Элементарные акты перемагничивания квазидвумерных магнетиков и доменных границ

Закономерности преобразования квазидвумерной системы спинов, локализованных в доменных границах. Разработка методов регистрации доменной структуры и ее преобразования в слоистых наномагнетиках. Изучение элементарных актов перемагничивания гетероструктур.

Рубрика Физика и энергетика
Вид автореферат
Язык русский
Дата добавления 02.03.2018
Размер файла 486,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

На правах рукописи

Автореферат

диссертации на соискание ученой степени

доктора физико-математических наук

Элементарные акты перемагничивания квазидвумерных магнетиков и доменных границ

Специальность 01.04.07 - Физика конденсированного состояния

Горнаков Владимир Степанович

Черноголовка - 2007

Работа выполнена в Институте физики твердого тела Российской академии наук.

Официальные оппоненты:

д-р физ. -мат. наук Волков Вадим Викторович,

д-р физ. -мат. наук профессор Звездин Анатолий Константинович,

д-р физ. -мат. наук Пономарев Борис Константинович,

Ведущая организация - ИФМ УрО РАН.

Защита состоится "___" ______________ 2008 г. в час.

на заседании диссертационного совета Д 002.100.01 при ИФТТ РАН, 142432 г. Черноголовка, Московская область, ул. Институтская, 2.

С диссертацией можно ознакомиться в библиотеке ИФТТ РАН.

Автореферат разослан "___" ___________ 2007 г.

Ученый секретарь диссертационного совета В.Н. Зверев.

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы диссертационной работы определяется резко возросшим интересом к физическим объектам с пониженной размерностью. К их числу относятся квазидвумерные системы спинов, локализованные в доменных границах (ДГ) и ультратонких однородных и гетерофазных магнитных пленках. С тех пор, как понятие доменной границы как переходного слоя между двумя однородно намагниченными доменами было впервые введено Блохом, двумерные магнитные структуры стали объектом всестороннего обсуждения и исследования. Было установлено, что процессы смещения ДГ оказывают решающее влияние на многие физические свойства магнитоупорядоченных кристаллов, определяющие возможности их широкого использования для решения важнейших практических задач. Фундаментальные основы современной теории формирования структуры ДГ и ее динамики были заложены Ландау и Лифшицем, рассмотревших одномерную модель ДГ. Однако очень скоро было установлено, что в реальных кристаллах в подавляющем большинстве случаев обязательным элементом структуры ДГ могут быть блоховские линии и точки, разделяющие участки с противоположным направлением разворотов спинов в ней, которые, естественно, должны оказывать влияние на динамические свойства как самой ДГ, так и всего кристалла при приложении к нему внешних магнитных полей. Нелинейные процессы динамического преобразования намагниченности в квазидвумерной неоднородной системе спинов, локализованной в доменной стенке в значительной степени определяют способы диссипации энергии, подведенной к доменной границе извне, и ее инерционные свойства. Как было показано теоретически и установлено в ряде случаев экспериментально, в качестве каналов диссипации и факторов, влияющих на эффективную массу ДГ, могут выступать как топологические элементы ее структуры - блоховские линии и блоховские точки, так и динамические - пристеночные магноны, уединенные нелинейные возбуждения. Было выполнено большое количество теоретических и экспериментальных работ по изучению их свойств, однако, полного понимания механизма формирования и эволюции элементов структуры ДГ в условиях изменения внешней накачки в широком динамическом диапазоне не было. Выяснение основных закономерностей кинетики преобразования структуры и элементарных актов перемагничивания доменной границы и зависимости этих явлений от структуры и динамических свойств, содержащихся в ней элементов в условиях различных режимов ее движения, представляет фундаментальный интерес, важный с точки зрения развития физики доменных границ и спектров возбуждений в ферромагнетике. В связи с этим первостепенное значение приобретает прямое экспериментальное исследование элементарных актов перемагничивания ДГ и элементов ее структуры при последовательном изменении параметров внешней накачки.

