Патент - 2274600 РФ, МПК6 С 01В3/38. Способ многостадийного получения синтетического газа / А.Я.Столяревский; Центр КОРТЭС.- N 2004126507/15; Заяв. 2004.09.03; Опубл. 2006.04.20, Бюл. N 11.

14. А. с. 685042 СССР, МПК6 G21D3/12. Ядерная энергетическая установка/ А.Я.Столяревский;- N 2489246; Заяв. 1977.05.24; зарегистр. 1979.05.14, Госреестр изобретений.

15. Патент - 2214634 РФ, МПК6 G21C9/06. Система послеаварийной инертизации/ А.Я.Столяревский; Центр КОРТЭС.- N 2001122034/06; Заяв. 2001.08.08; Опубл. 2003.10.20, Бюл. N 22.

16. Патент - 2214633 РФ, МПК6 G21C1/03. ТЕПЛОВЫДЕЛЯЮЩАЯ СБОРКА, АКТИВНАЯ ЗОНА И СПОСОБ ЭКСПЛУАТАЦИИ ВОДО-ВОДЯНОГО ЭНЕРГЕТИЧЕСКОГО РЕАКТОРА / А.Я.Столяревский; Центр КОРТЭС.- N 2001122033/06; Заяв. 2001.08.08; Опубл. 2003.04.20, Бюл. N 6.

17. Патент - 2183310 РФ, МПК6 F28D15/02. Устройство термостабилизации/ А.Я.Столяревский; Центр КОРТЭС.- N 2000127255/06; Заяв. 2000.10.31; Опубл. 2002.06.10, Бюл. N 10.

18. Патент - 2173661 РФ, МПК6 B65D83/14. КАПСУЛА ДЛЯ ХРАНЕНИЯ ГАЗА И УСТРОЙСТВО ЗАПРАВКИ ГАЗОНАПОЛНЯЕМЫХ ИЗДЕЛИЙ / А.Я.Столяревский; Центр КОРТЭС.- N 99124236/13; Заяв. 1999.11.12; Опубл. 2001.09.20, Бюл. N 16.

19. Патент - 2171765 РФ, МПК6 B65D83/14. КАПСУЛА ДЛЯ ХРАНЕНИЯ ГАЗА И СПОСОБ ЕЕ ЗАПРАВКИ / А.Я.Столяревский; Центр КОРТЭС.- N 2000104684/13; Заяв. 2000.02.29; Опубл. 2001.08.10, Бюл. N 14.

20. Патент - 2171214 РФ, МПК6 B65D83/14. КАПСУЛА ДЛЯ ХРАНЕНИЯ ГАЗА И СПОСОБ ЕЕ ЗАПРАВКИ / А.Я.Столяревский; Центр КОРТЭС.- N 99124241/13; Заяв. 1999.11.12; Опубл. 2001.07.27, Бюл. N 12.

21. Патент - 2157780 РФ, МПК6 B65D83/14. КАПСУЛА ДЛЯ ХРАНЕНИЯ ГАЗА И СПОСОБ ЕЕ ЗАПРАВКИ / А.Я.Столяревский; Центр КОРТЭС.- N 99112244/13; Заяв. 1999.06.03; Опубл. 2000.10.20, Бюл. N 14.

22. Патент - 2157780 РФ, МПК6 F16K15/14. ПЕРЕПУСКНОЕ КЛАПАННОЕ УСТРОЙСТВО / А.Я.Столяревский; Центр КОРТЭС.- N 94030503/06; Заяв. 1994.08.10; Опубл. 1998.02.20, Бюл. N 2.

23. Патент - 2157780 РФ, МПК6 B65D83/14. КАПСУЛА ДЛЯ ХРАНЕНИЯ ГАЗА И СПОСОБ ЕЕ ЗАПРАВКИ / А.Я.Столяревский; Центр КОРТЭС.- N 99112244/13; Заяв. 1999.06.03; Опубл. 2000.10.20, Бюл. N 14.

