Исследование и оптимизация источников вакуумного ультрафиолетового излучения на основе плазмы инертных газов

Анализ излучательних характеристик плазмы в Ar, Kr, Xe. Расчет импульсных разрядов в смеси Kr-Xe в широком диапазоне относительных концентраций. Условия достижения порога генерации на димерах инертных газов в импульсных разрядах с УФ-предыонизацией.

Рубрика Физика и энергетика
Вид автореферат
Язык русский
Дата добавления 15.02.2018
Размер файла 594,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

6.2 Проведён анализ литературы посвящённой методам разложения полихлорированных бифенилов (ПХБ), позволяющий сделать вывод о перспективности использования ВУФ излучения для деструкции ПХБ, в частности их водных растворов. Численно показана возможность деструкции молекул ПХБ , находящихся в водном растворе , облучаемом ВУФ источником (л=172 нм, I=1000 мВт/cм2) , приводящая к уменьшению их концентрации более чем в 10 раз.

6.3 Проведён анализ литературы, посвящённой воздействию ВУФ излучения на биологические молекулы (нуклеиновые кислоты, белки) и вирусы, позволяющий сделать вывод о возможности использования ВУФ излучения как для прямого воздействия на указанные объекты, так и для их разрушения с помощью продуктов ВУФ фотолиза воды. Проделаны численные расчёты, показавшие возможность деструкции поверхностного слоя ДНК в ядре клетки под действием продуктов ВУФ фотолиза молекул воды цитоплазмы толщиной r=10-4 см при облучении источниками с длиной волны л=172 нм , интенсивностью I=10 мВт/cм2 и 100 мВт/cм2 . Характерные временами деструкции составили t=2 с и 0.05 с соответственно.

Таким образом, в ходе выполнения работы расчётным путём были определены физические параметры, ответственные за формирование эффективного и интенсивного излучения источников ВУФ диапазона спектра на основе низкотемпературной (газоразрядной и пучковой) плазмы инертных газов, найдены характеристики, описывающие воздействие ВУФ излучения эксимеров на жидкую и газообразную воду, диоксиноподобные вещества и биологические молекулы.

Результаты работы способствуют совершенствованию нового класса источников ультрафиолетового излучения и развитию на их основе новых фотохимических технологий.

плазма инертный газ излучательный

СПИСОК ЦИТИРУЕМОЙ ЛИТЕРАТУРЫ

[1] F.Vollkommer and L.Hitzschke, Dielectric barrier discharge// Proceedings of the 8th International Symposium on the Science and Technology of Light Sources ( LS-8),Greifswald, Germany, p.51-60, (1998).

[2] Г.А.Волкова , Н.Н. Кириллова, Е.И.Павловская и А.В.Яковлева, ВУФ лампы на барьерных разрядах в инертных газах// ЖПС, т.XLI , вып.4, с.691-695, (1984).

[3] Y.Tanaka and M.Zelikoff, Continuous Emission Spectrum of Xenon on the Vacuum Ultraviolet Region// J.Opt.Soc.Am., v.44, p.254, (1954).

[4] J.Wieser, D.E.Murnick, A.Ulrich, H.A.Huggins, A.Liddle and W.L.Brown, Vacuum ultraviolet rare gas excimer light source// Rev.Sci.Instrum, v.68, N3, pp.1360-1364, (1997).

[5] http://www.ushio.co.jp/

[6] F.Muhlberger, J.Wieser, A.Ulrich and R.Zimmermann, Single Photon Ionization (SPI) via Incoherent VUV-Excimer Light: Robust and Compact Time-of-Flight Mass Spectrometer for On-Line, Real-Time Process Gas Analysis// Anal. Chem., v.74, pp.3790-3801, (2002).

[7] Ю.В.Медведев, В.Г.Иванов, Н.И.Середа, Ю.И.Полыгалов, В.И.Ерофеев, С.Д.Коровин, М.В.Ерофеев, Э.А.Соснин, А.И.Суслов, В.Ф.Тарасенко, В.А.Истомин, Воздействие мощного ультрафиолетового излучения на поток природного газа в проточном фотореакторе // Наука и техника в газовой промышленности, №3, сс.83-87, (2004).

