Интенсификация конвективного теплообмена в промышленных циклонных секционных нагревательных устройствах
Разработка модели рабочего процесса циклонного секционного нагревательного устройства. Установление связи между интенсивностью переноса теплоты конвекцией в секции, их геометрией и тепловой нагрузкой. Определение долей греющих газов в тепловом потоке.
Рубрика | Физика и энергетика |
Вид | автореферат |
Язык | русский |
Дата добавления | 13.02.2018 |
Размер файла | 339,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.Allbest.ru/
Размещено на http://www.Allbest.ru/
Специальность 05.14.04 - Промышленная теплоэнергетика
АВТОРЕФЕРАТ
диссертации на соискание ученой степени доктора технических наук
Тема:
Интенсификация конвективного теплообмена в промышленных циклонных секционных нагревательных устройствах
Осташев Сергей Иванович
Череповец - 2009
Работа выполнена в Государственном образовательном учреждении высшего профессионального образования «Архангельский государственный технический университет».
Научный консультант:
заслуженный деятель науки и техники Российской Федерации, доктор технических наук, профессор, Сабуров Эдуард Николаевич
Официальные оппоненты:
доктор технических наук, профессор Кабаков Зотей Константинович
доктор технических наук, профессор Любов Виктор Константинович
доктор технических наук, профессор Стенин Валерий Александрович
Ведущая организация:
Череповецкий металлургический комбинат ОАО «Северсталь»
С диссертацией можно ознакомиться в библиотеке Государственного образовательного учреждения высшего профессионального образования «Череповецкий государственный университет».
Ученый секретарь диссертационного совета Е.Л. Никонова
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность проблемы. Важным направлением энергосберегающей политики является разработка высокоэффективных технологий использования органического топлива в целях его экономии. В промышленной теплоэнергетике пламенные нагревательные печи являются крупными потребителями топлива с относительно низким коэффициентом использования. Особое значение проблема экономии топлива имеет для секционных нагревательных печей, которые относятся к одному из наиболее энергоемких видов оборудования. Перспективными с точки зрения рационального использования топлива являются циклонные секционные нагревательные устройства, генерирующие закрученный высокотурбулентный поток греющих газов непосредственно в рабочем объеме самих устройств. За счет дополнительного переноса теплоты конвекцией они позволяют уменьшить его расход, повысить скорость, качество и экономичность нагрева, снизить капитальные и эксплуатационные затраты, плату за загрязнение окружающей среды. Уменьшение тепловой инерционности упрощает их обслуживание, открывает возможности полной автоматизации процесса нагрева с использованием программного управления. Отмеченные особенности циклонных секционных нагревательных устройств полностью соответствуют современным мировым тенденциям развития печестроения.
Существующие конструкции циклонных секционных печей разработаны в основном на опыте проектирования радиационных печей, что иногда приводит к полной потере характерных для них преимуществ из-за неиспользованных возможностей интенсификации конвективного теплообмена при закрутке греющих газов. В большинстве случаев это объясняется отсутствием достоверных методик расчета конвективного теплообмена. Недостаток обоснованных рекомендаций по выбору геометрических и режимных характеристик не позволяет также разработать и научно обоснованные методы интенсификации конвективного теплообмена. В то же время для ряда нагревательных печей, применяемых в машиностроении, интенсификация конвективного переноса теплоты является практически единственным средством их теплотехнического совершенствования.
Актуальность проблемы подтверждается перечнем программ и планов, в соответствии с которыми выполнялась данная работа. Первые исследования, связанные с рассматриваемой проблемой, были выполнены по программе 0.01.11 ГКНТ СССР на 1981-1985 годы («Разработать и внедрить новые методы и технические решения высокоэффективного использования топлива, электрической и тепловой энергии и вторичных энергетических ресурсов в промышленности, создать оптимальные системы надежного и эффективного энергоснабжения промышленных предприятий»), отраслевому плану Мингазпрома (заказ-наряд 3-1-59/85 на 1985 год, организации-исполнители работ ВНПО «Союзпромгаз», ВНИПИ «Теплопроект», АГТУ), а также по заказ-наряду Мингазпрома №2-2-59/86-90 ВНПО «Союзпромгаз», включенного в программу 0.01.11 ГКНТ СССР на 1986-1990 годы (Постановление ГКНТ №555 от 30.10.85). Работы в 1992-2001 годы проводились по госбюджетным темам «Исследование аэродинамики и конвективного теплообмена в циклонных устройствах», «Разработка методов интенсификации рабочих процессов в топочных, сушильных, рекуперативных и теплообменных устройствах предприятий целлюлозно-бумажной и деревообрабатывающей промышленности», выполнявшимися в рамках межвузовских программ («Повышение надежности, экономичности и экологичности энергетической системы Российской Федерации» и др.). Работа также является частью исследований, выполненных по программам грантов Министерства образования РФ по фундаментальным исследованиям в области технических наук (на конкурсной основе): 66 гр. - 96 («Повышение эффективности использования топлива в промышленных циклонных нагревательных устройствах на основе энергоэкологоэкономической оптимизации геометрических и режимных характеристик, 1996-1997), 96гр.-98 («Повышение эффективности использования топлива в печах специальных конструкций», 1998-2000), ТОО-5.7-305 («Исследование теплофизических основ рабочего процесса и разработка методики расчета циклонных печей скоростного нагрева металла», 2001-2002).
Целью диссертационной работы является разработка на основе теоретического и экспериментального исследований научно обоснованных методов интенсификации и расчета конвективного теплообмена в циклонных секционных нагревательных устройствах, инженерной методики расчета и практических рекомендаций по проектированию.
Методы исследования, достоверность и обоснованность результатов. Экспериментальные исследования аэродинамики рабочего объема циклонных секционных нагревательных устройств проведены зондовыми методами, поверхностного трения - методом Престона. Для исследования конвективного теплообмена использована методика, основанная на изменении агрегатного состояния греющего агента. Достоверность результатов исследований аэродинамики и конвективного теплообмена определяется проведением тестовых экспериментов, расчетом погрешностей измерений. Анализ конвективного теплообмена в циклонном потоке проводился методом подобия. Решения динамической и тепловой задачи выполнены в приближении теории пограничного слоя. Обоснованность научных положений подтверждается согласованием их с известными положениями фундаментальных наук, сходимостью результатов теоретических и экспериментальных исследований и опубликованных результатов других авторов. Проверка адекватности модели проведена на основе сопоставления полученных результатов расчета с известными экспериментальными данными.