С развитием нанотехнологий и прецизионных методов регистрации физических параметров низкоразмерных систем, которые позволили синтезировать и аттестовать сверхтонкие гетерофазные слоистые магнитные пленки, изучение элементарных актов перемагничивания квазидвумерных магнитных сред приобрело особенную актуальность как с фундаментальной, так и с прикладной точек зрения. Обменное взаимодействие на границе раздела между слоями с различным магнитным порядком формирует принципиально новое основное состояние гетерофазного магнетика, коренным образом изменяет поведение спинов во внешнем магнитном поле и приводит к возникновению ряда необычных явлений. С момента открытия эффекта обменного смещения в нанокомпозитных частицах ФМ/АФМ и последующего синтеза большого спектра гетерофазных тонкопленочных магнетиков, обладающих уникальными магнитными и транспортными свойствами, изучению влияния их магнитной и кристаллической структуры, состава, условий выращивания на процессы перемагничивания этих наноструктур уделялось много внимания. Теоретический анализ распределения намагниченности до и после намагничивания тонкопленочных гетероструктур показывает, что результат в значительной степени зависит от анизотропии в слоях, атомарной структуры и характера межслоевого обменного взаимодействия. Однако, широко обсуждаемые простейшие механизмы, связанные с формированием во внешнем магнитном поле одномерного распределения спинов, лишь качественно объясняют некоторые из наблюдаемых особенностей перемагничивания таких гетероструктур. А ряд важных предсказаний таких моделей противоречит экспериментальным данным. Совершенно неизученными в экспериментальном плане остаются элементарные акты перемагничивания таких слоистых нанокомпозитов. Не изучено влияние на процессы формирования доменной структуры в таких материалах внешних возбуждений и внутренних факторов, таких как дефекты кристаллической решетки в слоях и на межфазной поверхности, стехиометрии слоев и типа обменной связи между ними, магнитостатических полей. Актуальность исследования таких структур обусловлена еще и обнаружением в них новых явлений - однонаправленной (обменной) анизотропии, проявляющейся в сдвиге петель гистерезиса вдоль оси магнитного поля, осцилляций обменного взаимодействия между магнитными слоями с изменением толщины прослоек от ферромагнитного к антиферромагнитному, гигантскому магнитосопротивлению.

Цель работы. В связи с изложенным в диссертационной работе были поставлены следующие основные задачи. 1. Выяснение основных закономерностей преобразования квазидвумерной системы спинов, локализованных в доменных границах, условий и кинетики формирования элементарных и нелинейных возбуждений в них и влияния этих возбуждений на структуру и динамические свойства границ. 2. Разработка методов регистрации доменной структуры и ее преобразования в режиме реального времени в слоистых наномагнетиках. 3. Прямое экспериментальное изучение элементарных актов перемагничивания обменно-связанных гетероструктур и слоистых наномагнетиков - сверхрешеток и спиновых вентилей. Исследование влияния межслоевого обменного взаимодействия на основное состояние таких гетерофазных магнетиков и на микромеханизмы формирования и эволюции доменной структуры, ответственные за ряд необычных явлений.

Научная новизна результатов, составляющих содержание диссертации, заключается в следующем:

1. Получены систематические экспериментальные данные об особенностях преобразования структуры блоховских стенок в монокристалле иттриевого феррограната в условиях увеличения уровня внешней накачки, позволившие выявить области неустойчивости движения намагниченности, отделяющих характерные режимы вынужденных колебаний ДГ, связанные с сугубо нелинейными процессами возбуждения пристеночных магнонов, расширением их спектра и увеличением плотности с последующим формированием их связанного состояния - уединенных нелинейных волн солитонного типа. Показана решающая роль элементарных и нелинейных возбуждений в системе спинов, локализованной в доменной границе, на формирование ее тонкой структуры и переход от линейных осцилляций к хаотическому движению под действием внешнего поля.

2. Получены данные о характере взаимодействия изгибных и трансляционных мод колебаний ДГ, установлено, что спектры элементарных и нелинейных возбуждений ДГ зависят от скорости ее стационарного движения. Обнаружена непредсказывавшаяся ранее асимметрия зависимости собственных частот и ширины резонансных линий от скорости трансляционного движения.

3. Обнаружен ряд не предсказывавшихся теоретически особенностей в закономерностях движения ДГ в потенциальном рельефе, формируемом вдоль нее динамическими дефектами, ответственными за эффект магнитного последействия, установлен характер наведенной ими локальной анизотропии, определены характерные времена формирования и распада, а также поперечный размер, локальной потенциальной ямы для ДГ.

4. Установлено, что при хаотическом режиме колебаний ДГ в ней формируются уединенные динамические нелинейные возбуждения солитонного типа, которые играют решающую роль в динамическом преобразовании ее структуры и значительно уменьшают ее подвижность. Показано, что возбуждение таких уединенных возмущений в квазидвумерной системе спинов, формирующих ДГ, происходит наиболее эффективно при оптимальных частотах внешнего поля, а их размер, плотность и скорость распространения растут с увеличением амплитуды поля, приводя в конечном счете к образованию топологических солитонов - пары блоховских линий.

