Планирование и физико-статистическая оценка эффективности искусственного регулирования осадков методами активных воздействий

Разработка радиолокационного метода обнаружения переохлажденных капельных зон в облаках, дающих осадки. Определение возможности использования радиолокационной информации о количестве осадков за короткие интервалы времени и их сверхкраткосрочного прогноза.

Рубрика Физика и энергетика
Вид автореферат
Язык русский
Дата добавления 15.02.2018
Размер файла 1,8 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

21

Размещено на http://www.allbest.ru

На правах рукописи

АВТОРЕФЕРАТ

диссертации на соискание ученой степени

доктора физико-математических наук

Планирование и физико-статистическая оценка эффективности искусственного регулирования осадков методами активных воздействий

25.00.30 - Метеорология, климатология, агрометеорология

Колосков Борис Павлович

г. Нальчик 2010 г.

Работа выполнена в Государственном учреждении «Центральная аэрологическая обсерватория» Росгидромета

Научный консультант:

доктор физико-математических наук, Заслуженный деятель науки РФ и КБР, профессор Щукин Георгий Георгиевич

Официальные оппоненты:

доктор физико-математических наук, Заслуженный деятель науки РФ и КЧР, профессор Абшаев Магомет Тахирович

доктор физико-математических наук, Дрофа Александр Семенович

доктор физико-математических наук, Морозов Владимир Николаевич

Ведущая организация:

Российский государственный гидрометеорологический университет (г. Санкт-Петербург)

С диссертацией можно ознакомиться в библиотеке Высокогорного геофизического института по адресу: 360030, КБР, г. Нальчик, пр. Ленина, 2.

Ученый секретарь

Диссертационного Совета

доктор физико-математических наук, профессор А.В. Шаповалов

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность работы Проблема управления погодой с целью уменьшения негативных последствий изменения климата, ущерба от стихийных бедствий, таких как засуха, катастрофические ливни и градобития, туманы, наводнения, сход снежных лавин, а также уменьшения ущерба от техногенных катастроф, таких как аварии на АЭС, химических и других опасных производствах, является одной из важнейших задач современной науки и практической жизни. В связи с этим исключительную актуальность приобретает разработка и совершенствование методов и технических средств активных воздействий (АВ) с целью искусственного регулирования осадков (ИРО), предотвращения выпадения града, рассеяния туманов и облаков и т.д.

Поскольку прямые воздействия на макро- и мезомасштабные атмосферные процессы в настоящее время практически неосуществимы в силу необходимости применения громадных энергетических затрат, превосходящих существующие человеческие возможности, реально возможным на практике способом АВ в настоящее время является искусственная модификация облаков, осадков и туманов. Возможность такой модификации базируется на использовании существующей в атмосфере неустойчивости при развитии процессов облако-, осадко- и туманообразования, что позволяет изменять ход этих процессов при сравнительно небольших затратах энергии. При этом принципиальная возможность и целесообразность модификации облаков и осадков вытекает из того факта, что лишь часть (от 10 до 90%) водосодержания облаков при естественных процессах реализуется в виде осадков.

В последние годы во многих странах мира все острее становится проблема дефицита пресной воды. Так на 13-м Всемирном метеорологическом конгрессе отмечено, что к 2025 г. две трети населения Земли будут испытывать недостаток в пресной воде. Это связано с целым рядом факторов, среди которых основными являются тенденция потепления климата, рост населения Земли, а также интенсивное развитие промышленности и сельского хозяйства. В результате выполненных как в нашей стране, так и за рубежом многолетних теоретических и экспериментальных исследований в области АВ на атмосферные процессы достигнуты серьезные практические результаты в области ИРО. Созданы экологически безопасные средства воздействий на различные формы облачности и на их основе разработаны самолетные и наземные технологии увеличения летних и зимних осадков, а также управления развитием осадкообразующих облачных систем с целью локального увеличения или уменьшения атмосферных осадков.

Активные воздействия на различные формы облачности и туманы в интересах тех или иных отраслей экономики находят в последние десятилетия все более широкое распространение. Это, в первую очередь, многочисленные опытные и опытно-производственные проекты по искусственному увеличению осадков (ИУО) для нужд гидроэнергетики, сельского и лесного хозяйства, коммунальных служб, выполняющиеся в различных странах мира; защита от града; рассеяние туманов в аэропортах и на автодорогах; борьба с лесными пожарами. Это также задача предотвращения или уменьшения количества летних ливневых и зимних обложных осадков. Последнее имеет большое практическое значение для коммунальных служб крупных городов, затрачивающих огромные средства на очистку городской территории от снега, его вывозку и утилизацию. В последние годы работы по предотвращению осадков или по их значительному уменьшению приобрели актуальность для создания благоприятных погодных условий при проведении массовых общественно-политических, культурных и спортивных мероприятий, а также для других нужд. радиолокационный облако осадки прогноз

В настоящее время в мире насчитывается несколько десятков научно-исследовательских и оперативных проектов по ИУО, проводимых в различных странах мира - в США, Австралии, ЮАР, Китае, Марокко, Сирии, Саудовской Аравии, Мексике, Иране, на Кубе и др. странах.

Несмотря на достигнутые за более чем 60-летнюю историю АВ результаты, многие вопросы в проблеме ИРО до конца не изучены и остаются нерешенными. Среди проблем по ИРО можно выделить: недостатки планирования работ (выбор и классификация объектов воздействий, выбор экспериментальных единиц (ЭЕ), контроль воздействий, отсутствие оценок пригодности территории для проведения экспериментов по ИУО и их длительности); несовершенство методов оценки эффективности АВ при выполнении оперативных работ на больших территориях; отсутствие во многих проектах прямых физических свидетельств того, что обнаруженные при статистическом анализе изменения количества осадков были получены в результате засева облаков.

Цель работы заключалась в теоретической и экспериментальной разработке новых методических подходов при планировании, проведении и физико-статистической оценке эффективности исследовательских и оперативных работ по ИРО методами АВ. Для достижения указанной цели в диссертационной работе решаются следующие задачи:

1) Разработка радиолокационного метода обнаружения переохлажденных капельных зон в облаках, дающих осадки, по информации о неоднородностях поля ветра (НПВ) в пограничном слое атмосферы.

2) Разработка методики оценки количества экспериментальных единиц, необходимого для выявления эффекта воздействий, и исследование возможности использования радиолокационной информации о количестве осадков за короткие интервалы времени и их сверхкраткосрочного прогноза для сокращения длительности рандомизированных экспериментов по ИУО.

3) Планирование и проведение рандомизированного эксперимента с целью исследования возможности модификации тропических переохлажденных конвективных облаков путем их динамического засева кристаллизующими реагентами.

