Обзор и анализ энергоэффективности промышленных роботов

Отношение производительности и скорости для двигателей постоянного тока. Характеристика кинематической схемы сопряженного последовательного манипулятора. Определение коэффициента мощности для движения в плоскости с учетом силы тяжести и гравитации.

Рубрика Физика и энергетика
Вид статья
Язык русский
Дата добавления 02.03.2018
Размер файла 318,5 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Институт сферы обслуживания и предпринимательства (филиал) ДГТУ

ОБЗОР И АНАЛИЗ ЭНЕРГОЭФФЕКТИВНОСТИ ПРОМЫШЛЕННЫХ РОБОТОВ

Пахомова Л.А.

Дубовсков В.В.

Притоманов В.В.

Важное значение имеет энергетическая эффективность промышленных манипуляторов, особенно когда манипулятор используется совместно с мобильным роботом, у которого питание является автономным. В данной статье будет рассматриваться энергетическая эффективность (с точки зрения потребления электрической энергии) пространственного трехзвенного манипулятора, параллельной структуры в сравнении с манипулятором последовательной структуры. Для корректности сравнения необходимо использовать одинаковые электрические двигатели и аналогичное рабочее пространство для манипуляторов обоих структур. В статье будет рассмотрены скорость и ускорение схвата манипулятора, а также статические нагружения из-за силы тяжести. По целому ряду условий проанализированных в работе было определено, что среднее потребление электрической энергии параллельным манипулятором в среднем составляет 26% от потребления манипулятора последовательной структуры. Это преимущество связано не только с сокращением движущейся массы, достигнутой параллельной конструкцией, но также вызвано особенностью конструкции. Движущаяся масса манипулятора параллельной структуры составляет 70% от манипулятора последовательной структуры. В статье сделан вывод, что статическая нагрузка, вызванная силой тяжести, примерно удваивает использование энергии обоих манипуляторов, не оказывая существенного влияния на их относительную эффективность использования энергии.

На сегодняшний день степень автоматизации и роботизации промышленных производств весьма высока. Применение промышленных манипуляторов, в современных производствах, достигает более 50% и любые улучшения в эффективности расходования энергии манипуляторами будут экономически и экологически выгодны. Кроме того, когда роботизированный манипулятор используется совместно с автономным мобильным роботом (для взаимодействия с окружающей средой, или для оказания помощи на открытых пространствах), энергоэффективность имеет решающее значение для продления срока службы батареи.

Ряд работ, посвящённых энергоэффективности роботов опирается на идею построения оптимальной траектории движения [5]. Встречаются работы, посвящённые исследованию влияния типа механизма, который используется для манипулятора, на его энергоэффективность [4]. Во всех работах, посвящённых изучению энергоэффективности манипуляторов и промышленных роботов, есть ряд допущений, сравнение ведется с использованием критериев, не пригодных для практического применения. Так, например, выбор типа двигателя, в первую очередь, может быть обусловлен вопросами не энергоэффективности, а вопросами области применения, точности, надежности и т.д.

Целью данной работы является сравнение энергоэффективности (с точки зрения потребления электрической энергии) параллельного и последовательного манипуляторов с одинаковыми двигателями и аналогичным рабочим пространством. Данная задача весьма актуальна ввиду того, что манипуляторы параллельной структуры, в последнее время, набирают популярность и активно внедряются в промышленность.

Прежде чем рассматривать вопросы энергопотребления манипуляторов, нужно изучить эффективность электродвигателей постоянного тока, которые используются в большинстве роботов. У двигателей постоянного тока, ток якоря пропорционален крутящему моменту двигателя:

,

где Г - крутящий момент двигателя, а Km - постоянная крутящего момента. Напряжение на якоре двигателя:

,

где - скорость вращения якоря двигателя, Kb - постоянная ЭДС, La - индуктивность якоря, а Ra - сопротивление якоря. Моментальное использование мощности двигателя рассчитывается:

Механическая мощность:

Эффективность двигателя можно определить, как отношение механической на электрическую мощности, т.е. - Pmech/Pelect. Графики эффективности бесколлекторного двигателя постоянного тока показаны на рисунке 1. Эффективность зависит от скорости вращения двигателя и равна нулю при нулевых оборотах, поскольку электрическая мощность поглощается сопротивлением якоря. В манипуляторах с различными кинематическими конструкциями требуются двигатели с разной скоростью вращения вала, это и является решающим фактором.