Научная новизна работы
1. Разработана математическая модель рабочего процесса циклонного секционного нагревательного устройства, устанавливающая связь между интенсивностью переноса теплоты конвекцией в секции, ее долей в суммарном тепловом потоке к металлу, геометрией и тепловой нагрузкой.
2. Разработана методика обработки и обобщения экспериментальных данных по аэродинамике циклонных секционных нагревательных устройств, базирующаяся на результатах решения динамической задачи, сформулированной в приближении уравнений осесимметричного пограничного слоя с использованием угловой скорости в качестве основного параметра потока во внутренней зоне его ядра.
3. Разработана методика обработки и обобщения опытных данных по конвективному теплообмену в циклонных секционных нагревательных устройствах, учитывающая особенности теплоотдачи в поле массовых сил на поверхности заготовки и боковой поверхности рабочего объема с использованием метода подобия и гидродинамической теории теплообмена.
4. Установлены закономерности формирования пограничного слоя на поверхности соосной с рабочим объемом секции заготовки, влияющие на механизм переноса теплоты конвекцией в условиях консервативного действия массовых сил. Получены рекомендации для расчета характеристик пограничного слоя.
5. Разработаны методы интенсификации конвективного теплообмена путем снижения консервативного влияния массовых сил преднамеренной дестабилизацией устойчивости течения в пристенном пограничном слое организацией ударно-отрывного обтекания заготовки циклонным потоком, а также приданием потоку периодической нестабильности эллиптически деформированным вращением. Предложены схемы конструкций секций, обеспечивающих значительную интенсификацию конвективного теплообмена в рабочем объеме.
6. Установлены особенности движения газов и конвективного теплообмена в предложенных конструкциях циклонных секционных нагревательных устройств (с круглой и эллиптической формой рабочего объема, продольным и поперечным расположением заготовок относительно оси вращения греющего потока) при варьировании геометрических и режимных характеристик. Выполнено обобщение результатов физического моделирования аэродинамики и конвективного теплообмена.
7. Разработана инженерная методика теплотехнического расчета циклонных секционных нагревательных устройств, включающая энергоэкономическое обоснование выбора геометрических и режимных характеристик, практические рекомендации по проектированию.
Автор защищает.
1. Математическую модель рабочего процесса циклонного секционного нагревательного устройства, устанавливающую связь между интенсивностью переноса теплоты конвекцией в секции, ее долей в суммарном тепловом потоке к металлу, геометрией и тепловой нагрузкой.
2. Методику обработки и обобщения экспериментальных данных по аэродинамике циклонных секционных нагревательных устройств, базирующуюся на результатах решения динамической задачи, сформулированной в приближении уравнений осесимметричного пограничного слоя с использованием угловой скорости в качестве основного параметра потока во внутренней зоне его ядра.
3. Методику обработки и обобщения опытных данных по конвективному теплообмену в циклонных секционных нагревательных устройствах, учитывающую особенности теплоотдачи в поле массовых сил на поверхности заготовки и боковой поверхности рабочего объема с использованием метода подобия и гидродинамической теории теплообмена.
4. Результаты экспериментального исследования пограничного слоя на поверхности соосной с рабочим объемом заготовки, находящегося под действием консервативных массовых сил.
5. Методы интенсификации конвективного теплообмена в циклонных секционных нагревательных устройствах путем снижения консервативного влияния массовых сил преднамеренной дестабилизацией устойчивости течения в пристенном пограничном слое на поверхности заготовки.
6. Результаты экспериментального исследования аэродинамики и конвективного теплообмена в циклонных секционных нагревательных устройствах с круглым и эллиптическим рабочим объемом, продольным и поперечным расположением заготовок относительно оси вращения греющего потока при варьировании геометрических и режимных характеристик. Обобщающие зависимости для расчета аэродинамических параметров потока и коэффициентов теплоотдачи на поверхностях заготовок и боковой поверхности эллиптического рабочего объема секции.
7. Инженерную методику расчета циклонных секционных нагревательных устройств, разработанную на основе результатов моделирования рабочего процесса, включающую энергоэкономическое обоснование выбора геометрических и режимных характеристик, практические рекомендации по проектированию.
Практическая полезность и реализация результатов работы. Практическая значимость полученных результатов определяется разработанной методикой расчета циклонных секционных нагревательных устройств, реализацией ее на компьютере, обоснованным выбором геометрических характеристик и режимных характеристик, а также рекомендациями по проектированию. Результаты исследований использовались ВНПО «Союзпромгаз» при разработке циклонных секционных печей для нагрева штанг под резку, печей специальных конструкций с интенсифицированным нагревом, рекуператоров (в том числе и для горелок) и рекуперативных горелок. Новизна технических решений подтверждена 8 авторскими свидетельствами. Результаты исследований применяются в учебном процессе при чтении лекций, курсовом и дипломном проектировании и нашли отражение в двух учебных пособиях. Внедрения полученных результатов подтверждаются актами.
Личный творческий вклад автора
Автором (в развитие ранее выполненных исследований Э.Н. Сабурова по интенсификации конвективного теплообмена в промышленных печах на основе циклонного принципа) сформулирована и решена проблема интенсификации конвективного теплообмена в циклонных секционных нагревательных устройствах, имеющая важное научное и практическое значение, разработана математическая модель рабочего процесса, выполнены постановка и решение динамической и тепловой задач. Автором также разработаны методика и программы исследований, спроектированы экспериментальные стенды, проведены исследования, анализ результатов и обобщение опытных данных, создана методика расчета циклонных секционных нагревательных устройств на основе результатов математического моделирования рабочего процесса, включающая энергоэкономическое обоснование выбора геометрических и режимных характеристик, предложены рекомендации по проектированию. Результаты исследований внедрены на ряде предприятий и в учебный процесс.