5. Впервые в системе спинов, локализованных в 180°-ой ДГ слабоанизотропного ферромагнетика, показано, что ориентированное вдоль нормали к этим границам внешнее магнитное поле, определяет характеристики вынужденных и свободных колебаний, а также дрейфа блоховских линий, обусловленных действием гиротропных сил, возникающих при осцилляции доменных стенок в поле, параллельном векторам намагниченности в доменах. Обнаружена зависимость амплитуды и фазы колебаний БЛ от величины и направления поляризующего ее поля. Экспериментально определены эффективная масса m и коэффициент вязкого трения (b поляризованной блоховской линии. Показано, что эти величины, полученные для одномерной БЛ, значительно меньше m и b---- для двумерной и хорошо согласуются с их теоретическими оценками.

6. Впервые измерен спектр колебаний блоховской точки вдоль блоховской линии. Установлено, что он имеет релаксационный характер. Показано, что рассчитанная по экспериментальным данным величина подвижности точки на 2-3 порядка меньше значений подвижностей линии и границы.

7. Получены систематические экспериментальные данные об особенностях перемагничивания эпитаксиальных тонкопленочных гетерофазных структур "магнитомягкий ферромагнетик/магнитожесткий ферромагнетик" (ММФ/МЖФ) и "ферромагнетик/антиферромагнетик" (ФМ/АФМ), позволившие выявить процессы неоднородного преобразования намагниченности, обусловленные зарождением новых доменов и их расширением в структурах ФМ/АФМ и неоднородным вращением намагниченности в структурах ММФ/МЖФ. Установлено, что определяющим в обоих типах наномагнетиков при их перемагничивании является формирование вблизи межфазной поверхности обменных спиновых спиралей - коллективных возбуждений нового типа в системе спинов в гетерофазных нанокомпозитах.

8. Получены данные о характере формирования и роста доменов в ФМ/АФМ структурах, основное состояние которых характеризуется как однородным латеральным распределением спинов, так и полосовой доменной структурой с антипараллельной и с неколлинеарной ориентацией осей однонаправленной анизотропии и стационарными гибридными доменными границами. Установлено, что гистерезисные свойства и процесс перемагничивания ФМ/АФМ структур в значительной степени зависят от степени совершенства примыкающих к межфазной поверхности слоев, показано, что эти свойства изменяются с отжигом и зависят от порядка нанесения ферро- и антиферромагнитных слоев на подложку и материала этих слоев.

9. Обнаружено явление динамической ориентации гибридных ФМ/АФМ границ при отклонении внешнего магнитного поля от оси однонаправленной анизотропии, доказывающее, что в процессе перемагничивания ФМ/АФМ структуры в АФМ слое формируется параллельная интерфейсу обменная пружина с направлением закрутки, инициированным компонентой поля, перпендикулярной к оси однонаправленной анизотропии.

10. Обнаружено новое явление асимметрии активности центров зарождения доменов в эпитаксиальных двухслойных структурах ФМ/АФМ при их перемагничивании. Установлено, что перемагничивание из основного состояния начинается в местах, где поле обменной анизотропии минимально, а магнитостатическое поле максимально, тогда как перемагничивание в основное состояние, наоборот, начинается в местах, где поле обменной анизотропии максимально, а магнитостатическое поле минимально. Наблюдаемая асимметрия не описывается простыми теоретическими моделями "замороженных" АФМ спинов и указывает на определяющую роль запасаемой потенциальной энергии обменных пружина АФМ слоя в процессе их формирования и раскручивания при перемагничивании структуры.

11. Получены данные о характере взаимодействия дислокаций с намагниченностью в ФМ слое ФМ/АФМ структур в зависимости от их типа и ориентации относительно оси однонаправленной анизотропии. Обнаружен ряд не предсказывавшихся теоретически особенностей в закономерностях движения намагниченности в потенциальном рельефе, созданном вдоль плоскостей скольжения краевых дислокаций. Установлено, что наведенная вдоль этих плоскостей локальная магнитная анизотропия ФМ слоя не является однонаправленной и существенно изменяет магнитную структуру ферромагнетика как в статическом, так и в динамическом состояниях, и связанна исключительно с нарушением трансляционной симметрии вблизи дислокаций в антиферромагнетике.

12. Выявлены общие для обменно-связанных гетерофазных тонкопленочных магнетиков особенности микромеханизмов неоднородного перемагничивания, обусловленные зарождением и эволюцией локальных обменных спиновых спиралей разной хиральности, задаваемой дисперсией осей однонаправленной анизотропии ММФ слоя на межфазной поверхности. Обнаружены и исследованы новые моды неоднородного мелкомасштабного перемагничивания, связанные с образованием спиновых пружин как разнохиральных, так и когерентных.