Рисунок 1 - Отношение производительности и скорости для двигателей постоянного тока

Выбор манипулятора

Обычный манипулятор с рабочим телом двигается поступательно, а не вращательно. Для многих задач достаточно три поступательные степени свободы. Поэтому в рассмотрении выберем манипулятор с тремя поступательными степенями свободы (X, Y, Z). Исходя из вышеприведенных критериев выбран параллельный манипулятор, разработанный университетом Мэриленда [1]. Его кинематическая структура показана на рисунке 2. Последовательный манипулятор выбран классической конструкции, с тремя степенями свободы, кинематическая структура которого, представлена на рисунке 3.

Потребляемая мощность для последовательного манипулятора

Динамика манипулятора была получена с использованием уравнений Лагранжа. Массы звеньев считались установленными в их средних точках, и полезная нагрузка была смоделирована в виде точечной массы, расположенной на рабочем теле.

Рисунок 2 - Кинематическая схема параллельного манипулятора Мэриландского университета

Для каждого соединения, крутящий момент двигателя выражается следующим уравнением:

,

где Rg - передаточное число, Jm = Ja + Jg - является суммой инерции двигателя и механизма, ф - крутящий момент. Ток якоря двигателя, напряжение и мгновенная мощность используются в уравнении 1, 2, 3. Среднее абсолютное использование мощности для манипулятора:

где n - номер двигателя, a T - период потребления. Следует отметить, что потребляемая энергия должна быть рассчитана как произведение Ра на Т.

Рисунок 3 - Кинематическая схема сопряженного последовательного манипулятора

Потребляемая мощность для параллельного манипулятора

Из обратных кинематических уравнений, представленные в уравнении [2], получены скорость и ускорение. Соединительные звенья для каждой стороны определяются так, как показано на рисунке 4.

Рисунок 4 - Определение совместных сторон

Три уравнения связи для манипулятора:

Сравнение мощности

Методы, описанные ранее, используются для расчета значений Pa для манипуляторов. Для сравнения определим коэффициент мощности как:

Когда PR>1 параллельный манипулятор эффективнее, чем последовательный. Мощность, потребляемая каждым манипулятором будет меняться в зависимости от его положения, скорости и ускорения. Чтобы ограничить область действия, будем считатт, что рабочее тело манипулятора следует линейной траектории в направлении к одной из осей координат (X, Y или Z), начиная с точки покоя, с постоянным ускорением, а затем и с равномерным торможением. Значения - Pa и PR будут рассчитаны для ускорения и средних скоростей. Для определения влияния положения, вычислялось соотношение мощности для малых движений. Это все происходило в одинаково разнесенных точках на плоскости, через общую рабочую область манипуляторов, для получения коэффициента мощности.

Еще одна проблема заключается в эффекте статической нагрузки из-за действия силы тяжести. Для пространственного применения, или при статическом балансе (включая полезную нагрузку), гравитационная постоянная равна нулю. двигатель ток манипулятор гравитация

На рисунках 5 и 6 показан более подробно коэффициент мощности при Z=0,75 м. На рисунке 7 показано соотношение мощности от площади. В целом последовательный манипулятор потреблял больше энергии в центре рабочей области и возле краев. Параллельный манипулятор имел относительно постоянное энергопотребление, которое увеличивалось, когда он приближался к краю рабочей области. В результате наблюдается наибольший коэффициент мощности в центре и по краям рабочей области (светлая область на рисунках). Такая же картина наблюдалась и при Х=0 в рабочей области. На рисунке 5 меньшие значения PR можно увидеть вблизи х=0, у=±0,3 м.

Рисунок 5 - Коэффициент мощности для движения в плоскости X, Z = 0,75 м с учетом силы тяжести. (Примечание: Для улучшения контрастности изображения PR значения больше 5 не отображаются)

В данных местах первый узел не нужен для последовательного манипулятора, чтобы обеспечить движение по оси X, поэтому его энергопотребление уменьшается.

Для изучения влияния скорости и ускорения на энергопотребление и соотношение мощности, использовались перемещение в 0,3 м по осям X, У и Z с ускорением равным от 0,6 до 4,8 м/с2. Учитывая, что механическая мощность равна произведению силы на скорость, то средняя мощность будет расти линейно с произведением ускорения на среднюю скорость. Эта гипотеза верна для обоих типов манипулятора, когда сила тяжести равна нулю.

Рисунок 6 - Коэффициент мощности поверхности для движения в плоскости Z, Z = 0,75 м с учетом гравитации. (Примечание: Для улучшения контрастности изображения PR значения больше 1,5 не отображаются.)

