Влияние смазочных материалов на процесс трения и изнашивания
Зависимость прочности граничной пленки от наличия в ней активных молекул, их качества и количества. Анализ механизма трения при граничной смазке. Зависимость эффективности смазочного материала от факторов адсорбции и от химического взаимодействия металла.
Рубрика | Физика и энергетика |
Вид | статья |
Язык | русский |
Дата добавления | 21.02.2018 |
Размер файла | 15,7 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Ивановская пожарно-спасательная академия ГПС МЧС России
Влияние смазочных материалов на процесс трения и изнашивания
Зарубин Василий Павлович, преподаватель
Аннотация
При граничной смазке поверхности сопряженных тел разделены слоем смазочного материала весьма малой толщины. Наличие граничного слоя или граничной пленки снижает силы трения, по сравнению с трением без смазочного материала, в 2-10 раз и уменьшает износ сопряженных поверхностей в сотни раз.
При граничной смазке поверхности сопряженных тел разделены слоем смазочного материала весьма малой толщины. Наличие граничного слоя или граничной пленки снижает силы трения, по сравнению с трением без смазочного материала, в 2-10 раз и уменьшает износ сопряженных поверхностей в сотни раз [2]. Все масла способны адсорбироваться на металлической поверхности. Прочность пленки зависит от наличия в ней активных молекул, качества и количества последних. Хотя минеральные смазочные масла являются механической смесью неактивных углеводородов, они за исключением неработающих сверхчистых масел, всегда имеют включения органических кислот, смол и других поверхностно-активных веществ. Жирные кислоты входят в состав масел растительно-животного происхождения, а также в состав пластичных смазочных материалов. В связи с этим почти все смазочные масла образуют на металлических поверхностях граничную фазу квазикристаллической структуры толщиной до 0.1 мкм, обладающую более или менее прочной связью с поверхностью и продольной когезией. При наличии относительно толстой масляной прослойки между поверхностями трения переход от ориентированной структуры масла к неориентированной совершается скачком [6].
Молекулы смазочного материала ориентируются перпендикулярно к твердой поверхности, что позволяет представить для наглядности граничную пленку в виде ворса [5]. При взаимном перемещении поверхностей трения «ворсинки» как бы изгибаются в противоположные стороны. На самом деле происходит сдвиг с перекосом квазикристаллической структуры пленки. Сопротивление ее скольжению в таком состоянии несколько повышено.
Смазочный материал в граничном слое анизотропен, в тангенциальном направлении молекулярные слои легко изгибаются и при толщине слоя больше некоторой критической величины скользят друг по другу. По нормали к твердой поверхности пленка обладает высоким сопротивлением к сжатию: ее несущая поверхность исчисляется десятками тысяч килограммов на 1 кв. см. Деформация сжатия пленки в довольно высоком интервале не выходит за пределы упругости [1].
Механизм трения при граничной смазке представляется в следующем виде. Под нагрузкой происходят упругая и пластическая деформации на площадках контакта, под которыми здесь следует понимать площадки наиболее близкого прилегания поверхностей, покрытых граничной пленкой смазочного материала, вплоть до мономолекулярного слоя. На площадках контакта может произойти взаимное внедрение поверхностей без нарушения целостности смазочной пленки. Сопротивление движению при скольжении складывается из сопротивления сдвигу граничного слоя и сопротивления «пропахиванию» поверхностей внедрившимися объемами. Кроме того на площадках контакта, подвергнутых наиболее значительной пластической деформации, и в местах с высокими местными температурами может произойти разрушение смазочной пленки с наступлением адгезии обнажившихся поверхностей и даже схватывание металлов на микроучастках [5]. Это вызывает дополнительное сопротивление движению.
Благодаря подвижности молекул смазочного материала на поверхности трения адсорбция протекает с большой скоростью, что сообщает смазочной пленке свойство «самозалечивания». Это свойство играет большую роль в предупреждении лавинного процесса схватывания. Не возобновляемая граничная пленка по мере возрастания пути трения изнашивается, масло из пленки адсорбируется на продукты изнашивания и уносится с поверхности трения; происходит сублимация пленки и удаление масла в атмосферу. Окисление пленки способствует дезориентации структуры и разрушению ее. Вязкость масла не влияет на процесс граничной смазки. Масла с одинаковой вязкостью, но разных марок имеют разное смазывающее действие. Добавление в граничные слои смазочного материала и водных растворов поверхностно - активных веществ повышает толщину граничного слоя и способствует уменьшению износа до 2 раз [7].