13. Обнаружен асимметричный микромеханизм перемагничивания обменно-связанных двухслойных структур, обусловленный существованием топологических барьеров, отделяющих обменные пружины с противоположной хиральностью. Выявленные отличительные особенности процесса перемагничивания в высоких полях ММФ/МЖФ от ФМ/АФМ структуры определяются необратимостью преобразования части локальных спиновых ММФ пружин в 180-градусные домены в МЖФ слое.

14. Впервые получены данные об элементарных актах перемагничивания многослойных гетерофазных нанокомпозитов - магнитных сверхрешеток и спиновых вентилей, выявлено влияние толщины немагнитных прослоек между ФМ слоями на распределение намагниченности в них и динамику кооперативных доменных границ. Обнаружены не предсказывавшиеся ранее двухстадийные спин-переориентационные фазовые переходы в магнитных сверхрешетках с антиферромагнитным обменным взаимодействием между магнитными слоями. Установлена корреляция между величиной эффекта гигантского магнитосопротивления и микромеханизмом перемагничивания сверхрешеток с различными толщинами немагнитных прослоек.

15. Установлено, что перемагничивание обладающих эффектом ГМС как симметричных, так и несимметричных спиновых вентилей происходит в два этапа: за счет процессов неоднородного вращения намагниченности с последующим образованием доменов в свободном слое на первом этапе и неоднородных процессов вращения намагниченности в закрепленном слое на втором. Обнаружено явление изменения в результате отжига типа межслоевой обменной связи в спиновых вентилях, кардинально влияющее на магнитные и магнитотранспортные свойства.

16. Обнаружены и исследованы эффекты преобразования намагниченности в синтетическом антиферромагнетике, состоящем из обменно-связанной трехслойной структуры ФМ/немагнетик/ФМ, нанесенной на подложку с полосовой профилированной поверхностью, обеспечивающей высокое значение наведенной анизотропии прилегающего ферромагнитного слоя. В образцах, толщина немагнитной подложки в которых была порядка или меньше параметра решетки, наблюдалось аномальное перемагничивание структуры через трехстадийный процесс за счет движения 180о-ых и не-180о-ых доменных границ. Установлено, что неколлинеарные состояния намагниченности в слоях и их преобразования обусловлены конкуренцией между ферромагнитным и антиферромагнитным обменным взаимодействием через пинхолы и немагнитную прослойку Ru, соответственно, и определяются как высотой рельефа подложки, так и толщиной немагнитной прослойки.

Научная и практическая значимость работы. Выявленные в настоящей работе закономерности протекания элементарных актов перемагничивания в квазидвумерных системах спинов, локализованных в доменных границах и обменно-связанных гетерофазных тонкопленочных магнетиках представляют собой основу для дальнейшего развития теории, описывающей свойства реальных магнитоупорядоченных кристаллов и синтезированных нанокомпозитов. Наиболее важные результаты заключаются в раскрытии целого ряда не учитывающихся ранее особенностей формирования структуры и динамического поведения ДГ в многоосном слабоанизотропном диэлектрическом магнетике при увеличении внешней накачки, а также в обнаружении и экспериментальном изучении процессов неоднородного преобразования системы спинов в магнитных двухслойных пленках, сверхрешетках и спиновых вентилях, определяющих их магнитные и магнитотранспортные свойства. Результаты детального изучения нелинейных процессов преобразования структуры ДГ и зависимости перемагничивания нанокомпозитных магнетиков от их структуры и внешних воздействий могут быть использованы при разработке методов создания материалов с заданными магнитными свойствами и открывают перспективы развития новых методов изменения их динамических свойств и разработки элементов и устройств спинтроники.

На защиту выносятся:

1. Результаты прямого экспериментального изучения процессов динамического преобразования структуры и нелинейной динамики монополярной доменной границы в условиях изменяющегося уровня возбуждения кристалла внешним магнитным полем.

2. Результаты непосредственного экспериментального изучения динамических свойств элементов структуры ДГ - нелинейных возбуждений, блоховских линий и блоховских точек, и их влияния на формирование ее основных фундаментальных характеристик.

3. Результаты систематического исследования процессов перемагничивания в эпитаксиальных обменно-связанных пленках ФМ/АФМ и ММФ/МЖФ и факторов, влияющих на формирование и преобразование доменной структуры в этих гетерофазных пленках.

4. Результаты экспериментального изучения закономерностей формирования и эволюции обменных спиновых пружин в пленочных нанокомпозитных ФМ/АФМ и ММФ/МЖФ структурах.

5. Результаты исследования процессов формирования неоднородного спинового состояния и элементарных актов перемагничивания в магнитных сверхрешетках, спиновых вентилях и синтетических антиферромагнетиках и их влияние на эффект гигантского магнитосопротивления.