[8] Э.А.Соснин, М.В.Ерофеев, В.Ф.Тарасенко, Фотоминерализация метанола в Xe2-фотореакторе (л ~ 172 нм) с аэрированием раствора// Известия вузов. Физика, №10, с.95-97, (2006).

[9] S.Kubodera, Y.Taniguchi, A.Hosotani, M.Katto, A.Yokotani, N.Miyanaga and K.Mima, Subpicosecond vacuum ultraviolet laser system for advanced material processing // Proc. Of SPIE , v.6452, p.645216, (2007).

[10] I.W.Boyd, J.-Y. Zhang and U. Kogelschatz, Development and Applications of UV Excimer Lamps, Photo-Excited Processes, ed. by A. Peled, Kluwer A.P., Boston, p.161-199, (2003).

[11] B.Eliasson and U.Kogelshatz, UV Excimer Radiation from Dielectric-Barrier Discharge// Appl. Phys. B, v.46, pp.299-303, (1988).

[12] K.V.Kozlov, P.A.Tatarenko and V.G.Samoilovich, Radiation kinetics and chemical reactivity of barrier discharges in humid argon // Proceedings of 10th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE X), Saga, Japan, p.47-50, (2006).

[13] F.Adler and S.Muller, Formation and decay mechanisms of excimer molecules in dielectric barrier discharges // J.Phys. D: Appl. Phys., v.33, pp.1705-1725, (2000).

[14] Г.А.Волкова, Глубина излучающего слоя и конструктивные решения ламп барьерного разряда //Оптический журнал, т.64, №7, с.31-33, (1997).

[15] М.И.Ломаев, В.С.Скакун, Э.А.Соснин, В.Ф.Тарасенко, Д.В.Шитц и М.В.Ерофеев, Эксилампы - эффективные источники спонтанного УФ- и ВУФ-излучения // УФН, т.173, №2, 201-217, (2003).

[16] S.Okazaki, M.Kogoma, M.Uehara and Y.Kimura, Appearance of stable glow discharge in air, argon, oxygen and nitrogen at atmospheric pressure using a 50 Hz source //J. Phys.D:Appl. Phys., v.26, pp.889-892, (1993).

[17] F.Massines, N.Gherardi, N.Naude and P.Segur, Glow and Townsend dielectric barrier discharges in various atmosphere//Plasma Phys. Control. Fusion , v.47, pp.B577-B588, (2005) .

[18] A.Oda, Y.Sakai, H.Akasi and H.Sugawara, One-dimensional modeling of low-frequency and high-pressure Xe barrier discharges for the design of excimer lamps // J.Phys. D: Appl. Phys., v.32, p.2726-2736, (1999).

[19] Г.А.Волкова, Л.П.Шишацкая, С.А.Яковлев, Принципы построения и основные характеристики маломощных ламп для вакуумной ультрафиолетовой области спектра// Оптический журнал, №3, с.66-70, (1995).

[20] Рохлин Н.Г., Разрядные источники света, М:Энергоатомиздат,1991,720 с.

[21] P.G.Wilkinson and E.T.Byram, Rare Gas Light Sources for the Vacuum Ultraviolet// Appl. Optics, v.4, N5, pp.581-588, (1965).

[22] K.H.Becker,K.H. Schoenbach and J.G.Eden , Microplasmas and applications // J.Phys.D:Appl. Phys., v.39, pp.R55-R70, (2006).

[23] Г.Н.Герасимов, Б.Е.Крылов, А.В.Логинов, С.А.Щукин, Вторые ВУФ континуумы ксенона, криптона, аргона, излучаемые сверхзвуковой струей при возбуждении постоянным разрядом// Оптика и спектроскопия, т.73, вып.6, сс. 1075-1080, (1992).

[24] С.К.Вартапетов, А.А.Жигалкин, К.Э.Лапшин, А.З.Обидин, В.Ю.Хомич и В.А.Ямщиков, Исследование электроразрядного ВУФ лазера на молекулярном фторе// Квант. эл., т.36, №5, с.393-398, (2006).

[25] J.E.M.Goldsmith and I.N.Knyazev, A simple compact high-repetition-rate hydrogen VUV laser for scientific applications //J.Appl. Phys., v.48 (12), pp.4912-4921, (1978).