Эффективность смазочного материала помимо факторов адсорбции зависит от химического взаимодействия металла. Жирные кислоты, вступая в реакцию с металлом поверхности, образуют мыла, т.е. металлические слои жирных кислот, способные вследствие свойственной им высокой когезии выдерживать без разрушения значительные деформации. Химическим явлениям принадлежит важная роль в организации смазочного действия. Это подтверждается тем, что инертные металлы и стекло плохо смазываются. Имеются косвенные основания считать, что между металлом и углеводородными маслами протекают реакции, способствующие более прочной связи пленки с основанием.
В связи с невысокой термической стойкости граничной пленки, образуемой на металлических поверхностях обычными минеральными смазочными маслами, иногда прибегают к искусственному повышению ее химической активности. Этого достигают путем введения в масла специальных добавок (присадок), содержащих органические соединения серы, фосфора, хлора или эти элементы в разных сочетаниях. Вводят также мышьяк и сурьму. Хотя эти присадки прочно адсорбируются на поверхности трения, однако им отводится в процессе трения другая роль. В условиях высоких температур на микроконтактах активная часть присадок разлагается и, взаимодействуя с металлическими поверхностями, образует пленки сульфида железа, фосфата железа, хлористого железа или окисленных хлоридов т.д. [5].
Образовавшиеся пленки предотвращают металлический контакт, понижают сопротивление трению, препятствуют дальнейшему локальному повышению температуры. Пленка оказывает слабое сопротивление срезу, срабатывается и восстанавливается вновь.
У сульфидов температура плавления выше, чем у хлорированных углеводородов, и смазывающая способность сохраняется до температуры 800 0С. Ниже критической температуры пленка ведет себя как твердый смазочный материал.
Очевидно, действие присадок неэффективно, если металл не вступает в реакцию с активной частью присадки. Например, платина и серебро не вступают в реакцию с серой [1].
молекула смазочный адсорбция трение
Список литературы
1. Адлер, Ю.П., Маркова Е.В., Грановский Ю.В. Планирование эксперимента при поиске оптимальных условий / Ю.П. Адлер [и др.]. - М.: Наука, 1976. - 279 с.
2. Айвазян, С.А. Статистическое исследование зависимостей /С.А. Айвазян. - М.: Металлургия, 1966.
3. Алехин, В.П. Физика прочности и пластичности поверхностных слоев металлов / В.П. Алехин. - М.: Изд. Наука, 1983. - 280 с.
4. Анурьев, В.И. Справочник конструктора - машиностроителя / В.И. Ануфриев: В 3-х. т. Т.1. - 6-е изд., перераб. и доп. - М.: Машиностроение, 1982. - 736 с.
5. Ахматов, А.С. Молекулярная физика граничного трения /А.С. Астахов. - М.: Физматгиз, 1963. - 472 с.
6. Белый, В.А., Свириденок А.И., Петроковец М.И. [и др.] Трение и износ материалов на основе полимеров /В.А. Белый [и др.]. - Минск: Наука и техника, 1976. - 430 с.
7. Белый, В.А. Роль структуры поверхностных слоев в процессе внешнего трения полимерных материалов В.А. белый. - Минск: Наука и техника, 1989.
8. Боден, Ф.П., Тейбор Д. Трение и смазка / Ф.П. Боден, Д. Тейбор / перевод с англ. под ред. И.В. Крагельского. - М.: Машиностроение, 1960. - 151 с.
9. Бондюгин, В.М., Быченков В.В. Ответы на вопросы по триботехнике /В.М. Бондюгин, В.В. Быченков // Эффект безызносности и триботехнологии. - 1992. - № 1. - С. 67-69.
Размещено на Allbest.ru
...Подобные документы
Сущность закона определения максимальной силы трения покоя. Зависимость модуля силы трения скольжения от модуля относительной скорости тел. Уменьшение силы трения скольжения тела с помощью смазки. Явление уменьшения силы трения при появлении скольжения.
презентация [265,9 K], добавлен 19.12.2013Трение как процесс взаимодействия твердых тел при относительном движении либо при движении твердого тела в газообразной или жидкой среде. Виды трения, расчет трения покоя, скольжения и качения. Расчет коэффициентов трения для различных пар поверхностей.
практическая работа [92,5 K], добавлен 10.05.2010Сущность трения, износа и изнашивания в современной механике. Разновидности трения и их отличительные признаки. Оценка влияния скорости скольжения и температуры на свойства контакта и фрикционные колебания. Инерционные и упругие свойства узлов трения.
курсовая работа [2,7 M], добавлен 29.08.2008Характеристика приближенных методов определения коэффициента трения скольжения, особенности его расчета для различных материалов. Значение и расчет силы трения по закону Кулона. Устройство и принцип действия установки для определения коэффициента трения.