Апробация работы. Материалы диссертации докладывались и обсуждались на 3rd International conferences on physics of magnetic materials (Szczyrk-Bila, Poland, 1986), Всесоюзных школах-семинарах "Новые магнитные материалы микроэлектроники" (Рига, 1986; Ташкент, 1988; Новгород, 1990; Обнинск, 1994; Москва, 1998), Всесоюзной конференции "Современные вопросы физики и ее приложения" (Москва, 1987), Всесоюзном совещании "Доменные и магнитооптические запоминающие устройства" (Кабулети, 1987), International conferences on magnetism (Paris, France, 1988; Warsaw, Poland 1994; Roma, Italy, 2003; Kyoto, Japan, 2006), Всесоюзных конференциях по физике магнитных явлений (Калинин, 1988; Ташкент, 1991), Школах-семинарах по магнитомикроэлектронике (Алушта, 1989; Симферополь, 1991), VII Всесоюзной научно-технической конференции "Проблемы магнитных измерений и манитоизмерительной аппаратуры" (Ленинград, 1989), International symposium on magneto-optics (Kharkov, 1991), Soft magnetic materials conference SMM 11 (Venice, Italy,1993), Joint MMM-INTERMAG conferences (Albuquerque, USA, 1994; San Francisco, USA, 1998, Baltimore, USA, 2007), International symposiums on metallic multilayers (Cambridge,UK, 1995; Aachen, Germany, 2001), Materials research society symposiums (San Francisco, U.S.A, 1995; Vancouver, Canada, 1998), INTERMAG conferences (San Antonio, USA, 1995; Seattle, USA, 1996; New Orleans, USA, 1997; Nagoya, Japan, 2005), Annual conferences on magnetism & magnetic materials (Philadelphia, USA, 1995; Atlanta, USA, 1996; San Jose, USA, 1999), IX Национальной конференции по росту кристаллов НКРК-2000 (Москва, 2000), International conferences "Functional Materials" (Partenit, Ukraine, 2001; 2003; 2005), 5th International symposium on hysteresis modeling and micromagnetics (Budapest, Hungary, 2005), Conferences on magnetism EASTMAG (Ekaterinburg, 2001; Krasnoyarsk, 2004; Kazan, 2007), III Joint European magnetic symposia JEMS'06 (San Sebastian, Spain, 2006),The 3rd Internatio nal Symposium on Nano & Advanced Materials (Changwon, Korea, 2007).

Основное содержание диссертации опубликовано в 50 печатных работах, список которых приведен в конце автореферата.

Объем и структура диссертации. Диссертация состоит из введения, пяти глав, выводов и заключения, списка литературы из 405 наименований и изложена на 350 странице, включающих 312 страниц текста и 173 рисунка.

КРАТКОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении дана общая характеристика работы, сформулирована тема диссертации, обоснованы ее актуальность, научная и практическая значимость работы, выделены основные, наиболее значимые из полученных результатов.

Глава 1. Динамика монополярной доменной границы и формирование двумерных спиновых волн и топологических солитонов в ней. В §1.1 этой главы дан литературный обзор теоретического и экспериментального исследования тонкой структуры доменных границ и их динамических свойств, а также элементарных и нелинейных возбуждений намагниченности в ферромагнетиках. Впервые статические и динамические аспекты внутриграничного распределения намагниченности в одноосном бесконечном ферромагнетике были рассмотрены в известной работе Ландау и Лифшица, показавшими, что доменная граница представляет собой топологически стабильную одномерную обменную спиновую пружину. Последующие многочисленные экспериментальные и теоретические работы, показали, что распределение намагниченности в границе является многомерным. ДГ состоит из участков с противоположным направлением разворота спинов, с переходной областью между ними, представляющую собой часть ДГ - блоховскую линию, в которой происходит поворот вектора М как поперек стенки, так и вдоль нее. Более детальный учет вклада всех типов магнитных взаимодействий в полную энергию ферромагнетика показал, что структура стенок может быть трехмерной с образованием скрученных участков и блоховских точек.