[26] Н.Г.Басов, В.А.Данилычев и Ю.М.Попов, Вынужденное излучение в области вакуумного ультрафиолета // Квантовая электроника, т.1, №1, сc.29-34, (1971).

[27] Г.А.Волкова, Г.Н.Герасимов, Усиление ВУФ континуума барьерного разряда в ксеноне//Оптический журнал, т.65, №4, сc.15-20, (1998).

[28] W. Sasaki , T.Shirai, S.Kubodera,J.Kawanaka,T.Igarashi, Observation of vacuum-ultraviolet Kr2* laser oscillation pumped by a compact discharge device // Optics Letters, 26, pp. 503-505, (2001).

[29] B.Ohtani, H.Nagasaki, S. Nishimoto, K.Sakano and T.Kagiya, Far ultraviolet induced decomposition of thymine in deaerated and aerated aqueous solutions// Can. J. Chem., v.64, pp.2297-2300, (1986).

[30] В.Г.Архипкин, А.К.Попов, Нелинейное преобразование света в газах, Новосибирск, "Наука", 142 с., (1987).

[31] Casassa M.P., Golde M.F., Kvaran A. , Emission spectra of the noble-gas halides: the B(1/2)-A(1/2) system // Chem. Phys. Lett., v.59, N1, p.51, (1978).

[32] Автаева С.М. Барьерный разряд. Исследование и применение, Бишкек: Изд-во КРСУ, 290 с., (2009).

[33] Sosnin E.A., Sokolova I.V., Tarasenko V.F., Development and Applications of Novel UV and VUV Excimer and Exciplex Lamps for the Experiments in Photochemistry , In Book: Photochemistry Research Progress (Eds. by A. Sanchez, S.J. Gutierrez), Nova Science Publishers, pp. 225269 , (2008).

[34] Heit G., Neuner A., Saugy P.-Y., Braun A.M., Vacuum-UV (172 nm) Actinometry. The Quantum Yield of the Photolysis of Water // J. Chem. Phys. A, №102, pp.5551-5561, (1998).

Основные публикации по теме диссертации:

[1*] Г.Н.Герасимов, Б.Е.Крылов, Г.Н.Зверева, Р.Халлин, А.Арнесен, Ф.Хайкеншольд, ВУФ спектр эксимеров криптона, возбуждаемых в охлаждаемом разряде постоянного тока// Оптика и спектроскопия, т. 81, №6, сс.935-943, (1996).

[2*] Г.А.Волкова, Г.Н.Зверева, Токовые характеристики БР в инертных газах ( Ar, Kr, Xe)// Оптика и спектроскопия, т.106, №5, сс.718-722, (2009).

[3*] G.Gerasimov, R.Hallin, B.Krylov, A.Treshchalov, A.Morozov, A.Lissovski, G.Zvereva and A.Arnesen, The VUV narrow band emission from an inert gas mixture discharge// Proc. Of SPIE, v.6263, p.626311, (2006).

[4*] И.И.Галактионов, Г.Н.Зверева, Исследование неравновесного заселения колебательных уровней состояния d3Пg молекулы С2 // Оптика и спектроскопия, т.73, вып. 1 , сс.111-113, (1992).

[5*] Г.Н.Герасимов, Г.Н.Зверева, Численное моделирование барьерного разряда в Хe// Оптика и спектроскопия, т.90, №3, сс.376-383, (2001).

[6*] Г.А.Волкова, Г.Н.Герасимов, Г.Н.Зверева, Б.Е.Крылов, Лампа барьерного разряда// Патент RU 2 385 515 С2. Приоритет 20.11.2007г. Рег.№ заявки 2007142993/28, 20.11.2007.Опубл. 27.03.2010.Бюл. №9.

[7*] G.Zvereva, G.Volkova, G.Gerasimov, Electric characteristics of rare gases barrier discharges//, Proceedings of 10th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE X), Saga, Japan, pр.193-196, (2006).