4) Разработка метода статистической оценки эффективности оперативных работ по ИУО на больших территориях и статистическая оценка результатов оперативных проектов с использованием разработанного метода.

5) Планирование, проведение и физико-статистическая оценка эффективности опытно-экспериментальных работ по ИРО с целью метеозащиты мегаполисов.

Научная новизна работы

1) Впервые обнаружена, исследована и экспериментально подтверждена связь зон переохлажденных капель в облаках, дающих осадки, с зонами повышенных НПВ в пограничном слое атмосферы. Разработан и прошел экспериментальную проверку радиолокационный метод обнаружения переохлажденных капельных зон в облаках и облачных системах, дающих осадки.

2) Впервые получены экспериментальные данные о размерах, пространственном распределении и времени жизни зон неоднородностей поля ветра и связанных с ними областей интенсивных вертикальных движений в слоистообразных облачных системах.

3) Разработана методика оценки количества экспериментальных единиц, необходимого для выявления эффекта воздействий при проведении рандомизированных экспериментов, и показана перспективность использования радиолокационной информации о количестве осадков за короткие интервалы времени и их сверхкраткосрочного прогноза для сокращения длительности экспериментов по ИУО.

4) Базируясь на полученных на Камагуэйском метеополигоне (КМП) (Куба) экспериментальных данных о микрофизических, динамических, радиолокационных и СВЧ-радиометрических характеристиках облачности и осадков выработаны критерии пригодности тропических конвективных облаков для засева с целью получения дополнительных осадков, оценены облачные ресурсы на КМП, исследована эволюция радиолокационных характеристик конвективных облаков на КМП при их естественном развитии и при засеве льдообразующим реагентом и в результате проведения рандомизированного эксперимента доказана возможность модификации тропических конвективных облаков путем их динамического засева.

5) Разработан «метод плавающего контроля» (МПК) для статистической оценки результатов оперативных проектов по ИУО на больших территориях. С использованием разработанного метода получены статистические оценки результатов оперативных работ по ИУО в Республике Саха (Якутия), в Сирийской Арабской Республике, в Исламской Республике Иран и Португалии.

6) Впервые получены физико-статистические оценки результатов более чем 40 крупномасштабных работ по созданию благоприятных погодных условий, выполненных с 1995 г. в различных регионах России и ближнего зарубежья.

Практическая значимость работы

Разработанный в рамках настоящей диссертационной работы радиолокационный метод обнаружения переохлажденных капельных зон в облаках успешно использовался при выполнении комплексных самолетных и радиолокационных исследований облачности в Международном эксперименте ПУО в Испании в 1980-1981 гг. На основании полученных данных выполнена оценка возможного увеличения количества осадков на полигоне ПУО. Метод позволяет обнаруживать в слоистообразных и конвективных облаках, дающих осадки, соответственно, 80 и 95% переохлажденных капельных зон, т.е. областей, потенциально пригодных для засева льдообразующими реагентами, на значительных территориях порядка 30 тыс. км2 практически в темпе получения радиолокационной информации, что способствует повышению эффективности планирования и выполнения как исследовательских, так и оперативных работ по ИРО.

Полученные в работе экспериментальные данные о структуре вертикальных движений в слоистообразных облаках, о средних значениях водностей в наиболее активных областях облачных систем, относительной площади, занятой такими областями, распределении по размерам и времени их жизни могут быть использованы для проверки и уточнения существующих представлений о процессах осадкообразования и развития облачных систем, а также при численном моделировании в качестве исходной или контрольной информации.

Разработанный метод плавающего контроля может использоваться для оценки эффективности воздействий в исследовательских и коммерческих проектах. В настоящее время метод применяется для статистической оценки результатов оперативных работ по ИУО в Сирии и Иране.

Статистическое моделирование с использованием предложенной в диссертации методики оценки количества ЭЕ, необходимого для выявления эффекта воздействий, и радиолокационной информации об осадках позволяет выбрать ЭЕ и оценить длительность рандомизированных экспериментов по ИУО.

Результаты исследований, выполненных на Камагуэйском метеополигоне, используются в настоящее время при проведении оперативных работ по засеву облаков с целью ИУО на территории Кубы.

Разработанные при непосредственном участии автора информационно-измерительная система и методы физико-статистической оценки используются при проведении работ по метеозащите мегаполисов методами АВ.

Результаты исследований внедрены в нормативную руководящую документацию, регламентирующую проведение работ по ИРО самолетными методами.

На защиту выносятся:

1. Результаты экспериментальных исследований связи областей повышенных НПВ в осадках в пограничном слое атмосферы с наличием переохлажденных капельных зон над ними, и экспериментальные данные о размерах, пространственном распределении и времени жизни зон НПВ и связанных с ними областей интенсивных вертикальных движений в протяженных слоистообразных облачных системах.

2. Радиолокационный метод обнаружения переохлажденных капельных зон в облаках и облачных системах, дающих осадки, по НПВ в пограничном слое атмосферы и результаты его использования для оценки пригодности территорий для работ по ИУО.

3. Метод плавающего контроля и полученные с использованием метода статистические оценки результатов оперативных работ по ИУО на больших территориях в различных географических районах мира.

4. Методика оценки количества ЭЕ, необходимого для выявления эффекта воздействий при проведении рандомизированных экспериментов, и результаты статистического моделирования с целью оценки длительности эксперимента при использовании радиолокационной информации о количестве осадков за короткие интервалы времени и их сверхкраткосрочного прогноза.

5. Результаты комплексного рандомизированного эксперимента по АВ на переохлажденные конвективные облака тропической зоны.

6. Результаты опытно-экспериментальных работ по ИРО с целью улучшения погодных условий в мегаполисах методами активных воздействий.

Личный вклад автора

Использованный в диссертации экспериментальный материал получен при непосредственном участии автора или под его руководством в ходе многочисленных экспериментов и опытно-производственных работ, выполненных как у нас в стране, так и за рубежом (Испания, Куба, Сирия, Иран, Португалия, Казахстан).

В результате анализа и обобщения полученных данных автором:

- с помощью разработанного МПК получены статистические оценки результатов оперативных проектов по ИУО на больших площадях;

- с использованием предложенной в диссертации методики получены оценки количества ЭЕ, необходимого для выявления эффекта воздействий, по радиолокационной информации об осадках;

- определены критерии пригодности облаков для засева, оценены облачные ресурсы и доказана возможность модификации тропических переохлажденных конвективных облаков на Камагуэйском метеорологическом полигоне (Куба) путем их динамического засева кристаллизующими реагентами;

- получены физико-статистические оценки результатов работ по метеозащите мегаполисов;

- совместно с Ю.В. Мельничуком разработан радиолокационный метод оперативного обнаружения переохлажденных капельных зон в облаках и облачных системах на больших территориях;

- совместно с О.И. Шипиловым и Ю.В. Мельничуком разработаны методика оценки количества ЭЕ при проведении рандомизированных экспериментов по ИУО и основанный на методе исторической регрессии «метод плавающего контроля».