24. Патент - 6770118 США, B65D83/14. GAS STORAGE CAPSULE AND METHOD FOR FILLING SAID CAPSULE / Anatoly Stolyarevsy; Center CORTES.- N 10/064924; Заяв. 2002.08.29 ; Опубл. 2004.08.03, USPTO.

25. Столяревский А.Я., Аваков В.Б., Касаткин М.А.,.Хуснутдинов В.А. Регулирующая энергетическая установка для систем промышленного и коммунального электроснабжения на базе электрохимического генератора с замкнутым водородным циклом.//Электросистемы.№4,2007,С.24-28.

26. Столяревский А.Я., Энергоаккумулирующая установка. // Изобретатели -машиностроению. - 2008.№2(47).-С.48-51.

27. Столяревский А.Я., Верхивкер Г.П., Кравченко В.П. и др. О схемах хемотермической части АЭТС с высокотемпературными реакторами // Вопросы атомной науки и техники, сер.: Атомно-водородная энергетика и технология, вып.3, М., 1985, с. 22-24.

28. Столяревский А.Я., Хуснутдинов В.А., Касаткин М.А., Регулирующие энергетические установки на базе электрохимических генераторов и формирование территориальной водородной инфраструктуры. // International Scientific Journal for Alternative Energy and Ecology, ISJAEE, №4, 2007, С.110-118.

29. Столяревский А.Я., Чабак А.Ф., Прохоров, А.Ф.,Николаевский В.Б. Исследования водородной проницаемости материалов термоконверсионных агрегатов // Вопросы атомной науки и техники, сер.: Атомно-водородная энергетика и технология, вып.3, М., 1980, с. 42-44.

30. Столяревский А.Я., Федотов И.Л., Сявриков А.Я. Анализ возможностей создания термоконверсионного агрегата с вынесенным реакционным объемом // Вопросы атомной науки и техники, сер.: Атомно-водородная энергетика и технология, вып.1(8), М., 1981, с. 10-11.

31. Столяревский А.Я., Костин В.И., Кодочигов Н.Г., Васяев А.В., Кузнецов Л.Е., Пономарев-Степной Н.Н., Кухаркин Н.Е. МГР-Т - инновационная ядерная технология для комбинированного производства водорода и электроэнергии. Доклад на Второй Российской научно - технической конференции "Материалы ядерной техники" (МАЯТ-2) : Рос. конф, 19-23 сент. 2005 г., Агой (Краснодар. край). : Тез. докл.. -М.: РИО ВНИИНМ, 2005.

32. Столяревский А.Я., Проценко А.Н., Маргулис У.Я., Хрулёв А.А. и др. Оценка возможного радиационного воздействия при использовании водорода, получаемого на АЭТУ с ВТГР // Вопросы атомной науки и техники, сер.: Атомно-водородная энергетика и технология, вып.1(5), М., 1979, с. 80-85.

33. Столяревский А.Я., Пономарев-Степной Н.Н., Проценко А.Н., Кирюшин А.И. Особенности обеспечения безопасности опытно-промышленной атомной энергетической установки ВГ-400// Вопросы атомной науки и техники, сер.: Атомно-водородная энергетика и технология, вып.2, М., 1988, с. 20-38.

34. Столяревский А.Я., Бескислородное производство синтез-газа и альтернативных моторных топлив на его основе с использованием адиабатической конверсии природного газа. В сб. тезисов докл. Межд. Конф. «Альтернативные источники энергии для транспорта и энергетики больших городов», М.,2005: Изд-во Прима-Пресс, С.81-83.

35. СтоляревскийА.Я., Кузьмин И.И. Перспективы ядерной энергетики // Энергия: Экономика, техника, экология.- 1985.№4,С.44-51.

36. Столяревский А.Я., Михайлова С.А., Брун-Цеховой А.Р., Кацобашвили Я.Р. и др. Об одном из перспективных направлений совершенствования процесса паровой конверсии углеводородов // Вопросы атомной науки и техники, сер.: Атомно-водородная энергетика и технология, вып.2(9), М., 1981, с. 96-98.