Особый интерес вызывают исследования влияния элементов структуры ДГ на процессы намагничивания ферромагнетика, поскольку они являются важными каналами диссипации энергии, лимитирующими скорость движения границы и определяющими ее инерционные свойства. Кроме того, теоретически и экспериментально, в недавних работах на монокристаллах ИЖГ, было показано, что на динамические свойства ДГ существенное влияние оказывают сугубо нелинейные процессы возбуждения в ней специфических пристеночных магнонов и уединенных волн солитонного типа. Благодаря достигнутым успехам в развитии методов решения нелинейных уравнений Ландау-Лившица для движения намагниченности была показана возможность формирования в идеализированной бездиссипативной среде динамических солитонов и их трансформации в топологически устойчивые доменные границы. Однако для реальных магнетиков в целом и системы спинов, формирующих ДГ, в частности, эта важная задача физики магнетизма по анализу формирования доменных границ и их субструктуры во внешних полях оставалась нерешенной. Несмотря на большое количество теоретических и экспериментальных работ по изучению свойств структуры ДГ, полного понимания механизма формирования и эволюции ее элементов в условиях изменения внешней накачки в широком динамическом диапазоне достигнуто не было. Выяснение основных закономерностей кинетики преобразования структуры и элементарных актов перемагничивания ДГ и зависимости этих явлений от структуры и динамических свойств содержащихся в ней элементов в условиях различных режимов ее движения представляет фундаментальный интерес, важный с точки зрения развития физики доменных границ и спектров возбуждений в ферромагнетике. В связи с этим первостепенное значение приобретает прямое экспериментальное исследование элементарных актов перемагничивания ДГ и элементов ее структуры при последовательном изменении параметров внешней накачки.

В §1.2 представлены методические вопросы исследования динамической структуры ДГ. Для решения поставленной задачи были изготовлены образцы в виде тонких монокристаллических пластинок Y3Fe5O12 и развиты прецизионные методы магнитооптической и индукционной регистрации движения и динамического преобразования структуры доменных границ в них. Реализованы условия существования исходно монополярной блоховской стенки при наложении небольшого поляризующего ее поля Н.

Рис. 1. Зависимость амплитуды колебаний ДГ от амплитуды поля, vB =0,94МГц, Н = 28Э. На вставках приведены зависимости смещения ДГ от времени при h0 = 34мЭ (слева) и h0 = 152мЭ (справа) в рамке более подробно представлен начальный участок кривой)

В параграфах (1.3ч1.6) приведены данные экспериментального изучения динамических свойств доменных границ и микроскопических механизмов диссипации энергии при их взаимодействии с различными ветвями элементарных и нелинейных возбуждений: двумерными магнонами и нелинейными уединенными волнами, локализованными в этих ДГ. В §1.3 представлены первые результаты их исследования в монокристалле ИЖГ, содержащем уединенную монополярную 180-градусную ДГ. В процессе увеличения амплитуды внешнего поля

h(t)=h0·sinwBt

выявлено три режима движения ДГ, при смене которых происходит резкое (более чем на порядок) изменение подвижности стенки (Рис. 1). При этом нелинейный характер поведения доменной границы обусловлен механизмами различной природы. При первом режиме по слабой зависимости v0 от h0 при h0<h01 и гистерезисному и нестационарному переходу к колебаниям ДГ на значительные расстояния можно заключить, что она в слабых полях осциллирует в некотором локальном потенциальном рельефе. Второй режим (h02>h0>h01) колебаний блоховской стенки характеризуется возбуждением в ней изгибных мод. В режиме "3" (h0>h02) нелинейность движения ДГ проявлялась в возникновении хаотических колебаний, характеризующихся непериодичностью зависимости смещения ДГ во времени и изменением характеристик сплошного спектра в Фурье-разложении сигнала. Таким образом, впервые удалось получить прямые экспериментальные доказательства существования различных режимов движения доменной границы, контролируемых формированием в ней элементарных или нелинейных возбуждений намагниченности.

В §1.4 представлены результаты детального экспериментального изучения стоячих волн, локализованных на доменной границе в области полей "2" (h01<h0<h02) (Рис. 1). Зависимость амплитуды скорости ДГ v0(nB) от частоты поля h(t), измеренная индукционным методом, отчетливо демонстрирует набор резонансных пиков, обусловленных возбуждением стоячих волн при изгибных колебаниях ДГ. Соответствующая дисперсионная кривая зависимости частотных пиков np от их номера n согласуется с полученной из теории, а экспериментальное значение скорости пристеночных спиновых волн cexp при малых скоростях движения ДГ имеет тот же порядок величины, что и теоретически рассчитанное ccal. В условиях возбуждения изгибных колебаний в трансляционно движущейся ДГ получены доказательства асимметрии спектров двумерных спиновых волн (при с+ ? с?), предсказанные для стационарной стенки в слабоанизотропных ферромагнетиках. Дисперсионные кривые np(n), ширина линий резонансных пиков Dn и зависимости v0(nВ), измеренные при различных скоростях V трансляционного движения стенки, демонстрируют четкую асимметрию от знака V. Переключение полярности стенки путем изменения знака поля Н приводило к инверсии этой асимметрии относительно V = 0. Измерения ширины линий Dn показали, что параметр затухания пристеночных магнонов в медленно движущейся доменной стенке близок к параметру затухания, полученному из измерений ФМР, тогда как с увеличением V величина Dn растет, а амплитуда пиков np падает. Причем эти зависимости тем сильнее, чем больше номер пика n. Был также обнаружен и обратный эффект влияния возбуждений ДГ на ее трансляционное движение. Обнаруженные явления диссипации энергии в ферромагнетике могут быть обусловлены как сложным потенциальным рельефом для движения намагниченности, создаваемым различными дефектами кристаллической решетки, так и многомагнонными процессами рассеяния и взаимодействия с другими типами элементарных и нелинейных возбуждений в ДГ в условиях ее надбарьерного движения.