Апробация работы: Основные результаты диссертации были представлены на 16-й Международной конференции по радиолокационной метеорологии (Хьюстон, 1975 г.); на 4, 5, 6 и 7-м Всесоюзных совещаниях по радиометеорологии (Москва, 1975 г., Кишинев, 1978 г., Таллин, 1982 г., Суздаль, 1986 г.); на III, IV, VI, VII, и VIII Международных конференциях по активным воздействиям на метеорологические процессы (Клермон-Ферран, 1980 г., Гонолулу, 1985 г., Пестум, 1994 г., Чианг Мей, 1999 г., Касабланка, 2003 г., Анталия, 2007 г.); на 9 и 11-й Международных конференциях по физике облаков и осадков (Таллин, 1984 г., Монреаль, 1994 г.); на IV и V Международных симпозиумах по тропической метеорологии (Гавана, 1987 г., Обнинск, 1991 г.); на Международных совещаниях по Международному Проекту увеличения осадков (ПУО) (Монреаль, 1980 г., Москва, I98I г.); на совещаниях группы экспертов ИК ВМО по активным воздействиям (Женева, 1982 г.); на рабочей группе КАН по физике облаков и активным воздействиям (Женева, 1983 г.); на Всесоюзных конференциях по активным воздействиям на гидрометеорологические процессы (Киев, 1987 г., Нальчик, 1991 г.); на Всероссийской конференции по физике облаков и активным воздействиям на гидрометеорологические процессы (Нальчик, 2001 г.); на Всесоюзных семинарах «Технические средства для государственной системы наблюдений и контроля природной среды» (Обнинск, 1981 г., Обнинск, 1983 г.); на III Всесоюзном семинаре-совещании «Планирование и оценка эффективности работ по искусственному увеличению осадков» (Тбилиси, I986 г.); на III Всесоюзной конференции по авиационной метеорологии (Суздаль, 1990г.); на Юбилейной конференции «Состояние и перспективы развития технологии и технических средств воздействия на гидрометеорологические процессы» (Чебоксары, 1999г.); на Первом Арабском агрометеорологическом семинаре (Дамаск, 1982 г.); на семинарах ВМО по проблеме увеличения осадков в странах Средиземноморского региона, Юго-Восточной Европы и Среднего Востока (Бари, 1996 г., Монселиче, 1999 г.); на Научно-практическом семинаре «Состояние и перспективы работ по воздействию на гидрометеорологические процессы в интересах развития производства в Республике Узбекистан» (Ташкент, 2000г.); на Первой Национальной конференции Малайзии по активным воздействиям (Куала Лумпур, 2002 г.); на Научной конференции по результатам исследований в области гидрометеорологии и мониторинга загрязнения природной среды в государствах - участниках СНГ (Санкт-Петербург, 2002 г.); на Региональном международном семинаре ВМО по физике облаков и активных воздействий (Дамаск, 2003 г.); на Научно-практической конференции, посвященной 40-летию начала производственных работ по защите сельхозкультур от градобитий (Нальчик, 2007 г.); на Научной конференции институтов Росгидромета «Теоретические и экспериментальные исследования конвективных облаков» (Санкт-Петербург, 2008 г.); на VI Всероссийском метеорологическом съезде (Санкт-Петербург, 2009 г.).

Основные результаты диссертации опубликованы в 88 работах. В диссертацию включены результаты, которые были получены лично автором или при его непосредственном участии.

Структура и объем диссертации

Диссертация состоит из введения, шести глав, заключения, списка используемой литературы (356 отечественных и зарубежных наименований) и Приложений. Объем рукописи составляет 309 страниц, включая 75 рисунков, 39 таблиц и список литературы.

СОДЕРЖАНИЕ ДИССЕРТАЦИОННОЙ РАБОТЫ

Во введении обоснована актуальность работы, определены научная проблема, цели, задачи и методы их решения, оценены научная новизна и практическая значимость работы, перечислены основные положения, выносимые на защиту, приведены сведения об апробации работы, публикациях и структуре диссертации.

В первой главе освещена история и сделан краткий обзор современного состояния проблем ИРО методами АВ, а также изложены физические основы АВ на облака разных типов с использованием: 1) термодинамической (фазовой) неустойчивости, возникающей в переохлажденных облаках, содержащих переохлажденную воду; 2) коллоидальной неустойчивости, за счет которой происходит конденсационно-коагуляционный рост капель в облаке и выпадение дождя из теплых облаков; и 3) конвективной (вертикальной) неустойчивости атмосферы. В главе также описаны основные реагенты и технические средства, используемые для воздействий на облака.

Современные методы искусственной модификации переохлажденных облаков с использованием фазовой неустойчивости базируются на теории, разработанной Вегенером, Бержероном и Финдайзеном, и основанной на наличии разности упругости насыщенного пара надо льдом и над водой. Вследствие того, что упругость насыщенных паров надо льдом меньше, чем над водой при одной и той же отрицательной температуре, ледяные кристаллы, находящиеся в переохлажденном облаке, оказываются в состоянии пересыщения и растут диффузионно за счет испаряющихся облачных капель. В результате «перегонки» пара с капель кристаллы быстро растут и по достижении размеров частиц осадков начинают опускаться под действием силы тяжести, продолжая расти в процессе своего падения за счет коагуляции.

Принимая во внимание, что в большинстве естественных облаков наблюдается недостаток природных ледяных облачных ядер, путем создания в переохлажденных облаках дополнительных кристаллов можно в зависимости от их количества (10-100 ледяных ядер на литр при микрофизическом (статическом) засеве и 100-1000 л-1 - при динамическом) и места введения управлять развитием облаков, т.е. либо повысить эффективность процессов осадкообразования и тем самым получить дополнительные осадки, либо провести интенсивный засев облака кристаллизующими реагентами (организовать «перезасев» облака) и за счет мощного оледенения облака уменьшить или полностью прекратить выпадение из него осадков.