37. Столяревский А.Я., Хуснутдинов В.А., Инновационные технологии атомно-водородной энергетики в проекте «Бакчарская сталь», International Scientific Journal for Alternative Energy and Ecology, ISJAEE, №11(55), 2007.рр.114-123.

38. Столяревский А.Я., Михайлова С.А., Дорошенко Н.А., Проценко А.Н., Алексеев А.М. Возможные пути использования тепловой энергии высокотемпературного газоохлаждаемого реактора ВГ-400 для производства аммиака// Вопросы атомной науки и техники, сер.: Атомно-водородная энергетика и технология, вып.2(7), М., 1980, с. 21-24.

39. Столяревский А.Я., Верхивкер Г.П., Кравченко В.П. и др. О схемах хемотермической части АЭТС с высокотемпературными реакторами // Вопросы атомной науки и техники, сер.: Атомно-водородная энергетика и технология, вып.3, М., 1985, с. 22-24.

40. Столяревский А.Я., Митенков Ф.М., Кодочигов Н.Г., Васяев А.В., Головко Г.Ф., Кузнецов Л.Е., Пономарев-Степной Н.Н., Кухаркин Н.Е. Возможность промышленного внедрения РУ с ВТГР для промышленного производства водорода. //Тяжелое машиностроение.- 2007.№3, С.24-28.

41. Столяревский А.Я., Мелентьев Л.А., Пономарев-Степной Н.Н., Назаров Э.К., Перспективы создания хемотермических систем теплоснабжения на базе высокотемпературных ядерных реакторов.- В сб. Атомно-водородная энергетика и технология.- М.:Энергоатомиздат,1983,вып.5,С.44-71.

42. Столяревский А.Я., Пономарев-Степной Н.Н., Проценко А.Н., Гребенник В.Н. Перспективы комплексного использования энергии ядерных реакторов в черной металлургии// Вопросы атомной науки и техники, сер.: Атомно-водородная энергетика и технология, вып.1, М., 1976, С. 115-134.

43. Столяревский А.Я., Пахомов В.П., Волощенко Г.П., Мележко Е.В., Атомно-водородная энергетика - энергетика будущего// Бюлл. по атомной энергии. 2003.№5.С.23-32.

44. Столяревский А.Я., Михайлова С.А., Галактионов И.В., Черняев В.А. и др. Вопросы эффективного дальнего теплоснабжения с помощью хемотермических систем // Вопросы атомной науки и техники, сер.: Атомно-водородная энергетика и технология, вып.1(8), М., 1981, с. 44-47.

45. Large Scale Nuclear Hydrogen&Power Plant based on Helium Cooled Nuclear Reactor MGR-T/N.N. Ponomarev-Stepnoy, N.E.Kukharkin, AnatolyYa. Stolyarevskiy,F.M. Mitenkov, N.G.Kodochigov,A.V.Vasyaev,V.F.Golovko //The report 2.1 НР201 at the IHEC-2005, Istanbul, 13-15 July 2005.

46. Столяревский А.Я., Малевский А.Л., Владимиров В.Т., Наумов Ю.В. Выбор состава и параметров оборудования АТЭЦ с ВТГР на базе ГТУ // Вопросы атомной науки и техники, сер.: Ядерная техника и технология, вып.2, М., 1990, с. 12-15.

47. Столяревский А.Я., Малевский А.Л., Владимиров В.Т. Влияние компановочных решений оборудования первого контура на параметры газотурбинной АТЭЦ с ВТГР// Вопросы атомной науки и техники, сер.: Атомно-водородная энергетика и технология, вып.3, М., 1988, с. 10-12.

48. Столяревский А.Я., Пономарев-Степной Н.Н., Проценко А.Н., Перспективы создания атомных энергоустановок с хемотермическим аккумулированием тепловой энергии.- В сб. Атомно-водородная энергетика и технология.- М.:Энергоатомиздат,1979,вып.2,С.184-183.