[8*] Г.А.Волкова, Г.Н. Зверева, С.В.Автаева, Э.Б.Кулумбаев, Н.Ж.Кайрыев, А.В.Скорняков Исследование и моделирование барьерных разрядов с целью оптимизации эксимерных ламп // Научно-технический вестник Санкт-Петербургского государственного университета информационных технологий, механики и оптики, №43 , сс.161 -169, (2007).

[9*] G.Zvereva, G.Gerasimov, Calculations of Xe barrier discharge parameters// Contributed Papers of VII International Symposium on High Pressure Low Temperature Plasma Chemistry, v.1, pp.134-138, Greifswald, Germany, (2000).

[10*] G.Zvereva, M.Maaspuro, Investigations of DBD power supplier optimization//, Proceedings of 10th International Symposium on High Pressure Low Temperature Plasma Chemistry (HAKONE X), Saga, Japan, p.188, (2006).

[11*] Г.Н.Герасимов, Г.А.Волкова, Г.Н.Зверева, Р.Халлин, Ф.Хайкеншельд, ВУФ спектр барьерного разряда в смеси криптона и ксенона // Оптика и спектроскопия, т. 88, №6,сс.897-902, (2000).

[12*] Г.Н.Зверева, А.В.Логинов, Передача возбуждения в плазме барьерного разряда в смеси криптон-ксенон // Оптика и спектроскопия, т.90, №4, сс.570-576, (2001).

[13*] Г.Н.Зверева, Расчет параметров ВУФ излучения эксимеров смеси Kr-Xe в плазме барьерного разряда // Оптика и спектроскопия, т. 94, №2 , сс. 220-227, (2003).

[14*] Г.А.Волкова, Г.Н.Зверева, Исследование параметров барьерного разряда в смесях Kr-I2, Xe-I2 // Оптика и спектроскопия, т.96, №3, сс. 403-411, (2004).

[15*] С.М.Авдеев, Г.Н.Зверева, Э.А.Соснин, Исследование условий эффективной люминесценции I2* (342 нм) в барьерном разряде в смеси Kr-I2 // Оптика и спектроскопия, т.103, №6, сс. 949-955, (2007).

[16*] G.Zvereva, Calculations of Rare Gas-Iodine Mixtures Barrier Discharges Parameters// Proccedings of the 10th International Symposium on the Science and Technology of Light Sources (LS-10), Tulouse, France, pp.539-540, (2004).

[17*] G.N.Zvereva, G.A.Volkova, Investigations of Kr-I2 Barrier Discharge// Proceedings of the XXV International Conference on Phenomena in Ionized Gases (XXV ICPIG), Nagoya, Japan, pp.329-330, (2001).

[18*] G.Zvereva and G.Volkova, Investigations of Rare Gas-Iodine Barrier Discharge Efficiency// Proceedings of the XXVI International Conference on Phenomena in Ionized Gases (XXVI ICPIG), Greifswald, Germany, (2003).

[19*] G.N.Gerasimov, G.A.Volkova, G.N.Zvereva, VUV spectrum of barrier discharge in Xe-Kr mixture // Proceedings of the 8th International Symposium on the Science and Technology of Light Sources ( LS-8),Greifswald, Germany, pр.248-249, (1998).

[20*] G.Zvereva, G.Gerasimov, Calculations of Kr-Xe mixture barrier discharge parameters// Proceedings of The 9th International Symposium on the Science and Technology of Light Sources, Ithaca, USA, pp.427-428, (2001).

[21*] Г.Н.Герасимов, Г.Н.Зверева, Численное моделирование процессов в плазме разряда в криптоне // Оптический журнал, т.64, №1, сс.20-24, (1997).

[22*] G.Gerasimov, B.Krylov, A.Loginiv, G.Zvereva, R.Hallin, A.Arnesen, F.Heijkenskjold, The vacuum ultraviolet spectrum of krypton and xenon excimers excited in a cooled dc discharge // Appl. Phys. B, v.66, pp.81-90, (1998).

[23*] Г.Н.Зверева , Расчет параметров эксимерных источников света на основе положительного столба тлеющего разряда // Оптика и спектроскопия, т.109, №3, рр.554-560, (2010).