Анализ результатов ряда наиболее известных исследовательских и оперативных проектов по искусственному увеличению осадков из переохлажденных облаков, выполненных за последние 60 лет в бывшем СССР учеными и специалистами ЦАО, ГГО, ВГИ, УкрНИГМИ, ЗакНИГМИ, САНИИ и за рубежом - в США, Канаде, Австралии, Израиле, Италии, Южной Африке, Мексике, Таиланде, на Кубе позволяет сделать вывод о том, что эффект воздействий в значительной мере зависит от характеристик облачности - количества переохлажденной воды в облаках и ее местоположения, от концентрации ледяных кристаллов, от вертикальных движений, от мощности облака и температур на верхней и нижней границах. Так результаты рандомизированных экспериментов свидетельствуют о том, что диапазон изменения количества осадков при засеве переохлажденных облаков различных типов льдообразующими и хладореагентами может меняться от уменьшения на 60% до увеличения на 200%. Тем не менее несмотря на неоднозначные оценки результатов экспериментов можно констатировать, что при определенных метеоусловиях при правильном выборе объектов для воздействия и при правильном проведении засева (выборе типа и дозировки реагента, определении способа, места и времени для засева облачности) можно получить дополнительно 10-30% осадков, а при благоприятных условиях - до 50-100%. Следует отметить, что большинство выполненных экспериментов страдают из-за отсутствия прямых физических свидетельств того, что обнаруженные при статистическом анализе изменения количества осадков были получены в результате засева облаков.

Наряду с использованием термодинамической (фазовой) неустойчивости для АВ на переохлажденные облака в последние годы большое внимание уделялось воздействиям на «теплые» облака, базирующимся на использовании коллоидальной неустойчивости. В результате многочисленных теоретических и экспериментальных исследований к настоящему времени предложено две основные концепции активных воздействий на «теплые» облака, основывающиеся на искусственной стимуляции увеличения размеров облачных капель до размеров, при которых они могли бы стать зародышами частиц осадков. Данная задача для капельных облаков решается: 1) прямым методом введения зародышей осадков в облако путем распыления в облаке крупных капель воды, либо 2) путем засева «теплых» облаков гигроскопическими, то есть интенсивно поглощающими «избыточный» водяной пар, аэрозолями.

Результаты выполненных за последние 50-60 лет исследований свидетельствуют о возможности модификации теплых конвективных облаков путем их засева крупными каплями воды или гигроскопическими частицами. Однако практическое использование такого способа крайне ограничено, поскольку требуется поднять в воздух и распылить в облако большое количество реагента, что часто оказывается экономически невыгодным. В связи с этим внимание исследователей в конце прошлого столетия было обращено на разработку и проверку нового способа засева конвективных облаков с использованием мелких гигроскопических частиц, получаемых с помощью пирогенераторов (пиропатронов) в результате сжигания гигроскопических пиросоставов. Анализ результатов выполненных к настоящему времени натурных и численных экспериментов по засеву теплых конвективных облаков мелкими гигроскопическими частицами, позволяет сделать вывод, что при определенных условиях такие воздействия приводят к изменению микроструктуры засеянных облаков, увеличению времени их «жизни», площади, занятой осадками и интенсификации выпадающих из них осадков. Однако несмотря на статистически значимые результаты, полученные в южно-африканском и мексиканском рандомизированных проектах, в настоящее время остается открытым вопрос об их физическом обосновании. В связи с чем, требуется проведение дополнительных как теоретических, так и экспериментальных исследований возможности модификации облаков путем их засева небольшим количеством гигроскопического аэрозоля.

Наряду с результатами активных воздействий на облака с целью искусственного увеличения осадков в обзоре приведены результаты выполненных в ЦАО, ИПГ, ГГО, УкрНИГМИ и за рубежом - в США, Франции, Германии, Норвегии и др. теоретических и экспериментальных исследований, свидетельствующих о возможности и эффективности стимулирования и разрушения при различных условиях образования и развития конвективных облаков различной мощности путем воздействия на них искусственно созданными струями, а также рассеяния слоистообразных облаков, и переохлажденных и теплых туманов с использованием самолетных и наземных средств воздействий.

Известно, что конвективная неустойчивость атмосферы и возникающие при этом потоки играют определяющую роль в развитии облаков, и, в особенности, кучевых форм. Так восходящие конвективные потоки создают первоначальные импульсы, необходимые для образования кучевых облаков и зон внедренной (затопленной) конвекции в слоистообразных фронтальной облачности, а также обуславливают их дальнейшее развитие. Очевидно, что наличие нисходящих конвективных потоков в облаках должно сопровождаться разрушением облаков. В настоящее время известно по крайней мере два способа искусственного инициирования внутриоблачных нисходящих движений (струй): 1) путем сброса в облако грубодисперсных порошков; 2) летательными аппаратами (самолетами, вертолетами) при зависании или пролете над облаком или туманом, или струями газов от двигателя реактивного самолета при его кабрировании в облаке на больших углах тангажа.

В результате выполненных в ЦАО и ИПГ теоретических и экспериментальных исследований по воздействию на конвективные облака путем сброса в облако 20-50 кг различных мелкодисперсных порошков и создания направленных вниз импульсов во время горизонтальных пересечений облаков самолетом Ил-14 за счет силы, противодействующей подъемной силе крыла самолета или струей газов от двигателя реактивного самолета при кабрировании в облаке на больших углах тангажа было установлено, что: 1) введение порошков нерастворимых веществ в облако носит динамический характер, т.е. происходит развитие нисходящей струи во влажно неустойчивой атмосфере путем вовлечения воздуха облаком частиц грубодисперсного аэрозоля, оседающим под действием силы тяжести; 2) на результат воздействия не влияет температура окружающей среды или химический состав сбрасываемого на облако вещества; 3) эффективность действия реагента зависит от величины энергии неустойчивости: чем выше значение энергии неустойчивости, тем интенсивнее протекает процесс распада облака после воздействия; 4) способность частиц к захвату облачных капель (при использовании гидрофильного цемента) повышает эффективность действия реагента и благоприятствует более быстрому разрушению облака; для разрушения облака при использовании гидрофобного порошка требуется существенно увеличить количество вводимого в облако реагента; 5) при использовании самолета Ил-14, мелкодисперсных порошков и реактивного самолета эффективность воздействия соответственно составила 73, 82 и 100%; 6) эффективность разрушения конвективных облаков зависит от условий развития облачности: при воздействии на облака сбросом упаковок с порошком эффективность составила 92% при воздействии на конвективные облака внутримассового развития, 82% при воздействии на облака, обусловленные термической конвекцией вблизи фронтальных зон, и 58% при воздействии на фронтальные конвективные облака. Полученные результаты свидетельствуют о высокой эффективности использования искусственно созданных нисходящих струй для разрушения как теплых, так и переохлажденных мощных кучевых, кучево-дождевых и грозовых облаков, что находится в полном соответствии с физическими представлениями о механизме воздействия.