Апробация работы. Основные результаты диссертационной работы докладывались и положительно оценены на IX и X всесоюзных научно-технических совещаниях по энерготехнологическим циклонным комбинированным и комплексным процессам (Москва, 1976, 1978), Всесоюзной научно-технической конференции «Перспективы промышленной энергетики» (Москва, 1977), XI Всесоюзном научно-техническом совещании по математическому моделированию и управлению высокотемпературными процессами в циклонных вихревых аппаратах (Одесса, 1980), XII Всесоюзной научно-технической конференции «Теория и практика циклонных технологических процессов в металлургии и других отраслях промышленности» (Днепропетровск, 1982), Всесоюзной научно-технической конференции «Проблемы энергетики теплотехнологии» (Москва, 1983), IV и V всесоюзных научно-технических конференциях по исследованию вихревого эффекта и его применению в технике (Куйбышев, 1983, 1988), Всесоюзном научно-техническом совещании «Разработка и исследование новых типов энерготехнологических и теплоутилизационных установок с глубоким использованием вторичных энергоресурсов (Баку, 1985), выездной сессии секции тепломассообмена научного совета АН СССР по комплексной проблеме «Теплофизика и теплоэнергетика» (Куйбышев, 1986), III Всесоюзной научно-технической конференции «Интенсивное энергосбережение в промышленной теплоэнергетике» (Москва, 1991), I-IV международных научно-технических конференциях «Повышение эффективности теплообменных процессов и систем» (Вологда, 1998, 2000, 2002, 2004), международных научно-технических конференциях «Проблемы энергосбережения, теплообмен в электротермических и факельных печах и топках» (Тверь, 2001), «Энергосбережение в теплоэнергетических системах» (Вологда, 2001), «Энергосбережение в городском хозяйстве, энергетике, промышленности» (Ульяновск, 2001), «Моделирование, оптимизация и интенсификация теплообменных процессов и систем» (Вологда, 2002, 2004), XIII Школе-семинаре молодых ученых и специалистов под руководством академика РАН А.И. Леонтьева «Физические основы экспериментального и математического моделирования процессов газодинамики и тепломассообмена в энергетических установках» (Санкт-Петербург, 2001), Российском национальном симпозиуме по энергетике РСНЭ (Казань, 2001), Первой всероссийской школе-семинаре молодых ученых и специалистов «Энергосбережение - теория и практика» (Москва, 2002), Всероссийской научно-технической конференции «Электроэнергетика, энергосберегающие технологии» (Липецк, 2004), XXVI и XXVII сибирских теплофизических семинарах (Новосибирск, 2002, 2004), V Международном научном форуме «Перспективные задачи инженерной науки» (Париж, Франция, 2004), II-IV российских национальных конференциях по теплообмену (Москва, 1998, 2002, 2006) и других международных, региональных конференциях и совещаниях, а также ежегодных научно-технических конференциях профессорско-преподавательского состава АЛТИ-АГТУ по итогам НИР (1971-2008).
Публикации. Основное содержание диссертационной работы изложено в 106 печатных работах, в том числе 4 монографиях, 27 статьях в ведущих научных рецензируемых журналах (из них монография и 23 статьи в изданиях, рекомендованных Перечнями ВАК 1987-2008 гг.), 31 публикации - в трудах (материалах) международных, всероссийских научно-технических конференций и симпозиумов, 8 авторских свидетельствах на изобретения и других публикациях.
Структура и объем диссертации. Диссертация состоит из введения, шести глав, заключения, списка литературы из 398 наименований и трех приложений. Работа изложена на 392 страницах основного текста, включая 154 рисунка и 61 таблицу.
ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ
Во введении обоснована актуальность темы диссертации, сформулирована цель работы, приведено описание структуры диссертации.
В первой главе дан анализ опубликованных исследований по аэродинамике и конвективному теплообмену в циклонных нагревательных устройствах (в том числе и секционных), который показал:
1. Генерация циклонного потока греющих газов непосредственно в рабочем объеме нагревательного устройства является одним из основных путей совершенствования его тепловой работы.
2. В основе существующих конструкций циклонных секционных нагревательных устройств заложен опыт проектирования радиационных печей по методикам расчета, практически не отражающим связь между интенсивностью переноса теплоты конвекцией в секции, ее геометрией и тепловой нагрузкой. Это приводит к существенной погрешности в определении тепловых потоков к металлу (расходу топлива), а также не позволяет решать задачи, связанные с интенсификацией конвективного теплообмена.
3. Основные исследования аэродинамики циклонных секционных нагревательных устройств посвящены изучению общих характеристик вращательного движения потока в рабочем объеме круглой цилиндрической формы при соосном расположении заготовки в пределах ядра потока без рассмотрения механизма переноса теплоты конвекцией. Возможности интенсификации конвективного теплообмена за счет рациональной нестандартной организации движения закрученного греющего потока практически не использованы из-за отсутствия рекомендаций.
4. Для определения отдельных параметров потока в циклонных секционных нагревательных устройствах может быть частично применена методика, предложенная Э.Н. Сабуровым для вертикальной циклонной нагревательной печи при соосном расположении заготовки в ядре потока. Однако она должна быть усовершенствована не только за счет уточнения связей между аэродинамическими характеристиками и геометрией рассматриваемых устройств, но и использования угловой скорости для снижения погрешности при определении характеристик потока во внутренней зоне его ядра.
5. Конвективный теплообмен в циклонных секционных нагревательных устройствах изучен недостаточно. Выполненные исследования не носят комплексного характера, поэтому их результаты трудносопоставимы, дают большие расхождения, а некоторые из них даже противоречат друг другу. Это объясняется тем, что подавляющее большинство методик обработки и обобщения опытных данных не учитывают влияния массовых сил на теплоотдачу.
6. Недостаток теоретических и экспериментальных данных не позволяет разработать научно обоснованные методы интенсификации и расчета конвективного теплообмена в циклонных секционных нагревательных устройствах, создать инженерную методику расчета, обосновать рекомендации по проектированию.
В связи с изложенным ставятся следующие основные задачи исследования:
1. Разработать математическая модель рабочего процесса циклонного секционного нагревательного устройства, устанавливающую связь между интенсивностью переноса теплоты конвекцией в секции, ее долей в суммарном тепловом потоке к металлу, геометрией и тепловой нагрузкой.
2. Разработать научно обоснованные методики обработки и обобщения опытных данных по аэродинамике и конвективному теплообмену с учетом особенностей теплоотдачи в поле массовых сил.