[24*] Г.Н.Зверева ,Расчет параметров плазмы криптона возбуждаемой пучком электронов с дополнительным подогревом высокочастотным электрическим полем// Оптика и спектроскопия, т.108, №1, сс.8-15, (2010).

[25*] G.Zvereva, T.Ottenthal, R.Krucken , A.Morozov and A.Ulrich, Numerical simulation of electron beam sustained rf discharges//Abstracts of VIII-th International Conference for Atomic and Molecular Pulsed Lasers (AMPL -2007), Tomsk, p.82, (2007).

[26*] А.А.Великин, И.И.Галактионов, Г.Н.Зверева и М.А.Канатенко, Использование анизотропно-резистивных электродов в СО2 лазерах высокого давления// Кв. электроника, т.20, с.628, (1990).

[27*] Г.Н.Зверева, Исследование усилительных свойств газоразрядной плазмы криптона // Оптика и спектроскопия, т.100, №6, сс.896-903, (2006).

[28*] Г.Н.Зверева, М.И.Ломаев, Д.В.Рыбка, В.Ф.Тарасенко, О возможности применения объемного разряда, инициируемого пучком электронных лавин, для создания лазера на димерах криптона // Оптика и спектроскопия, т.102, №1, сс.36-43, (2007).

[29*] Г.Н.Зверева, Исследование разложения воды вакуумным ультрафиолетовым излучением// Оптика и спектроскопия, т.108, №6, сс.787-794, (2010).

[30*] G.Zvereva, E.Senenko, Investigation of liquid and vapor water photolysis by means of VUV excimer lamps emission// Proceedings of 4th International Congress on Cold Atmospheric Pressure Plasmas: Sources and Applications (CAPPSA 2009), Ghent, Belgium, pp.168-171, (2009).

[31*] G.Zvereva, Investigations of water photolysis by means of vacuum ultraviolet emission of excimer lamps// Abstracts of VII-th International Conference for Atomic and Molecular Pulsed Lasers (AMPL-2009), Tomsk, p.88, (2009).

[32*] G.Zvereva, Investigation of water photolysis by means of VUV excimer lamps, Proceedings of The 12th International Symposium on the Science and Technology of Light Sources, Eindhoven, Netherlands, pp.319-320, (2010).

Размещено на Allbest.ru

...

Подобные документы

  • Применение косвенных методов рентгеновской диагностики плазмы индуцированных вакуумных разрядов при лазерном инициировании. Применение камеры-обскуры для исследования пространственных характеристик сильноточного вакуумного разряда на парах металла.

    отчет по практике [1,6 M], добавлен 08.07.2015

  • Основные параметры и свойства положительного столба (ПС) тлеющего и дугового разрядов. Метастабильные атомы в ПС. Явление катафореза в смеси газов. Основные механизмы накачки возбужденных энергетических уровней газа. Излучение ПС, параметры плазмы.

    контрольная работа [511,1 K], добавлен 25.03.2016

  • Применение методов ряда фундаментальных физических наук для диагностики плазмы. Направления исследований, пассивные и активные, контактные и бесконтактные методы исследования свойств плазмы. Воздействие плазмы на внешние источники излучения и частиц.

    реферат [855,2 K], добавлен 11.08.2014

  • Возникновение плазмы. Квазинейтральность плазмы. Движение частиц плазмы. Применение плазмы в науке и технике. Плазма - ещё мало изученный объект не только в физике, но и в химии (плазмохимии), астрономии и многих других науках.

    реферат [43,8 K], добавлен 08.12.2003

  • Расчет основных параметров низкотемпературной газоразрядной плазмы. Расчет аналитических выражений для концентрации и поля пространственного ограниченной плазмы в отсутствие магнитного поля и при наличии магнитного поля. Простейшая модель плазмы.

    курсовая работа [651,1 K], добавлен 20.12.2012

  • Механизм функционирования Солнца. Плазма: определение и свойства. Особенности возникновения плазмы. Условие квазинейтральности плазмы. Движение заряженных частиц плазмы. Применение плазмы в науке и технике. Сущность понятия "циклотронное вращение".

    реферат [29,2 K], добавлен 19.05.2010

  • Источники вторичного электропитания как неотъемлемая часть любого электронного устройства. Рассмотрение полупроводниковых преобразователей, связывающих системы переменного и постоянного тока. Анализ принципов построения схем импульсных источников.