49. Столяревский А.Я., Проценко А.Н., Шевелев Я.В. Развитие атомной энергетики СССР.// Атомная наука и техника СССР/под общей ред. А.М.Петросьянца. М., Энергоатомиздат, 1987, с. 26-35.

50. A.Ya. Stolyarevskiy, N.N.Ponomarev-Stepnoy, A.N.Protsenko, E.K.Nazarov et al, Problems of attracting nuclear energy resources in order to provide economical and rational consumption of fossil fuels// Int. J. Hydrogen Energy. 1990. vol.15, No.1.P.45-54.

51. Столяревский А.Я., Пономарев-Степной Н.Н. Атомно-водородная энергетика// Экономика России-ХХ1 век.-2003. №5(13).

52. Столяревский А.Я., Назаров Э.К. Энерготехнологическое применение высокотемпературных ядерных реакторов.- В сб. Атомно-водородная энергетика и технология.- М.:Энергоатомиздат,1980.вып.3,С.58-129.

53. Столяревский А.Я., Ольховский Г.Г., Пономарев-Степной Н.Н., Проценко А.Н., Чернецкий Н.С., Курочкин Ю.П., Афанасьев Б.П., Рублев В.Я., Комаров Е.В. Манёвренный энергоблок с газоохлаждаемым реактором// Теплоэнергетика.- 1981,.№8,С.11-16.

Размещено на Allbest.ru

...

Подобные документы

  • Современное состояние мировой энергетики. Направления энергетической политики Республики Беларусь. Оценка эффективности ввода ядерных энергоисточников в Беларуси. Экономия электрической, тепловой энергии в быту. Характеристика люминесцентных ламп.

    контрольная работа [26,4 K], добавлен 18.10.2010

  • Использование в ядерных реакторах, работающих на естественном уране, замедлителей нейтронов для повышения коэффициентов размножения нейтронов. Схема процессов в ядерном реакторе, его основные элементы. Построение и запуск первых ядерных реакторов.

    презентация [559,1 K], добавлен 24.03.2011

  • История теплового аккумулирования энергии. Классификация аккумуляторов тепла. Аккумулирование энергии в атомной энергетике. Хемотермические энергоаккумулирующие системы. Водоаммиачные регуляторы мощности. Аккумуляция тепла в калориферных установках.

    реферат [1,5 M], добавлен 14.05.2014

  • Модели атомных ядер, в которых понятие потенциала применяется и нет. Экспериментальные факты, подтверждающие зависимость ядерных сил от расстояния, спинов, относительного орбитального момента нуклонов. Различные классификации ядерных потенциалов.

    дипломная работа [133,1 K], добавлен 16.08.2011

  • История развития атомной энергетики. Типы ядерных энергетических реакторов. Переработка и хранение ядерных отходов. Проблема эксплуатационной безопасности. Оценка состояния на сегодняшний день и перспективы её развития. Строительство АЭС в Беларуси.

    курсовая работа [41,8 K], добавлен 12.10.2011

  • История создания первых ядерных реакторов, их классификация по назначению и основные элементы. Особенности функционирования ректоров на медленных и быстрых нейтронах. Характеристика гомогенных и гетерогенных видов реакторов. Этапы преобразования энергии.

    презентация [843,7 K], добавлен 02.04.2014

  • Типы, устройство и принцип действия ядерных реакторов – устройств, предназначенных для осуществления управляемой ядерной реакции. Обоснование необходимости использования ядерной энергии в мирных целях. Преимущества АЭС над другими видами электростанций.

    презентация [898,5 K], добавлен 04.05.2011

  • Основные предпосылки быстрого роста ядерной энергетики. Устройство энергетических ядерных реакторов. Требования к конструкциям активной зоны и ее характеристики. Основные требования к безопасности атомных станций с реакторами ВВЭР нового поколения.