3. Установить закономерности формирования пограничного слоя на поверхности соосной с рабочим объемом секции заготовки для выявления особенностей механизма переноса теплоты конвекцией в закрученном потоке греющих газов.
4. Разработать методы интенсификации конвективного теплообмена в рабочем объеме циклонных секционных нагревательных устройств (рис. 1) как за счет обоснованного выбора их геометрических и режимных параметров, так и рациональной нестандартной организации движения закрученного греющего потока при обтекании поверхности заготовки.
5. Установить закономерности движения газов и конвективного теплообмена в предложенных конструкциях циклонных секционных нагревательных устройств (с круглой и эллиптической формой рабочего объема, продольным и поперечным расположением заготовок относительно оси вращения греющего потока) при варьировании геометрических и режимных характеристик.
Обобщить результаты исследования аэродинамики и конвективного теплообмена.
6. На основе результатов моделирования рабочего процесса разработать инженерную методику расчета циклонных секционных нагревательных устройств, включающую энергоэкономическое обоснование выбора геометрических и режимных характеристик, практические рекомендации по проектированию.
Рис. 1. Варианты исследованных схем секций циклонных нагревательных устройств: 1 - с соосным расположением заготовки; 2, 3, 4 - смещением заготовки (заготовок) в пределах выходного отверстия и одновременно с ним; 5 - эллиптическим рабочим объемом; 6 - поперечным расположением заготовок
Во второй главе разработана математическая модель рабочего процесса циклонного секционного нагревательного устройства, схема которой приведена на рис. 2.
Рис. 2. Схема математической модели рабочего процесса циклонного секционного нагревательного устройства
Математическая модель устанавливает взаимосвязь между внешним и внутренним теплообменом в рабочем объеме с учетом физического тепла, вносимого подогретым в рекуператоре воздухом. Она включает уравнения: общего теплового баланса, баланса тепловых потоков (излучением и конвекцией) как к заготовке, так и к кладке, связи температур греющей среды на входе в секцию и выходе из нее, определения безразмерных избыточных температур заготовки. Для нахождения конвективных тепловых потоков к заготовке и кладке, а также оценки их роли в суммарном тепловом потоке к металлу, использованы дополнительные зависимости между расходом топлива, скоростью входа продуктов сгорания в рабочую камеру, ее геометрией и аэродинамическими характеристиками греющего потока.
Рассматриваемая математическая модель состоит из блоков (подсистем): «материальный и тепловой балансы», «теплообмен», «поля скоростей и давлений, аэродинамические характеристики потока», которые в свою очередь включают общепринятые методики расчета лучистого и внутреннего теплообмена, горения топлива. Входная информация содержит геометрические и режимные характеристики нагревательного устройства, выходная - расчетные параметры.
Математическое описание рабочего процесса в секции циклонного нагревательного устройства, связанное с моделированием конвективного теплообмена математически сформулировано следующим образом:
; (1)
; (2)
; (3)
r = rз (rс = 0) ; Т = Тм; (4)
r = Rк ; Т = Тк; . (5)
Здесь - плотность; ср - изобарная теплоемкость;
Т - температура; - время; - коэффициент теплопроводности;
- вектор скорости; - вектор плотности массовых сил;
р - давление; - кинематический коэффициент вязкости;
и - коэффициенты теплоотдачи конвекцией соответственно на поверхностях металла и кладки;
Т - температурный напор;
r, rз, rс, Rк - радиусы: текущий, заготовки, смещения заготовки, рабочего объема секции;
Тм, Тк - температуры поверхностей металла и кладки.
Сложность исследования конвективного теплообмена в рассматриваемой задаче аналитическими методами заключаются в том, что при закрутке греющих газов в потоке возникает поле инерционных массовых сил, оказывающее значительное влияние на условия теплоотдачи. Во вращающемся потоке наблюдается неравномерность распределения по радиусу рабочего объема секции не только инерционного ускорения, но и плотности среды, изменение которой также оказывает влияние на формирование поля массовых сил. При смещении заготовки с оси секции теплоотдача на ее поверхности происходит в условиях отрывного обтекания. Для несимметричного распределения тангенциальной скорости относительно оси вращения потока на теплоотдачу оказывают влияние и локальные замкнутые циркуляционные течения, заполняющие рабочий объем. В этом случае исследование конвективного теплообмена целесообразно проводить методами как математического, так и физического моделирования.
На основе результатов моделирования разработана инженерная методика расчета циклонных секционных нагревательных устройств, позволяющая выбирать геометрические и режимные параметры секции с учетом достижения максимальной интенсивности переноса теплоты конвекцией в рабочем объеме.
Проверка адекватности математической модели рабочего процесса циклонного секционного нагревательного устройства проведена путем сопоставления результатов расчета по разработанной инженерной методике с опытными данными, полученными на экспериментальном стенде АГТУ, огневом стенде ВНПО «Союзпромгаз», а также промышленной печи для нагрева штанг под резку при вводе в эксплуатацию. Погрешность расчета по основной группе показателей работы печи составила 5…8 %.
В третьей главе приводятся основные результаты математического и физического моделирования аэродинамики циклонных секционных нагревательных устройств (см. рис. 1).
Формирование циклонного потока вблизи поверхности заготовки, соосной с рабочим объемом секции (вариант 1), связано с положением максимума тангенциальной скорости w. Условиеdз dзс (dз = dз /Dк, dз - диаметр заготовки, dз = 2rз; Dк - диаметр камеры;dзс - безразмерный характерный диаметр заготовки) соответствует сконцентрированному циклонному течению, когда максимум тангенциальной скорости w находится вблизи поверхности заготовки и его положение, характеризуемое радиусом rm, определяется диаметром заготовки и не зависит от условий ввода и вывода газов. При dз <dзс заготовку обтекает свободный циклонный поток, у которого положение максимума тангенциальной скорости обусловлено условиями ввода и вывода газов. Такое разделение охватывает все случаи движения греющих газов в рабочем объеме секции в зависимости от его геометрии и имеет определенную физическую основу с точки зрения конвективного теплообмена на поверхности заготовки. Из распределений угловой скорости = (r) ( = w/r, r - текущий радиус) следует, что ее максимум также находится вблизи поверхности заготовки и расположен ближе к ней, чем максимум w. Это позволяет для уточнения распределения безразмерной тангенциальной скорости во внутренней зоне ядра потока (у поверхности заготовки) ее аппроксимацию
(6)
w = w /wm;
wm - максимальное значение w;
- безразмерная координата, = (r - rз)/(rm -rз);
n - постоянная величина) определять исходя из условия максимума угловой скорости (n = n).