АВ с целью ИРО в настоящее время осуществляется с помощью разработанных в Росгидромете технологий воздействия, основанных на использовании самолетов, оборудованных необходимой для проведения воздействий измерительной аппаратурой и средствами засева облаков, наземных технических средств воздействия и различных типов реагентов для засева облаков - хладореагентов, кристаллообразующих, гигроскопических и порошкообразных.

Для АВ на облака в настоящее время применяются самолеты-метеолаборатории (СМЛ) и самолеты воздействия, создаваемые на базе серийных самолетов типа Ил-18, Ан-12, Ан-26, Ан-28, Ан-30, Ан-32, Ан-72, М-101Т («Гжель») и СУ-30 (рис.1.1). Указанные типы самолетов перекрывают диапазон высот полета от 6 до 20 км, способны находиться в воздухе от 3 до 8-9 часов и нести полезную нагрузку от 630 до 20000 кг (Табл. 1.1). Используемые в работах по АВ самолеты оснащаются автоматическими устройствами КДС-155, АСО-2И и УВ-26 для отстрела пиропатронов ПВ-50 и ПВ-26 (рис.1.2), углекислотными комплексами для засева облаков «сухим» льдом и самолетными азотными генераторами ГМЧЛ-А и системами для сброса упаковок с грубодисперсными порошками (рис. 1.3).

Наряду с отстреливаемыми пиропатронами для засева облаков могут использоваться выпускаемые российской промышленностью самолетные аэрозольные генераторы САГ-ПМ-01 и САГ-26. При воздействии с земли засев облаков может осуществляться либо с помощью наземных пиротехнических или жидкостных генераторов, либо с помощью ракет и снарядов, содержащих льдообразующие или гигроскопические реагенты.

а)

б)

е)

г)

д)

е)

ж)

з)

и)

Рис. 1.1. Самолеты, используемые в работах по активным воздействиям

а) Ил-18; б) Ан-12; в) Ан-72; г) Ан-26; д) Ан-30; е) Ан-28; ж) Ан-32; з) М-101Т «Гжель»; и) СУ-30

Таблица 1.1.

Основные характеристики самолетов, используемых в работах по АВ

Характеристика

Ил-18

Ан-12

Ан-72

Ан-30

Ан-32

Ан-26

Ан-28

М-101Т

«Гжель»

СУ-30

Взлетная масса, кг

61 000

61 000

33 000

21 000

27 000

24 000

6 500

3 720

33 000

Крейсерская скорость, км/ч

617

590

550

430

530

430

337

360

360-2 200

Практический потолок, м

10 000

9 800

11 800

7 300

9 400

7 300

6 000

8 000

20 000

Максимальная дальность полета, км

4 270

4 560

4 400

2 550

2 160

2 340

1 250

1 400

3 200

Максимальная полезная нагрузка, кг

13 500

20 000

10 000

5 500

6 700

4 100

2 000

630

7 000

а)

б)

в)

Рис. 1.2. Самолетные устройства КДС-155 (а) для отстрела пиропатронов ПВ-50 и АСО-2И (б) и УВ-26 (в) для отстрела пиропатронов ПВ-26

а)

б)

в)

Рис. 1. 3. Устройства для сброса гранул твердой углекислоты, диспергирования жидкого азота и сброса упаковок: а) патрубок для выброса твердой углекислоты (внизу)и пилон с форсункой (вверху) для распыления жидкого азота; б) самолетный азотный генератор ГМЧЛ-А; в) транспортер с упаковками с грубодисперсным порошком.

В качестве реагентов для воздействия на переохлажденные облака используется йодистое серебро AgI (температурный порог активности -4…-6оС), твердая углекислота СО2 (температурный порог активности -3…-4оС) и жидкий азот N2 (температурный порог активности около -1оС). Для воздействия на теплые облака используются гигроскопические реагенты - порошки или капли растворов хлористого натрия NaCl, хлористого кальция CaCl2, или высокодисперсных частиц, формируемых при горении пиротехнических составов.

Важным элементом информационно-измерительной системы, обеспечивающей успешность организации и проведения работ по АВ на облака с целью искусственного регулирования осадков, является радиолокационная система. Данные радиолокационных наблюдений необходимы для: 1) оценки пригодности облаков и облачных систем для засева; 2) планирования и выполнения самолетных операций по засеву облаков; 3) оценки результатов засева при физической и статистической оценке воздействий. Для этих целей могут быть использованы разработанные российскими специалистами метеорологические автоматизированные радиолокационные комплексы АКСОПРИ, Метеоячейка, МЕРКОМ.

Таким образом, приведенные в обзоре результаты работ по АВ на облака свидетельствуют о том, что остается еще много нерешенных вопросов по планированию и проведению работ по ИРО, а также получению статистических и физических доказательств того, что засев облаков приводит к увеличению осадков над заданным районом и в течение продолжительного периода времени, а также по определению влияния засева за пределами этого района. Используемые в работах методы и технические средства измерений характеристик метеообъектов и воздействий с целью искусственного регулирования осадков требуют дальнейшего усовершенствования с точки зрения повышения эффективности воздействий и определения ситуаций и времени, когда можно проводить воздействия, а когда проведение воздействий нецелесообразно. Следует также отметить важность использования статистического моделирования и выбора эффективных методов оценки результатов воздействий при проведении как исследовательских, так и оперативных работ по АВ на облака.

Во второй главе диссертации рассматриваются вопросы использования радиолокационной информации для выделения переохлажденных капельных зон в облаках и для статистического моделирования количества ЭЕ, необходимого для выявления эффекта воздействий при проведении рандомизированных экспериментов.

Успешность решения многих научных и практических задач, связанных с исследованием процессов осадкообразования и развития облачных систем, с АВ на облака, с обеспечением безопасности полетов в облаках и др., в значительной степени зависит от качества и оперативности получения информации о наличии, пространственном распределении и временной эволюции переохлажденных капельных зон в облаках различных форм. Обнаружение в облаках зон с переохлажденными каплями и их исследование осуществляются в основном с помощью СМЛ. Наряду с несомненными достоинствами прямые самолетные измерения микрофизических характеристик облаков обладают рядом существенных ограничений из-за пространственной и временной ограниченности наблюдений и невозможности одновременного охвата больших площадей. В связи с этим большое значение приобретают дистанционные методы исследования облачных систем, которые, в отличие от прямых, могут обеспечить оперативное получение данных об облачных системах на больших площадях в течение всего времени их существования. К сожалению, известные радиолокационные методы - определение водности по радиолокационной отражаемости, двухволновый метод, метод мишени, и СВЧ-радиометрические методы либо принципиально, либо из-за технических трудностей не могут обеспечить оперативного обнаружения переохлажденных капельных зон в облаках на больших площадях.