Природа первых экспериментально изучена в §1.5, в котором представлены результаты движения ДГ в слабом магнитном поле и их анализ. В области слабых полей "1" (Рис. 1), вплоть до критических значений h01, признаков нелинейности колебаний ДГ не наблюдалось. Лишь первая гармоника присутствовала на Фурье-разложении сигнала. Однако при некотором пороговом значении поля, зависящем от его частоты, наблюдалось резкое увеличение амплитуды колебаний ДГ, которое сопровождалось появлением гармоник более высокого порядка и небольших узких областей сплошного спектра, соответствующих возбуждению изгибных мод колебаний ДГ, описанных в §1.4.

Переход из первой области и обратно был нестабильным и гистерезисным. Детальные измерения зависимостей v0(h0) и v0(nВ) показали, что нестабильность осцилляций ДГ связана с пороговым возбуждением и резким затуханием низкочастотных мод колебаний ДГ при ее переходе из низкоподвижного состояния в высокоподвижное при увеличении амплитуды поля и обратно в низкоподвижное состояние при уменьшении h0, соответственно. Исследование характера осцилляций монополярной ДГ вблизи критического поля в режиме реального времени с использованием повторяющихся цугов поля h(t) показали, что в слабых полях ДГ движется в локальной потенциальной яме, образованной около нее динамическими дефектами, когда эта ДГ неподвижна. Обнаруженное явление заключается во взаимодействии движущейся ДГ с этими дефектами, энергия которого зависит от величины и ориентации локальной намагниченности и может изменяться, например, в результате электронных переходов Fe2+-Fe3+, ответственных за эффект магнитного последействия. Этот вывод подтверждается "размазыванием" потенциальной ямы осциллирующей доменной границей. При этом были измерены времена релаксации ямы при ее формировании и разрушении (порядка 25ё50мс) и пространственный статический размер (порядка ширины ДГ ~0.3мкм). Обнаруженные взаимодействия проявляются лишь в монополярной ДГ. В условиях возбуждения ДГ более высоким полем эффект не наблюдается, что связано с нелинейными процессами параметрического возбуждение пристеночных магнонов, для объяснения которых необходимо построить нелинейную теорию спин-волновой неустойчивости и хаоса в доменной границе.

Экспериментально режим нелинейных возбуждений в доменной границе исследован в §1.6. При переходе из области "2" на зависимости v0(h0) в область "3" была обнаружена еще одна область нестабильности колебаний ДГ (Рис. 1). При этом в высоких полях подвижность стенки резко уменьшалась.

Рис. 2. Зависимости от времени (а), Фурье-разложения (б) и фазовые портреты (в) осцилляций ДГ, обусловленные действием поля h0 = 45мЭ (левые графики) и h0 = 0.3Э (правые графики). nВ = 0.79МГц, Н = 28Э

Эта нестабильность характеризовалась изменением режима колебаний стенки от периодического к хаотическому [Рис. 2(а)], появлением в Фурье-разложении больших непрерывных областей спектра вместе с шумом дискретных гармоник на частотах [Рис. 2(б)].

nn = (n+1\2)nВ

Используя сигнал регистрирующих катушек, пропорциональный dq/dt, и результат его численного интегрирования были построены траектории ДГ в фазовом пространстве dq/dt от q. На Рис. 2(в) четко видна бифуркация от периодического фазового портрета к хаотическому, подобному хаотическому странному аттрактору.