При ранее применяемом методе определения показателя n (из условия максимума циркуляции тангенциальной скорости в ядре потока, n = nГ) ошибка в его вычислении для внутренней зоны достигала 300%.
Из проведенного анализа также установлено, что центростремительное ускорение jц (jц = w2/r) значительно превышает как ускорение Кориолиса, так и ускорение силы тяжести g. Максимум центростремительного ускорения располагается вблизи поверхности заготовки. Следовательно, его максимальное значение jm может быть использовано в качестве параметра, учитывающего влияние массовых сил на теплоотдачу при обобщении опытных данных.
Основные закономерности циклонного потока, полученные при продувках воздухом с температурой 20С (Reвх = 7,1105, Reвх = vвхDк /вх, vвх - средняя скорость во входных каналах, вх - кинематической коэффициент вязкости газов при входной температуре) и продуктами сгорания с температурой 640С (Reвх = 1,9105) полностью совпадали.
Решение уравнений (2), (3) базируется на известном представлении о потоке в расчетной зоне как о вращающейся струе, пограничный слой которой обращен к заготовке. Определение компонент турбулентных напряжений проводилось по гипотезе Прандтля, основанной на возможном обобщении теории длины пути смешения на трехмерные поля как осредненных, так и пульсационных скоростей. Результаты решения удовлетворительно совпадают с экспериментальными данными. На основе результатов решения задачи о движении газа в ядре циклонного потока (с соосным расположением заготовки) разработана методика обработки и обобщения экспериментальных данных. Получены эмпирические и полуэмпирические зависимости, позволяющие определить wm; rm; rjm (rm, rjm - радиусы, соответствующие положениям максимальных значений угловой скорости и центростремительного ускорения); вх (вх - коэффициент сопротивления, вх = 2pп/вхvвх2, pп - перепад полного давления в секции), а также другие характеристики закрученного потока, входящие в методику определения комплекса, учитывающего влияние массовых сил на теплоотдачу на поверхности заготовки:
характерный безразмерный диаметр заготовки
; (7)
безразмерный радиус положения максимума тангенциальной скорости:
приdз dзс (в сконцентрированном потоке)
, (8)
где - относительная шероховатость боковой поверхности рабочего объема секции, приdз <dзс (в свободном потоке)
=+; (9)
безразмерная координата положения максимума угловой скорости
, (10)
где b = rз /(rm - rз) - безразмерный параметр;
показатель аппроксимации (6) по условиям внутренней зоны ядра потока
; (11)
безразмерная координата положения максимума центростремительного ускорения jm = (rjm - rз)/(rm - rз)), определяемая из уравнения
; (12)
максимальное безразмерное центростремительное ускорение
. (13)
Некоторые особенности аэродинамики рабочего объема секции, обусловленные формированием потока в выходном отверстии из-за расположения в нем заготовки, учтены введением соответствующих поправок.
Исследование движения газов во внутренней зоне ядра потока и пограничном слое на поверхности заготовки проводилось в циклонном секционном нагревательном устройстве с Dк = 0,31 м;
Lк = 1,16 (Lк = Lк/Dк, Lк - длина рабочего объема);
fвх = 4,7710-2 (fвх= 4 fвх /(Dк2), fвх - суммарная площадь входа);
dз= 0,34; dвых= 0,4...0,6
dвых= dвых/Dк, dвых - диаметр выходного отверстия
При dвых= 0,4 в рабочем объеме секции формировался сконцентрированный циклонный поток, при dвых = 0,6 - свободный.
Анализ распределений скоростей у поверхности заготовки в пределах аксиальной границы ядра потока (при отсутствии воздействия радиальных приторцевых потоков на течение газа) показал, что действие центростремительных сил оказывает значительное консервативное влияние на формирование пристенного пограничного слоя и приводит к его ламинаризации. Так, показатель степенной аппроксимации тангенциальной скорости n в пределах пристенного пограничного слоя при уменьшении dвых с 0,6 до 0,4 (с повышением уровня тангенциальной скорости у поверхности заготовки) увеличивается с 1/5 до 1/3. Формирование пограничного слоя у глухого торца связано с существованием радиальных потоков. С увеличением их интенсивности показатель степенной аппроксимации полной скорости nv (практически совпадающий с n) уменьшается до 1/10. У выходного торца на общую картину течения оказывает влияние не только радиальный поток у поверхности торца, но и его перестройка у выходного отверстия (nv = 1/7). Отмеченные особенности движения газов в пограничном слое на поверхности заготовки подтверждаются распределениями коэффициента сопротивления трения cf (cf = 2w /mwm2, w - касательное напряжение трения на поверхности заготовки). У глухого и выходного торцов cf выше, чем в области ядра потока. Общий уровень коэффициентов сопротивления трения на поверхности заготовки в пределах ядра потока ниже, чем на пластине при обтекании ее турбулентным потоком. В то же время он выше у глухого торца, но при этом ниже, чем на пластине при обтекании полуограниченной затопленной струей.
При использовании логарифмических аппроксимаций w+ = w+(yw+) (w+ - безразмерная тангенциальная скорость, w+ = w /(w /)0,5; w - тангенциальная компонента w; yw + - безразмерная координата, yw + = (yw/) (w /)0,5) и трехслойной схемы деления потока в пристенном пограничном слое на поверхности заготовки установлено, что в области вязкого подслоя 0 yw + 5 и промежуточного слоя 5 yw + п.с+ ((п.с+ - безразмерная толщина промежуточного слоя, п.с+ = (п.с /)(w /)0,5 ) полученные зависимости удовлетворительно согласуются с аналогичными распределениями на поверхности пластины и трубы. Однако в сконцентрированном циклонном потоке п.с+ = 80. Увеличение протяженности переходной зоны является следствием усиления стабилизирующего влияния центростремительных сил на поток. В турбулентном ядре пристенного пограничного слоя п.с+ yw+ + (+ - безразмерная толщина пристенного пограничного слоя, + = (/)(w /)0,5) наблюдается более интенсивное возрастание w+, чем на пластине или в трубах, что также является следствием воздействия массовых сил на пограничный слой. Распределение тангенциальной скорости в турбулентном ядре пристенного пограничного слоя в диапазоне чисел Rem10-5 = 0,45…3,54 (Rem= wm d3/m, m - кинематической коэффициент вязкости газов на радиусе rm) может быть описано уравнением:
, (14)
где A = 7,2, G = -12,6 - для сконцентрированного циклонного потока; A = 3,4, G = 2,44 - для свободного потока.