Результаты теоретических и экспериментальных исследований микрофизических характеристик облаков различных форм свидетельствуют о том, что водность облаков в значительной степени определяется вертикальными движениями. В свою очередь, вертикальные движения тесно связаны со структурой горизонтальных движений в пограничном слое атмосферы (ПСА), в котором эти потоки формируются:

Wh = Who - div V(h) dh , (2.1)

где Wh и Who - вертикальные скорости на высотах h и hо, соответственно; - плотность воздуха; div V(h) - дивергенция горизонтального ветра. В таком случае можно предположить возможность использования информации о горизонтальных движениях в пограничном слое для обнаружения капельных зон в переохлаждённой части облаков.

Сравнительный анализ радиолокационных методов исследования движений в облаках и осадках с использованием наземных и самолетных РЛС позволяет заключить, что наибольшая оперативность получения информации о поле горизонтальных скоростей обеспечивается при использовании разработанной в ЦАО аппаратуры «Устройство индикации турбулентности» (УИТ). Принцип работы УИТ заключается в измерении разности средних значений радиальных скоростей (V) рассеивателей в импульсных объёмах, разнесенных по дальности вдоль радиолокационного луча на расстояние L, которое определяет масштаб исследуемых неоднородностей. Основными факторами, определяющими наличие V на расстоянии L, являются: 1) турбулентность; 2) квази-упорядоченные вертикальные движения; 3) вертикальные сдвиги ветра; 4) различие скоростей гравитационного падения гидрометеоров. С учетом указанных компонент V может быть записана в виде:

V = Vт + Vг Cos + WB Sin + VСД Cos + Vгр Sin , (2.2)

где Vт - турбулентная составляющая; Vг и WB - неоднородности квази-упорядоченных горизонтальных и вертикальных движений; VСД и Vгр - неоднородности, обусловленные сдвигом ветра и различием скоростей гравитационного падения гидрометеоров; - угол места антенны. Анализ вклада основных факторов в величину неоднородностей поля радиальных скоростей показал, что при углах места антенны меньше 1-3о, т.е. при зондировании пограничного слоя атмосферы, основной вклад в величину V вносят составляющая Vг , обусловленная дивергенцией, которая, согласно (2.1), тесно связана с вертикальными движениями, и турбулентная составляющая Vт, среднеквадратичное значение которой описывается с помощью структурной функции

D (L) = = , (2.3)

связанной с масштабом флуктуаций L "законом 2/3" Колмогорова - Обухова

D (L) = С 2/3 L2/3 , (2.4)

где - скорость диссипации кинетической энергии, характеризующая интенсивность турбулентных движений; С - безразмерная константа.

На основании литературных данных о значениях , а также экспериментальных данных, полученных автором, показано, что средние значения VТ для слоисто-дождевой облачности без "затопленной" конвекции, составляют 0,6-0,8 м/с, а при её наличии - 1,0-1,2 м/с. Для кучево-дождевой облачности величина VТ на масштабе 500 м составляет 0,9-1,8 м/с. В таком случае, при соответствующем выборе величины порога V на фоне турбулентных движений в зонах радиоэхо облачности и осадков могут быть выделены области повышенной конвергенции и дивергенции, формирующие квази-ynорядоченные восходящие и нисходящие движения, т.е. зоны интенсивных вертикальных потоков.

Проведенные в 1982 г. в районе г. Калуги и в 1983 г. на метеорологическом полигоне ЦАО в Пензе комплексные исследования динамических характеристик облачности с помощью радиолокаторов MPЛ-2 (в Калуге) и МРЛ-5 (в Пензе), на которых была установлена аппаратура УИТ, и 3-см доплеровского наземного и самолетного радиолокатора, установленного на СМЛ Ил-18 «Циклон», подтвердили возможность использования аппаратуры УИТ для обнаружения в облаках различных форм областей интенсивных вертикальных движений.

Экспериментальная проверка возможности использования информации о НПВ, получаемой с помощью УИТ в осадках в ПСА, для дистанционного обнаружения переохлажденных капельных зон в облаках была проведена в 1980-1981 гг. на полигоне ПУО в Испании, в 1982 г. в районе Калуги и в 1983 г. на полигоне в Пензе. Методика экспериментальных исследований связи зон НПВ в ПСА с переохлажденными жидкокапельными зонами в облаках заключалась в выполнении целенаправленных полётов СМЛ через зоны, характеризующиеся наиболее интенсивными движениями, определяемыми с помощью УИТ. В период полета CMЛ каждые 5-10 минут проводилась регистрация информации о структуре НПВ и распределении радиолокационной отражаемости в горизонтальной и вертикальной плоскостях. Следует отметить, что при сравнении радиолокационных и самолетных данных необходимо учитывать время Тн , требуемое для подъёма влажного воздуха с нижнего уровня до высоты полета самолета Н, а также перенос зон радиоэхо за это же время. Для этого была разработана методика обработки и комплексного анализа радиолокационной и самолетной информации, включающая: определение скорости вертикальных движений по радиолокационным данным о вертикальной структуре НПВ и величине V; оценку времени Тн ; определение скорости и направления перемещения зон радиоэхо; построение траектории полета CМЛ на изображениях зон НПВ, полученных раньше момента пролёта самолета над зонами на время Тн , т.е. на изображениях "образов" зон НПВ.

На основании результатов исследований связи переохлажденных капельных зон в облаках с НПВ в ПСА был разработан новый радиолокационный метод обнаружения капельных зон в облаках, позволяющий обнаруживать в слоистообразных (класс «А» по классификации ПУО) и конвективных облаках (класс «С»), дающих осадки, соответственно, 80 и 95% переохлажденных капельных зон.

Разработанный метод выделения в облаках и облачных системах переохлажденных капельных зон по данным о НПВ в ПСА прошел экспериментальную проверку в ходе комплексных радиолокационных и самолетных экспериментов в Московской области и в районе г. Калуги, а также на полигоне ЦАО в Пензе при выполнении работ по опытному засеву облаков льдообразующими реагентами с использованием информации о НПВ. Анализ полученной в ходе выполнения работ радиолокационной информации о структуре радиоэхо до и после засева облачности твердой гранулированной углекислотой СО2 показал, что засев облачности, характеризовавшейся наличием зон НПВ с величиной V выше 1,З м/с, привёл к образованию на фоне естественных осадков чётко выраженных полос искусственных осадков, отражаемость которых на 6-8 дБZ превосходила отражаемость естественных. Засев облачности, не имеющей повышенных значений НПВ, не приводил к появлению полос повышенной отражаемости на фоне естественных осадков. Результаты опытов по использованию радиолокационного метода оперативного обнаружения в облаках переохлажденных капельных зон по информации о НПВ указывают на перспективность его использования в работах по искусственному регулированию осадков на больших площадях.