лабораторная работа [18,0 K], добавлен 12.01.2010История возникновения силы трения - процесса взаимодействия тел при их относительном движении (смещении) либо при движении тела в газообразной или жидкой среде. Возникновение сил трения скольжения и покоя на стыке соприкасающихся тел, способы уменьшения.
реферат [1,2 M], добавлен 30.07.2015Сила трения как сила, возникающая при соприкосновении тел, направленная вдоль границы соприкосновения и препятствующая относительному движению тел. Причины возникновения трения. Сила трения покоя, скольжения и качения. Применение смазки и подшипников.
презентация [2,9 M], добавлен 12.11.2013Сила трения как сила, возникающая при соприкосновении тел, направленная вдоль границы соприкосновения и препятствующая относительному движению тел. Причины возникновения трения. Роль силы трения в быту, в технике и в природе. Вредное и полезное трение.
презентация [1,5 M], добавлен 09.02.2014Причина возникновения силы трения и ее примеры: движение оси колеса, шарик, катящийся по горизонтальному полу. Формулы расчета силы трения в физике. Роль силы трения в жизнедеятельности на Земле: осуществление ходьбы, вращение ведущих колес экипажа.
презентация [90,8 K], добавлен 16.01.2011Вязкость смазочных материалов. Жидкокристаллические слои и их особенности. Исследования ЭЖК слоев. Капиллярный вискозиметр для исследования тонких неоднородных жидких прослоек. Исследование особенности граничного трения ротационным вискозиметром.
дипломная работа [921,2 K], добавлен 12.03.2008Трения в макро- и наномире. Принципиальное отличие сил трения от сил адгезии. Движение твердого тела в жидкой среде. Основные типы галактик: эллиптические, спиральные и неправильные. Пространственная структура Вселенной. Принцип относительности Галилея.
презентация [2,1 M], добавлен 29.09.2013Силы, возникающие между соприкасающимися телами при их относительном движении. Определение величины и направления силы трения скольжения, закон Амонтона—Кулона. Виды трения в механизмах и машинах. Сцепление с поверхностью как обеспечение перемещения.
презентация [820,2 K], добавлен 16.12.2014Понятие и физическое обоснование сухого трения, условия его возникновения, разновидности: скольжения и качения. Сущность соответствующих законов, сформулированных Кулоном. Вибродиагностика параметров сухого некулонова трения. Модель Барриджа и Кнопова.
доклад [231,7 K], добавлен 15.10.2014Характеристика основных стадий гетерогенного взаимодействия - адсорбции, химической реакции и десорбции. Содержание теории активных центров Лангмюра-Хиншельвуда. Закономерности взаимодействия химически активных частиц с поверхностью в условиях плазмы.
презентация [691,9 K], добавлен 02.10.2013Зависимость, описывающая основное принципиальное положение теории внешнего трения. Схема строения поверхности при повреждаемости и изнашиваемости. Понятие окислительного износа. Факторы возникновения усталостных повреждений. Описание фреттинг-процесса.
реферат [216,7 K], добавлен 23.12.2013Основные закономерности сенсибилизированной фосфоресценции в твёрдых растворах органических соединений. Растворители и соединения. Зависимость константы скорости излучательного перехода триплетных молекул акцептора от концентрации смеси.
курсовая работа [275,6 K], добавлен 07.04.2007Гравитационные, электромагнитные и ядерные силы. Взаимодействие элементарных частиц. Понятие силы тяжести и тяготения. Определение силы упругости и основные виды деформации. Особенности сил трения и силы покоя. Проявления трения в природе и в технике.
презентация [204,4 K], добавлен 24.01.2012Сущность молекулярно-динамического моделирования. Обзор методов моделирования. Анализ дисперсионного взаимодействия между твердой стенкой и жидкостью. Использование результатов исследования для анализа адсорбции, микроскопических свойств течения жидкости.
контрольная работа [276,7 K], добавлен 20.12.2015Закон сохранения энергии. Равноускоренное движение и свободное падение муфты, дальность ее полета. Измерение коэффициента трения скольжения за счет потенциальной энергии. Неточности измерительных приборов и погрешности, возникающие из-за этого.
лабораторная работа [75,2 K], добавлен 25.10.2012Определение поступательного движения. Действие и противодействие. Направление действия силы. Сила трения покоя и сила сухого трения. Силы взаимного притяжения. История о том, как "Лебедь, Рак и Щука везти с поклажей воз взялись" с точки зрения физики.
презентация [1,7 M], добавлен 04.10.2011Причина возникновения сил вязкого трения в жидкостях. Движение твердого тела в жидкости. Определение вязкости жидкости по методу Стокса. Экспериментальная установка. Вязкость газов. Механизм возникновения внутреннего трения в газах.
лабораторная работа [61,1 K], добавлен 19.07.2007