Исследования показали, что консервативное влияние центростремительных сил не позволяет в полной мере использовать закрученный поток греющих газов для интенсификации переноса теплоты конвекцией. Снижение их роли может быть достигнуто преднамеренной дестабилизацией устойчивости течения в пограничном слое на поверхности заготовки. В предложенных на рис. 1 вариантах конструкций секций это достигается организацией ударно-отрывного обтекания заготовки циклонным потоком при продольном (варианты 2-5) или поперечном расположении (вариант 6) ее относительно оси вращения греющих газов или приданием потоку периодической нестабильности эллиптически деформированным вращением (вариант 5) [51, 52, 54].
Смещение заготовки параллельно оси рабочего объема в пределах выходного отверстия (варианты 2 и 3) приводит первоначально к потере устойчивости течения в пограничном слое на ее поверхности, а затем к его отрыву. В приосевой области камеры между двумя осесимметричными заготовками создаются условия для образования вторичных вихревых потоков, которые дополнительно приводят к интенсификации теплоотдачи на поверхностях заготовок. Распределения основных характеристик потока вне диаметра окружности, описанной по внешней поверхности заготовки (заготовок), сохраняются.
Смещение круглой заготовки с оси камеры одновременно с выходным отверстием (вариант 4) позволяет расположить ее в области с более высокими скоростями потока. Это вызывает образование вблизи поверхности заготовки в приосевой зоне устойчивой вихревой структуры на всей протяженности рабочего объема секции, которая обуславливает условия отрыва потока со стороны приосевой области и приводит к значительной интенсификации конвективного теплообмена. За ее пределами обтекание заготовки находится под воздействием основного потока.
Аэродинамика эллиптических циклонных секционных нагревательных устройств (вариант 5) определяется коэффициентом сжатия образующей цилиндрической поверхности рабочего объема k (k = bэ /aэ, bэ и aэ - малая и большая полуоси эллипса), его геометрическими параметрами, диаметром заготовки и местоположением входных каналов. Равномерное сжатие периметра поперечного сечения рабочего объема секции (уменьшение k) приводит к образованию эллиптически деформированного циклонного потока с характерными особенностями движения греющих газов. При k 0,8 ось вращения выходного вихря искривляется, а при k = 0,5…0,6 происходит ее смещение и дальнейшее сворачивание в спираль. В рабочем объеме секции формируется режим течения с прецессией оси вращения потока. Это придает потоку, за счет колебательных движений оси вращения, периодическую нестабильность, которая наряду с вторичными течениями может служить средством интенсификации конвективного теплообмена на поверхностях соосной заготовки и кладки. В диапазоне изменения k от 1 до 0,5 общие закономерности влияния площади входа, диаметров заготовки и выходного отверстия на основные аэродинамические характеристики потока сохраняются. Для практического применения может быть рекомендован двухсторонний ввод газа в вершинах эллипса на его малой оси или с небольшим смещением в направлении движения вводимых в рабочий объем газов. циклонный нагревательный тепловой конвекция
Движение газов у поверхности заготовки, расположенной перпендикулярно оси закрученного потока (вариант 6), определяется как условиями формирования пограничного слоя, наблюдаемыми при обтекании цилиндра поперечным потоком, так и вторичными течениями, обусловленными нарушением динамического равновесия во вращающемся потоке. Оказывает воздействие и возникновение течения в виде двойной спирали во внутренней зоне основного потока, обеспечивающего сток газов с поверхности заготовки. Установленный характер формирования пограничного слоя сохраняется и при увеличении количества заготовок в рабочем объеме секции. Анализ влияния основных конструктивных и режимных параметров на аэродинамику циклонных секционных нагревательных устройств с поперечным расположением заготовок показал, что для используемых в практике значений dз 0,15 оптимальные аэродинамические условия обеспечиваются при dвых = 0,3…0,4 и количестве заготовок nз = 3-5.
Выполненные исследования позволили также разработать методики расчета аэродинамических параметров потока в рабочем объеме циклонных секционных нагревательных устройств со смещенной заготовкой одновременно с выходным отверстием (вариант 4), с поперечным расположением заготовок (вариант 6), а также эллиптическим рабочим объемом (вариант 5).
В четвертой главе приведены результаты математического и физического моделирования конвективного теплообмена в циклонных секционных нагревательных устройствах. При анализе тепловой задачи использованы дифференциальные уравнения (1)-(3). Рассматриваемая задача для стационарного турбулентного течения несжимаемой среды с постоянными теплофизическими свойствами (за исключением члена уравнения, характеризующего массовые силы) приводится к безразмерному виду
; (15)
; (16)
, (17)
где ( - осредненное во времени значение скорости); индекс «0» у символов означает характерную масштабную величину;
Т =Т /Т0 (Т - осредненное во времени значение температуры);
Pe = RePr - число Пекле;
Re = v0l0/ - число Рейнольдса;
Pr = /a;
a - коэффициент температуропроводности; скобки < > означают операцию осреднения; штрих над символом - мгновенное значение величины;
p = p/v02; p - давление;
Ko = jl03(1 T)/2 - безразмерный комплекс, характеризующий влияние массовых сил;
j - модуль абсолютного ускорения частицы среды (j jц,);
l0 - линейный размер;
- коэффициент объемного расширения;
Т - температурный напор (знак «+» соответствует нагреву среды, знак «-» - охлаждению);
- орт абсолютного ускорения частицы среды.
В этом случае уравнение подобия имеет вид
, (18)
где Nu - число Нуссельта, Nu = l0/;
- коэффициент теплоотдачи;
Tu - степень турбулентности потока.