Принимая во внимание наличие взаимосвязи «образов» зон повышенных НПВ с областями переохлажденной жидкокапельной влаги были определены следующие характеристики: а) временной ход относительного покрытия площади осадков (Аос) зонами НПВ (Анпв); б) средние значения величин Анпв / Аос для каждого дня наблюдений; в) характерные размеры зон НПВ; г) времена существования отдельных зон НПВ.

Анализ полученных данных показал, что зоны повышенных НПВ существуют во всех облачных системах и практически во все моменты времени их прохождения через площадь обзора радиолокатора. Анализ распределений зон НПВ по размерам показал, что средняя площадь зон НПВ с величиной V 1,3 м/с в облачных системах класса «А» и в конвективных облаках класса «С» составляет, соответственно 40-50 км2 и 20-25 км2. Анализ данных выявил зависимость «времени жизни» зон НПВ от их горизонтальных размеров (рис. 2.1) - «время жизни» зон НПВ тем больше, чем больше их размер, и практически не зависит от типа облачности. При этом среднее «время жизни» областей НПВ в облаках класса «С» составляет (с учетом среднего размера 20-25 км2) 20-25 мин, а в облачности класса «А» (при среднем размере 40-50 км2) составляет 40-50 минут.

21

Размещено на http://www.allbest.ru

Наличие для облачности на полигоне ПУО в Испании радиолокационной информации о НПВ и рассчитанных по самолетным данным средних значений водности над этими зонами, позволило провести оценку пригодности полигона для проведения работ по ИУО. Такая оценка может быть представлена в виде дополнительных осадков, которые могли бы быть получены при осаждении всей переохлаждённой воды на площади обзора РЛС. При известных величинах относительного покрытия площади обзора РЛС зонами НПВ и значениях водностей над этими зонами, величина дополнительных осадков за час может быть определена по формуле:

I = Н , (2.5)

где Анпв и А - площади зон НПВ и обзора РЛС; Н - мощность слоя между изотермой 0оС и верхней границей радиоэхо или высоты изотермы минус 15оС, если высота радиоэхо превышала этот уровень; - плотность воды; Т - время. В случае конвективной облачности для оценки I в соотношении (2.5) необходимо вместо Анпв использовать величину [ (Аос ) · К ], где К - коэффициент, определяющий в площади обзора долю конвективных облаков, характеризующихся наличием в них зон повышенной НПВ.

Результаты сравнения величин I с интенсивностью естественных осадков I показали, что величины ожидаемого относительного увеличения осадков изменяются в широких пределах и для различных дней облачности класса «А» составляют 229%, а для облачности класса «С» - 15140%. Среднее относительное увеличение осадков для этих классов облачности составляет 7,6% и 34%, соответственно (см. табл. 2.1).

Таблица 2.1.

Оценки возможного увеличения количества осадков (%) на полигоне ПУО, полученные по данным радиолокационных и самолетных наблюдений, и в результате численного моделирования

Способ оценки

Средняя величина (%) по дням

Экстраполяция (%) за сезон

класс «А»

класс «С»

среднее

класс «А»

класс «С»

среднее

Радиолокационный способ (по НПВ)

7,6

34

21

7,6

34

17

По самолетным данным

8,1

17

12

0,36

3

1

Численное моделирование

29

65

54

1,37

11

4,3

Для сравнения в таблице также приведены оценки возможного увеличения количества осадков, полученные американскими участниками Проекта по данным самолетных измерений и по результатам численного моделирования.

Из таблицы видно, что полученные тремя способами оценки возможного увеличения осадков для выбранных дней наблюдений находятся в хорошем согласии, что свидетельствует о возможности использования этих методик для оценки увеличения осадков на площади полигона в отдельные дни. Однако, при экстраполяции оценок для отдельных дней наблюдений на сезон возникают значительные расхождения в оценках, связанные с тем, что согласно самолетным данным, только 16,3% дней (т.е. каждый шестой день) для облачности класса «А» и 48,7% дней (т.е.каждый второй день) для облачности класса «С» определены пригодными для проведения воздействий с целью ИУО. По данным же радиолокационных исследований во все экспериментальные дни в облачности классов «А» и «С» наблюдались зоны, потенциально пригодные для засева. В связи с этим в качестве возможного увеличения слоев осадков за сезон были взяты оценки, полученные для отдельных дней наблюдений. Отличие средней оценки за сезон (17%) от оценки по отдельным дням (21%) связано с различием вклада облаков классов «А» и «С» в слой осадков в сезоне 1981 г. и в средне-сезонную норму осадков. Приведенные данные свидетельствуют о том, что использование только прямых методов измерений может привести к ошибочным выводам.

Во втором параграфе главы рассматриваются вопросы использования радиолокационных данных об осадках для планирования экспериментов по ИУО. Для этой цели на основе разработанного Булинским-Колмогоровым метода выборочных оценок сумм случайных величин было получено выражение для расчета количества ЭЕ, необходимого для обнаружения эффекта воздействия с вероятностью (1 - в) на уровне значимости б при проведении рандомизированного эксперимента с вероятностью засева, равной 0,5:

N1 = , (2.6)

где = , = , ak - естественные осадки;

= , = , bk - осадки после засева;

N - число ЭЕ, обследованных перед планированием эксперимента;

и - определяются из уравнения типа

Ф () = 1 - б , ( Ф(х) = ).

При наличии априорных оценок (прогноза) сk, для величин ak и при предположении мультипликативной модели увеличения осадков, т.е. bk = (1+г) ak, выражение (2.6) можно переписать в удобном для расчетов виде, используя средние значения и , дисперсии и , и коэффициент корреляции Rac = /уaус :

N2 = , (2.7)

где , , ,

С целью исследования целесообразности использования коротких ЭЕ (осадки за час, осадки из облака), которое приводит к увеличению количества ЭЕ, были проведены расчеты N2 с использованием цифровых радиолокационных данных, полученных с помощью автоматизированных комплексов. Необходимые для расчета N2 характеристики определялись для двух ЭЕ: 1-часового и 12-часового слоев осадков, и для площадок двух размеров: 20 х 20 км2 и 30 х 30 км2.

Анализ матриц коэффициентов корреляции часовых и 12-часовых слоев осадков, рассчитанных по данным радиолокационных измерений за июнь-сентябрь 1984 г. показал, что во всех наблюдавшихся синоптических ситуациях отчетливо проявляется анизотропия пространственной корреляции осадков. Так, для часовых слоев в направлении переноса зон радиоэхо расстояние по уровню корреляции 0,7 для фронтальных облачных систем в 2,3-3,4 раза, а для случаев внутримассовых конвективных облаков в 1,6-2 раза больше, чем в ортогональном направлении. Для 12-часовых слоев эти соотношения лежат, соответственно, в пределах 1,3-3,2 и 1,5-2,5.