    дипломная работа [973,7 K], добавлен 17.02.2013

  • Агрегатные состояния вещества. Что такое плазма? Свойства плазмы: степень ионизации, плотность, квазинейтральность. Получение плазмы. Использование плазмы. Плазма как негативное явление. Возникновение плазменной дуги.

    доклад [10,9 K], добавлен 09.11.2006

  • Состав и марки технических сжиженных углеводородных газов, применяемых в газоснабжении. Свойства, достоинства и недостатки сжиженных газов, их хранение и использование. Одоризация смеси газов и жидкостей. Диаграммы состояния СУГ. Пересчёт состава смесей.

    реферат [201,1 K], добавлен 11.07.2015

  • Описание конструкции котла. Расчет продуктов сгорания, объемных долей трехатомных газов и концентраций золовых частиц в газоходах котла. Определение расхода топлива. Коэффициент полезного действия котла. Расчет температуры газов на выходе из топки.

    курсовая работа [947,7 K], добавлен 24.02.2023

  • Роль эффекта "накопления" в непрозрачном твердом теле под действием излучения лазера, с помощью регистрации ионизационного состава плазмы, эмитированных с поверхности твердых тел при многократном облучении. Использование метода масс-спектрометрии.

    статья [13,3 K], добавлен 22.06.2015

  • Теоретический анализ основных контуров газонаполненного генератора импульсных напряжений, собранного по схеме Аркадьева-Мракса. Расчет разрядной схемы ГИН, разрядного контура на апериодичность. Измерение тока и напряжения ГИНа. Конструктивное исполнение.

    курсовая работа [1,3 M], добавлен 19.04.2011

  • Физические основы диагностики плазмы. Методы излучения, поглощения и рассеяния для определения плотностей частиц в дискретных энергетических состояниях. Лазерный резонатор, спектроскопия поглощения с частотно-перестраиваемыми и широкополосными лазерами.

    реферат [677,7 K], добавлен 22.12.2011

  • Использование переходных и импульсных характеристик для расчета переходных процессов при нулевых начальных условиях и импульсных воздействиях на линейные пассивные цепи. Сущность и особенности использования интеграла Дюамеля и метода переменных состояний.

    презентация [270,7 K], добавлен 28.10.2013

  • Определение политропного процесса. Способы определения показателя политропы. Вычисление теплоемкости и количества теплоты процесса. Расчет термодинамических свойств смеси, удельных характеристик процесса. Проверка расчётов по первому закону термодинамики.

    контрольная работа [170,2 K], добавлен 16.01.2013

  • Природа ультрафиолетового излучения, его диапазон и действие на клетку, кожу и атмосферу. Искусственные источники ультрафиолетового излучения: бактерицидные лампы и облучатели. Бактерицидное и биологическое действие ультрафиолетового излучения.

    курсовая работа [83,1 K], добавлен 01.02.2011

  • Природа явления, свойства, способы получения и использование сжиженных газов. Безопасный метода Линде, эффективный метод Клода, исследование свойств при нулевой температуре с помощью сжиженных газов. Применение газов в промышленности, медицине.

    реферат [303,8 K], добавлен 23.04.2011

  • Особенности определения эксергии рабочего тела. Первый закон термодинамики. Круговой цикл тепловой машины. Параметры смеси газов. Конвективный и лучистый теплообмен. Температурный режим при пожаре в помещении. Изменяющиеся граничные условия 3 рода.

    контрольная работа [696,6 K], добавлен 19.05.2015

  • Содержание молекулярно-кинетической теории газов. Химический состав жидкости. Особенности межмолекулярного взаимодействия в данном агрегатном состоянии. Механические и тепловые свойства твердых тел. Практическое применение плазмы - ионизованного газа.

    контрольная работа [26,0 K], добавлен 27.10.2010

  • Основы теории диффузионного и кинетического горения. Анализ инновационных разработок в области горения. Расчет температуры горения газов. Пределы воспламенения и давления при взрыве газов. Проблемы устойчивости горения газов и методы их решения.

    курсовая работа [794,4 K], добавлен 08.12.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.