В качестве характерных параметров принято максимальное значение центростремительного ускорения jm и его положение ljm, поэтому
Kо = jmljm3(1T)/jm2
Применительно к анализируемой задаче (для изотермической системы) после выражения через расчетные параметры wm и rm (при условии vm vjm)
Ko = 0,25 DRem2,
где D = jmjm3/[b2(b+1)] - комплекс, определяемый по формулам (6)-(13).
В этой связи обработка опытных данных по конвективному теплообмену для рассматриваемых в работе задач производилась по формуле
, (19)
где A, m, n - постоянные коэффициенты.
Уравнения для расчета теплоотдачи в циклонных секционных нагревательных устройствах с рабочим объемом круглой цилиндрической формы и соосной с ним заготовкой для сконцентрированного циклонного потока имеют вид:
при 7,7103 Rem 5,25104
; (20)
при 5,25104 Rem 3,96105
. (21)
Формулы (20), (21) применимы при 0,002 D 0,032.
Для свободного циклонного потока при 1,07104 Rem 3,24105
(22)
Формула (22) применима при 0,0142 D 5,44.
Среднеквадратическое отклонение опытных точек от расчетных зависимостей (20)-(22) при коэффициенте надежности 0,95 не превышает 7,0%.
Если пренебречь различиями в показателях степени при числах Рейнольдса в свободном и сконцентрированном потоках, то с использованием комплекса D можно выполнить обобщение всего полученного опытного материала. В этом случае экспериментальные данные аппроксимируются уравнениями:
при 7,7103 Rem 5104
; (23)
при 5104 Rem 3,96105
. (24)
Формулы (23) и (24) справедливы в том же диапазоне изменения D, что и вышерассмотренные. Однако расчетная погрешность обработки опытных данных увеличивается до 12,1 % и еще больше возрастает при Rem 3104.
Для расчета теплоотдачи заготовок с шероховатыми поверхностями з102 = 0,02…0,623 (з = з /dз, з - высота выступа шероховатости) в уравнения (20)-(22) дополнительно вводятся поправочные коэффициенты.
В работе установлено, что в области смешанной конвекции 1,2106 1109, когда и число Gr (Gr = gtdз3/m2) одного порядка, опытные данные удовлетворительно обобщаются формулой
. (25)
Максимальное отклонение большинства опытных точек от расчетной зависимости не превышает 10,1 %. Уравнение (25) справедливо при 0 Rem 5104. Зависимости (20)-(25) применимы при Dк = 0,201…0,464 м; Lк = 0,5…2,24; fвх 10-2 = 0,5…19,1; dз = 0,08…0,5; dвых = 0,2…0,8.
Влияние неизотермичности потока на плотность в комплексе, характеризующем влияние массовых сил, может быть учтено поправочным коэффициентом s, а на другие теплофизические характеристики среды - введением сомножителя t по аналогии с задачами конвективного теплообмена. В опытах поправочные коэффициенты s = (1+T)-0,5n = (Тм/Тг)-0,5n (Тм, Тг - температуры металла и греющих газов, К; n - показатель степени при числе Rem), t = (Тм/Тг)-0,25 и число Pr равнялись соответственно 0,91…0,94, 0,884 и 0,703, а поэтому не вводились в уравнения при обработке и представлении экспериментальных данных. Исключение составили лишь экспериментальные данные в исследованном диапазоне температур от 20 до 640 С, подтвердившие возможность применения поправочных сомножителей для учета неизотермичности потока. Влияние степени турбулентности потока учитывалось косвенно через связанное с ней распределение тангенциальной скорости с учетом закономерностей конвективного переноса теплоты для сконцентрированного и свободного вариантов циклонного потока.
В диссертации приведены и другие методы обобщения с использованием менее сложных аппроксимаций безразмерной тангенциальной скорости для определения комплекса Ко, а также традиционные для инженерной практики, в которых число Нуссельта представляется как зависимость от числа Рейнольдса (по входным условиям) и геометрических характеристик нагревательного устройства. В этом случае с увеличением погрешности обработки теряется и универсальность зависимостей.
Результаты исследования динамического пограничного слоя позволили решить задачу конвективного теплообмена на поверхности соосной цилиндрической заготовки с использованием гидродинамической теории теплообмена. Движение потока около заготовки принималось плоским и круговым. В этом случае влияние кривизны учитывалось применением законов сохранения момента сил трения r2 = w(dз /2)2 = const и плотности теплового потока qr = qз(dз /2) = const (qз - плотность теплового потока на поверхности заготовки). Тогда уравнение, связывающее распределения скорости и температуры в универсальных переменных, имеет вид
, (26)
где + - избыточная температура, + = /t*;
= t - tз; tз - температура поверхности заготовки;
t = qз /(сpw); w = (w/);
y+ - универсальная координата, y+ = yw/;
y - расстояние от поверхности заготовки по нормали (радиусу);
Prтб - турбулентное число Прандтля,
Prтб = /q; , q - кинематические коэффициенты турбулентного переноса: количества движения и теплоты;
Re+ = wdз /. (В опытах при dвых = 0,4 Re+ = 900...5000, приdвых = 0,6 Re+ = 1100...2300.)
Решение уравнения (26) позволяет найти распределение температуры и температурные напоры в пристенном пограничном слое (рис. 3).
Рис. 3. Сопоставление расчетных и опытных распределений + для сконцентрированного (а) и свободного (б) циклонных потоков
Учет кривизны на границе пограничного слоя повышает точность расчетов на 10…12%. В области п.с y+ +, где w+ описывается зависимостью (14), распределение температуры в универсальных координатах имеет вид
, (27)
где п.с+ - значение избыточной температуры на границе промежуточного слоя.
В струйной части пограничного слоя (+ y+ 0+, 0+ - толщина струйного пограничного слоя) температурный перепад может быть описан зависимостью
, (28)
где Е = 3,0, + = 200, 0+ = 600 - для сконцентрированного циклонного потока;
Е = 1,6, + = 150, 0+ = 1200 - для свободного;
+ - значение избыточной температуры на границе турбулентного ядра динамического пристенного пограничного слоя.
При известном общем температурном перепаде 0+ (0 y+ 0+) расчетное уравнение подобия имеет вид
, (29)
где A, p - опытные коэффициенты (А = 0,055; p = 0,125).