Однако, если учитывать силу притяжения эффект будет другим. Действие силы тяжести, влияет на ускорение и поэтому эффективность падает, а энергопотребление колеблется линейно со средней скоростью. При сравнении значений Pa можно заметить, что наличие силы притяжения (или поочередное отсутствие статической балансировки) повысило использование энергии почти вдвое. Из соответствующих PR-результатов было установлено, что соотношение мощности - это функция траектории движения, а не функция скорости или ускорения.

Рисунок 7 - Коэффициент мощности поверхности для движения в плоскости У, X = 0 с учетом гравитации. (Примечание: Для улучшения контрастности изображения PR значения больше 5 не отображаются)

Выводы

Среднее энергопотребление параллельного манипулятора составило всего 26% от энергопотребления последовательного манипулятора. Эта высокая эффективность не сильно отразилась на скорости, ускорении и статической нагрузке на рабочее тело, из-за действия силы тяжести. Преимущество параллельного манипулятора получено в основном из-за уменьшения движущейся массы. В параллельном манипуляторе есть свои недостатки. Он должен быть правильно спроектирован для того, чтобы обладать высокой эффективностью, о чем свидетельствует относительно низкая производительность некоторых конструкций параллельного манипулятора [3]. Желательно, чтобы его площадь была в два раза больше, чем в последовательном манипуляторе. Результаты также показали, что наличие силы тяжести (или отсутствие статической балансировки) привело к тому, что потребление энергии увеличилось почти в два раза. При действии силы тяжести, использование энергии всегда увеличивалось линейно со средней скоростью, а когда сила тяжести была равна нулю, она увеличивалась линейно, ускоряясь со средней скоростью.

Некоторые моменты в исследовании были исключены, а именно, потери при трении и неэффективность редукторов. Это приведет к увеличению энергопотребления обоих манипуляторов, поэтому значения Ра были занижены.

Литература

1. L.-W. Tsai. Robot Analysis: The Mechanics of Serial and Parallel Manipulators. Wiley-Interscience, 1999.

2. Черных, И В. Моделирование электротехнических устройств в MATLAB, Sim-PowerSystems и Simulink. - M: ДМК Пресс; Питер, 2008.

3. Дьяконов, В. П. и Пеньков, А. А. MATLAB и Simulink в электроэнергетике. Справочник. - М: Горячая линия-Телеком, 2009.

4. Валюкевич Ю.А., Алепко А.В., Дубовсков В.В., Яковенко Д.М. Анализ влияния конструктивных параметров манипулятора с параллельной структурой на точность позици-онирования схвата опубликована в журнале "Фундаментальные исследования" № 11 (часть 4) 2016, стр. 687-690.

5. Валюкевич Ю.А., Алепко А.В., Дубовсков В.В., Яковенко Д.М. Определение па-раметров движения схвата параллельного манипулятора с гибкими звеньями под действием на груз внешней возмущающей силы "Фундаментальные исследования" № 2 (часть 1) 2016, стр. 28-32.

Размещено на Allbest.ru

...

Подобные документы

  • Движение тела по эллиптической орбите вокруг планеты. Движение тела под действием силы тяжести в вертикальной плоскости, в среде с сопротивлением. Применение законов движения тела под действием силы тяжести с учетом сопротивления среды в баллистике.

    курсовая работа [1,2 M], добавлен 17.06.2011

  • Общие сведения о тяговых электродвигателях постоянного тока последовательного, параллельного и смешанного возбуждения. Универсальные характеристики различных тяговых двигателей. Тяговая характеристика и ограничения, накладываемые на эту характеристику.

    презентация [339,1 K], добавлен 27.09.2013

  • Регулирование частоты вращения двигателей постоянного тока посредством изменения потока возбуждения. Максимально-токовая защита электропривода. Скоростные характеристики двигателя. Схемы силовых цепей двигателей постоянного тока и асинхронных двигателей.

    курсовая работа [2,5 M], добавлен 30.03.2014

  • Расчет механических характеристик двигателей постоянного тока независимого и последовательного возбуждения. Ток якоря в номинальном режиме. Построения естественной и искусственной механической характеристики двигателя. Сопротивление обмоток в цепи якоря.

    контрольная работа [167,2 K], добавлен 29.02.2012

  • Принцип работы и устройство генераторов постоянного тока. Электродвижущая сила и электромагнитный момент генератора постоянного тока. Способы возбуждения генераторов постоянного тока. Особенности и характеристика двигателей различных видов возбуждения.