Расчеты количества ЭЕ, выполненные для прилегающих и разнесенных на длину стороны площадки (т.е. на 20 км или 30 км), при расположении опытной и контрольной площадок вдоль переноса поля осадков, определяемого по результатам корреляционного анализа радиолокационных данных, и в перпендикулярном направлении, показали, что наименьшая продолжительность эксперимента получается при использовании 1-часовой ЭЕ и при расположении разнесенных площадок вдоль направления переноса. При этом использование 1-часовой ЭЕ позволяет сократить продолжительность эксперимента по ИУО в 2-8 раз по сравнению с использованием 12-часовой ЭЕ.

...

Подобные документы

  • Определение токов в ветвях цепи и напряжения на резисторах методами контурных токов и узловых потенциалов. Расчет тока в одной из ветвей методами наложения или эквивалентного источника напряжения. Составление баланса активных и реактивных мощностей.

    контрольная работа [2,1 M], добавлен 06.12.2013

  • Алгоритм проведения расчетов по оценке энергетической эффективности от перевода времени. Изучение назначения прогнозов электропотребления. Характеристика оценивания эффектов от перехода часов на зимнее и летнее время статистическим и факторным методами.

    дипломная работа [2,8 M], добавлен 08.06.2017

  • Определение передаточных функций разомкнутой системы автоматического регулирования и замкнутой системы по каналу задающего, возмущающего воздействий и по ошибке от задающего и возмущающего воздействий. Оценка устойчивости разомкнутой и замкнутой системы.

    курсовая работа [276,6 K], добавлен 22.02.2012

  • Радиолокационные цели: аэродинамические, баллистические и космические, наземные и наводные, природного происхождения. Процесс получения радиолокационной информации. Диаграмма переизлучения самолета. Эксплуатационная надежность радиолокационной станции.

    реферат [1,4 M], добавлен 13.10.2013

  • Определение мощности электрической осветительной установки для создания заданной освещённости слесарного цеха. Выбор системы освещения, источников света, светильников и их размещения. Применение метода коэффициента использования светового потока.

    курсовая работа [868,0 K], добавлен 05.10.2014

  • Понятие о радиолокации. Принципы радиолокационного обнаружения целей. Методы измерения координат и скорости движения целей. Основные тактико-технические данные радиолокационных станций (РЛС). Типы бортовых РЛС, их назначение и краткая характеристика.

    реферат [842,5 K], добавлен 10.10.2011

  • Метод коэффициента использования светового потока. Расчет общего равномерного искусственного освещения горизонтальных поверхностей при отсутствии различных затенений. Определение оптимальной высоты расположения светильника над освещаемой поверхностью.

    практическая работа [106,1 K], добавлен 24.06.2013

  • Развитие рынка электроэнергии на основе экономического метода управления, условия его эффективности и современное состояние. Разработка структурной схемы устройства. Выбор измерительных и промежуточных преобразователей. Оценка и определение его точности.

    курсовая работа [62,6 K], добавлен 15.11.2014

  • Тепловое рассеяние туманов - первый успешный метод, который применялся английскими ВВС во Вторую Мировую войну на ряде аэродромов. Воздействия на переохлажденные облака на больших площадях с целью увеличения суммы осадков или с целью их рассеивания.

    лекция [562,3 K], добавлен 23.11.2010

  • Методика и основные этапы расчета теплопотребления зданий (на отопление и горячее водоснабжение), определение нормативного потребления горячей и холодной воды. Разработка и оценка эффективности мероприятий по энергосбережению в системе отопления.

    задача [354,2 K], добавлен 25.02.2014

  • Математические операции с приближенными числами. Общая характеристика и классификация научных экспериментов. Планирование эксперимента и статистическая обработка экспериментальных данных. Эффективность использования статистических методов планирования.

    реферат [285,9 K], добавлен 26.10.2008

  • Выбор рационального метода избирания объектов и принцип кодирования информации. Определение числа каскадов счетчика распределителя. Обоснование выбора дешифратора. Определение расчетной частоты мультивибратора при заданном режиме работы полукомплекта.

    курсовая работа [1,9 M], добавлен 13.11.2012

  • Расчет линейной и трехфазной электрической цепи: определение токов в ветвях методами контурных токов и эквивалентного генератора; комплексные действующие значения токов в ветвях. Схема включения приёмников; баланс активных, реактивных и полных мощностей.

    курсовая работа [1,9 M], добавлен 31.08.2012

  • Типы электрохимических цепей и электродов. Сущность метода потенциометрии. Определение растворимости малорастворимой соли на примере хлорида серебра с использованием концентрационной цепи с переносом. Нормальный элемент Вестона, специфика его устройства.

    курсовая работа [3,0 M], добавлен 06.04.2015

  • Определение активной и реактивной составляющих напряжения короткого замыкания. Выбор конструкции и определение размеров основных изоляционных промежутков главной изоляции обмоток. Определение размеров пакетов и активных сечений, веса стержня и ярма.

    дипломная работа [6,1 M], добавлен 28.09.2015

  • Определение времени нагрева металла в печи. Предварительное определение основных размеров печи, степени развития кладки, эффективности толщины газового слоя. Расчет времени томления металла. Выбор футеровки. Статьи прихода теплоты, затраченной на нагрев.

    курсовая работа [282,4 K], добавлен 19.11.2013

  • Изучение принципов действия химических источников тока. Определение токовой и энергетической эффективности аккумуляторов. Формулы для вычисления значения протекающего тока и заряда, который протекает через электрическую цепь за каждый промежуток времени.

    лабораторная работа [272,2 K], добавлен 07.05.2013

  • Задачей расчета является определение потребной мощности электрической осветительной установки для создания в производственном помещении заданной освещенности. Проектирование и расчет различных систем искусственного освещения. Метод светового потока.

    задача [25,7 K], добавлен 21.12.2009

  • Определение принципов действия, особенностей строения и способов регулирования вставок реле времени с редукторным замедляющим элементом, с механическим или часовым замедляющим элементом, пневматическим и электромагнитным замедляющими элементами.

    лабораторная работа [80,9 K], добавлен 28.08.2015

  • Выбор и обоснование основных размеров. Расчет обмотки статора и возбуждения, пусковой обмотки, магнитной цепи, параметров и постоянных времени. Масса активных материалов. Определение потерь и коэффициента полезного действия. Характеристики генератора.

    курсовая работа [654,6 K], добавлен 25.03.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.