...Подобные документы
Конвективный теплообмен - одновременный перенос теплоты конвекцией и теплопроводностью. Основные факторы, влияющие на процесс теплоотдачи. Свободная конвекция в неограниченном пространстве. Вынужденная конвекция. Уравнения конвективного теплообмена.
реферат [14,5 K], добавлен 26.01.2012Тепловой баланс котельного агрегата, расчет теплообмена в топке и теплообмена пароперегревателя. Теплосодержание газов на входе и выходе, коэффициент теплоотдачи конвекцией. Расчет водяного экономайзера, воздухоподогревателя, уточнение теплового баланса.
практическая работа [270,8 K], добавлен 20.06.2010Изучение понятия теплоотдачи, теплообмена между потоками жидкости или газа и поверхностью твердого тела. Конвективный перенос теплоты. Анализ основного закона конвективного теплообмена. Уравнение Ньютона-Рихмана. Получение критериев теплового подобия.
презентация [189,7 K], добавлен 09.11.2014Характеристика котла ДЕ-10-14ГМ. Расчет объемов продуктов сгорания, объемных долей трехатомных газов. Коэффициент избытка воздуха. Тепловой баланс котельного агрегата и определение расхода топлива. Расчет теплообмена в топке, водяного экономайзера.
курсовая работа [267,4 K], добавлен 20.12.2015Определение мощности электрокалорифера. Осуществление теплового расчета нагревательных элементов. Выбор вентилятора и определение мощности электродвигателя для его привода. Расчет конструктивных параметров нагревательного устройства и сети подключения.
курсовая работа [597,3 K], добавлен 17.01.2012Уравнение теплового баланса. Теплота, подведенная теплопроводностью и конвекцией, к элементарному объему. Общий вид дифференциального уравнения энергии Фурье-Кирхгофа. Применение ряда Тейлора. Дифференциальное уравнение движения жидкости Навье-Стокса.
презентация [197,5 K], добавлен 18.10.2013Расчет идеального цикла газотурбинной установки, ее тепловой и эксергетический баланс. Тепловой расчет регенератора теплоты отработавших газов. Определение среднелогарифмической разности температурного напора, действительной длины труб и генератора.
курсовая работа [1,5 M], добавлен 05.10.2013- Термодинамические процессы. Определение работы и теплоты через термодинамические параметры состояния
Взаимосвязь между количеством теплоты, внутренней энергией и работой; методы исследования основных термодинамических процессов, установление зависимости между основными параметрами состояния рабочего тела в ходе процесса; изменения энтальпии, энтропии.
реферат [215,5 K], добавлен 23.01.2012 Конвективный перенос теплоты. Плотность конвективного теплового потока. Свободная и вынужденная конвекция. Свободная конвекция теплоты. Закон вязкого трения Ньютона. Диссипация энергии вследствие трения. Математическая формулировка задачи теплообмена.
лекция [479,2 K], добавлен 15.03.2014Расчёт состояния и параметров пара в начале и конце процесса, коэффициента теплоотдачи у поверхности панели. Расчёт газовой постоянной воздуха, молекулярной массы и количества теплоты. H-d-диаграмма влажного воздуха. Понятие конвективного теплообмена.
контрольная работа [336,5 K], добавлен 02.03.2014Расчет горения топлива. Тепловой баланс котла. Расчет теплообмена в топке. Расчет теплообмена в воздухоподогревателе. Определение температур уходящих газов. Расход пара, воздуха и дымовых газов. Оценка показателей экономичности и надежности котла.
курсовая работа [4,7 M], добавлен 10.01.2013Физические свойства жидкости, постановка задачи конвективного теплообмена. Гидродинамический и тепловой пограничные слои. Однородные разностные схемы для уравнения теплопроводности. Расчет стационарно-двумерного температурного поля при течении в трубе.
дипломная работа [1,4 M], добавлен 22.04.2013Определение максимальной тепловой мощности котельной. Среднечасовой расход теплоты на ГВС. Тепловой баланс охладителей и деаэратора. Гидравлический расчет тепловой сети. Распределение расходов воды по участкам. Редукционно-охладительные установки.
курсовая работа [237,8 K], добавлен 28.01.2011Исследование свойств теплопроводности как физического процесса переноса тепловой энергии структурными частицами вещества в процесс их теплового движения. Общая характеристика основных видов переноса тепла. Расчет теплопроводности через плоскую стенку.
реферат [19,8 K], добавлен 24.01.2012Определение массовой, объемной и мольной теплоемкость газовой смеси. Расчет конвективного коэффициента теплоотдачи и конвективного теплового потока от трубы к воздуху в гараже. Расчет по формуле Д.И. Менделеева низшей и высшей теплоты сгорания топлива.
контрольная работа [117,3 K], добавлен 11.01.2015Тепловой и конструктивный расчет отопительного пароводяного подогревателя горизонтального типа и секционного водоводяного теплообменника. Подбор критериальных уравнений для процессов теплообмена. Определение коэффициентов теплоотдачи и теплопередачи.
курсовая работа [1,7 M], добавлен 15.12.2010Описание конструкции котла и топочного устройства. Расчет объемов продуктов сгорания топлива, энтальпий воздуха. Тепловой баланс котла и расчет топочной камеры. Вычисление конвективного пучка. Определение параметров и размеров водяного экономайзера.
курсовая работа [1,1 M], добавлен 20.01.2014Описание конструкции котла. Расчет продуктов сгорания, объемных долей трехатомных газов и концентраций золовых частиц в газоходах котла. Определение расхода топлива. Коэффициент полезного действия котла. Расчет температуры газов на выходе из топки.
курсовая работа [947,7 K], добавлен 24.02.2023Характеристика секционных печей. Особенности теплопередачи, нагрева металла. Теплообмен в рабочем пространстве печи. Нагрев труб в секции. Расчет горения топлива, тепловой баланс печи. Результаты расчета теплового баланса. Размеры и параметры печи.
курсовая работа [377,3 K], добавлен 07.08.2013Описание парового котла. Состав и теплота сгорания топлива. Расчёт объемов и энтальпий воздуха, теплосодержания дымовых газов и продуктов сгорания, потерь теплоты и расхода топлива, топочной камеры, теплообмена в топке и конвективных поверхностей нагрева.
курсовая работа [1000,2 K], добавлен 19.12.2015