    реферат [3,2 M], добавлен 12.11.2009

  • История открытия и создания двигателей постоянного тока. Принцип действия современных электродвигателей. Преимущества и недостатки двигателей постоянного тока. Регулирование при помощи изменения напряжения. Основные линейные характеристики двигателя.

    курсовая работа [1,3 M], добавлен 14.01.2018

  • Принцип работы и устройство генератора постоянного тока. Типы обмоток якоря. Способы возбуждения генераторов постоянного тока. Обратимость машин постоянного тока. Двигатель параллельного, независимого, последовательного и смешанного возбуждения.

    реферат [3,6 M], добавлен 17.12.2009

  • Рассмотрение особенностей схемы автоматизированного электропривода постоянного тока. Анализ способов построения частотных характеристик объекта регулирования. Знакомство с основными этапами расчета принципиальной схемы аналогового регулятора скорости.

    курсовая работа [3,5 M], добавлен 07.11.2013

  • Питание двигателя при регулировании скорости изменением величины напряжения от отдельного регулируемого источника постоянного тока. Применение тиристорных преобразователей в электроприводах постоянного тока. Структурная схема тиристорного преобразователя.

    курсовая работа [509,4 K], добавлен 01.02.2015

  • Электромагнитная мощность генератора постоянного тока, выбор числа пар полюсов и коэффициента полюсной дуги. Расчет обмотки якоря и магнитной цепи, построение характеристики холостого хода. Определение магнитодвижущей силы возбуждения при нагрузке.

    курсовая работа [2,6 M], добавлен 27.10.2011

  • Принцип действия и область применения электрических машин постоянного тока. Допустимые режимы работы двигателей при изменении напряжения, температуры входящего воздуха. Обслуживание двигателей, надзор и уход за ними, ремонт, правила по безопасности.

    курсовая работа [1,6 M], добавлен 25.02.2010

  • Основные элементы и характеристики электрических цепей постоянного тока. Методы расчета электрических цепей. Схемы замещения источников энергии. Расчет сложных электрических цепей на основании законов Кирхгофа. Определение мощности источника тока.

    презентация [485,2 K], добавлен 17.04.2019

  • Определение скорости и ускорения точки методами ее простого и сложного движения. Рассмотрение равновесия манипулятора с рукой. Расчет кинетической энергии манипулятора путем подстановки преобразованных выражений в уравнения Лагранжа второго рода.

    контрольная работа [1,9 M], добавлен 27.07.2010

  • Основные источники и схемы постоянного оперативного тока. Принципиальная схема распределительной сети постоянного тока. Контроль изоляции сети постоянного тока. Источники и схемы переменного оперативного тока. Схемы и обмотки токового блока питания.

    научная работа [328,8 K], добавлен 20.11.2015

  • Методика и порядок расчета магнитной цепи машины по данным постоянного тока, чертеж эскиза. Определение Н.С. возбуждения при номинальном режиме с учетом генераторного режима работы. Чертеж развернутой схемы обмотки якоря при использовании петлевой.

    контрольная работа [66,2 K], добавлен 03.04.2009

  • Электрический привод с тиристорными преобразователями и двигателями постоянного тока как основной тип привода станков с ЧПУ. Основные характеристики электропривода и тип двигателя постоянного тока. Достоинства и недостатки высокомоментных двигателей.

    курсовая работа [1,5 M], добавлен 14.12.2012

  • Приведение переменных и параметров рабочего механизма к валу исполнительного двигателя. Основные характеристики и параметры электропривода. Силовые полупроводниковые преобразователи, принцип их действия и структура. Схемы двигателей постоянного тока.

    дипломная работа [1,0 M], добавлен 30.04.2011

  • Поверочный расчет катушки электромагнита постоянного тока на нагрев. Построение схемы замещения магнитной цепи. Магнитные проводимости рабочих и нерабочих воздушных зазоров, проводимость потока рассеяния. Определение намагничивающей силы катушки магнита.

    контрольная работа [413,9 K], добавлен 20.09.2014

  • Номинальная мощность и скорость. Индуктивность якорной обмотки, момент инерции. Электромагнитная постоянная времени. Модель двигателя постоянного тока. Блок Step и усилители gain, их главное назначение. График скорости, напряжения, тока и момента.

    лабораторная работа [456,6 K], добавлен 18.06.2015

  • Исторический обзор путей развития электрического двигателя постоянного тока. Открытие явления электромагнитной индукции М. Фарадеем в 1831 году. Выявление основных направлений и идей, которые привели к созданию современной конструкции двигателя.

    отчет по практике [5,0 M], добавлен 21.11.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.