    курсовая работа [909,2 K], добавлен 14.11.2019

  • Особенности осуществления ядерных реакций, их сопровождение энергетическими превращениями. Термоядерные реакции в природных условиях. Строение ядерного реактора. Цепные ядерные реакции, схема их развития. Способы и области применения ядерных реакций.

    презентация [774,1 K], добавлен 12.12.2014

  • Физико-химические основы горения, его основные виды. Характеристика взрывов как освобождения большого количества энергии в ограниченном объеме за короткий промежуток времени, его типы и причины. Источники энергии химических, ядерных и тепловых взрывов.

    контрольная работа [17,8 K], добавлен 12.06.2010

  • Сущность, устройство, типы и принцип действия ядерных реакторов, факторы и причины их опасности. Основное назначение реактора БН-350 в Актау. Особенности самообеспечения ядерной энергетики топливом. Технология производства реакторов с шаровой засыпкой.

    контрольная работа [1,7 M], добавлен 27.10.2009

  • Законы сохранения и энергетические соотношения в ядерных реакциях. Определение порога реакции в нерелятивистском и релятивистском приближениях. Механизмы протекания и основные типы ядерных реакций. Концепция образования составного ядра нейтроном.

    контрольная работа [948,5 K], добавлен 08.09.2015

  • Свойства ядерных изомерных состояний. Характеристики гамма-излучения возбужденных ядер. Механизм обходных переходов. Оценка итоговых выходов ядер в метастабильном состоянии, образующихся в процессе обходного возбуждения с помощью синхротронного излучения.

    дипломная работа [934,0 K], добавлен 16.05.2017

  • Строение вещества, виды ядерных распадов: альфа-распад, бета-распад. Законы радиоактивности, взаимодействие ядерных излучений с веществом, биологическое воздействие ионизирующего излучения. Радиационный фон, количественные характеристики радиоактивности.

    реферат [117,7 K], добавлен 02.04.2012

  • Физические основы ядерной энергетики. Основы теории ядерных реакторов - принцип вырабатывания электроэнергии. Конструктивные схемы реакторов. Конструкции оборудования атомной электростанции (АЭС). Вопросы техники безопасности на АЭС. Передвижные АЭС.

    реферат [62,7 K], добавлен 16.04.2008

  • Цепная реакция деления, термоядерный синтез. Явления при ядерном взрыве. Классификация ядерных взрывов по мощности и по нахождению центра взрыва. Военное и мирное применение ядерных взрывов. Природные ядерные взрывы. Разрушительные последствия от взрыва.

    реферат [29,4 K], добавлен 03.12.2015

  • Возможность осуществления ядерных реакций синтеза ядер изотопов водорода в присутствии катализаторов при температурах, существенно меньших, чем в термоядерных реакциях. Сколько же энергии в стакане обычной воды. Механизм работы холодного ядерного синтеза.

    статья [559,5 K], добавлен 15.05.2019

  • Структура и состав ядерных энергетических установок (ЯЭУ). Схемы коммутации и распределения ЭГК в активных зонах. Виды и критерии отказов ЯЭУ и ее частей. Модель термоэмиссионного преобразования тепловой энергии в электрическую в реакторе-преобразователе.

    курсовая работа [1,1 M], добавлен 26.01.2013

  • Анализ состава системы учета и контроля ядерных материалов, методика комплексной оценки ее состояния. Расчет показателей качества измерений и организации системы, оценка степени подготовки персонала. Изучение методов определения весовых коэффициентов.

    дипломная работа [163,2 K], добавлен 27.01.2014

  • Характеристика газоразрядных детекторов ядерных излучений (ионизационных камер, пропорциональных счетчиков, счетчиков Гейгера-Мюллера). Физика процессов, происходящих в счетчиках при регистрации ядерных частиц. Анализ работы счетчика Гейгера-Мюллера.

    лабораторная работа [112,4 K], добавлен 24.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.