Прямое экспериментальное изучение структуры ДГ и процессов ее преобразования в магнитных полях было осуществлено с использованием методики магнитооптической (МО) регистрации, которая позволила выявить в области высоких полей появление импульсов интенсивности излучения, соответствующих прохождению вдоль границы областей с намагниченностью, отличной от исходной. При однократном фотометрировании хаотически движущейся ДГ были обнаружены отдельные одиночные всплески МО сигнала. Характеристики и плотность наблюдаемых импульсов МО сигнала зависели от параметров приложенных полей. Обнаруженные локальные возбужденные состояния ДГ отвечают зарождению и движению вдоль стенки нелинейных волны солитонного типа, которые после резкого выключения поля преобразовывалась либо в зародыши субдоменов с размерами от 5 до 10 мкм, либо в пару БЛ, ограничивающих субдомен. Таким образом, установлено, что переход к хаотическому режиму колебаний ДГ обусловлен нелинейными процессами преобразования ее структуры.

Глава 2. прямое экспериментальное изучение зависимости динамических свойств доменной границы от состояния ее структуры. В монокристаллах, принадлежащих к обширному классу магнитоупорядоченных веществ с К"2pМ2, в 180-градусной ДГ в зависимости от уровня возбуждения переменным магнитным полем обязательным элементом ее структуры являются пристеночные магноны, уединенные нелинейные волны и блоховские линии. Для описания динамических свойств таких двумерных ДГ существующие теории оказались неприменимы. Однако оказалось возможным прямое экспериментальное исследование нелинейных явлений в квазидвумерной системе спинов, локализованных в ДГ, на монокристаллах многоосного иттриевого феррограната, относящегося к этому классу веществ. В данной главе последовательно изучена динамика двумерной ДГ и элементов ее структуры как в сильных полях, стимулирующих ее динамическое преобразование, так и в относительно слабых, вызывающих согласованное движение ДГ и содержащихся в ней блоховских линий.

Рис. 3. Зависимость критической амплитуды поля h(t) генерации нелинейных возбуждений от его частоты

В §2.1 Исследовано влияние уединенных нелинейных возбуждений и блоховских линий на динамические параметры доменной границы. В первой части параграфа приведены результаты детального экспериментального изучения условий формирования и свойств обнаруженных нелинейных возмущений намагниченности солитонного типа в 180-градусной блоховской стенке. Область их существования ограничивалась фазовой кривой h0C(nB) на диаграмме (h0C-nB), пример которой приведен на Рис. 3. Спонтанное зарождение нелинейных возбуждений и их перемещение наблюдалось лишь выше этой кривой, тогда как ниже нее в зависимости от предыстории они либо совсем не зарождались, либо уже существующие трансформировались в квазистатические субдомены, совершающие пульсирующие непериодические движения, оставаясь в среднем около своего положения равновесия. Выше фазовой кривой плотность возбуждений в ДГ быстро возрастала, и они уже не могли рассматриваться без взаимодействия между собой. При этом в одних и тех же условиях наблюдались пики МО сигнала от очень малых, но уже надежно выявлявшихся над уровнем шумов, до больших, соответствовавших полностью перевернутым спинам. При этом скорость и размер возмущенной области могли лежать в широких пределах. Поэтому параметры отдельных возбуждений - амплитуду, скорость и линейный размер, удалось измерить лишь в условиях, когда nB и h0 были близки к значениям кривой h0C(nB). Существенная зависимость этих параметров и темпа генерации нелинейных возбуждений от h0 и nB не позволяет найти простую связь между характеристиками возбуждающего поля и их динамическими свойствами. Однако скоррелированый характер этой зависимости и обнаруженная модуляция МО сигнала с частотой, равной частоте поля h(t), обусловленная периодическим изменением размера возбуждаемой области, как во времени, так и в пространстве, или прецессией расположенных в ДГ спинов, ясно указывают на специфичность этих возбуждений и их принципиальное отличие от статических субдоменов.

Влияние нелинейных возбуждений на подвижность ДГ удалось выяснить в условиях ее двухчастотного возбуждения. Была измерена амплитуда Y0 вынужденных линейных колебаний ДГ в низкочастотном поле H(t), не возбуждающем нелинейных мод колебаний, в зависимости от амплитуды одновременно действующего высокочастотного поля h0. С увеличением амплитуды h0, на начальной стадии амплитуда вынужденных колебаний Y0 и, следовательно, скорость монополярной ДГ возрастала, указывая на уменьшение глубины локальной потенциальной ямы, изученной в §1.5, вплоть до достижения амплитудой h0 некоторого значения, при котором величина Y0 достигает своего максимума, а затем, при дальнейшем увеличении h0, падает. Это уменьшение, как показали МО измерения, обусловлено новым механизмом потерь энергии стенкой, связанным с существенно неоднородным процессом преобразования структуры ДГ, приводящим к возбуждению уединенных нелинейных спиновых волн и увеличением их плотности под действием достаточно больших величин высокочастотного поля h(t).

Таким образом, можно заключить, что при определенных условиях обязательным элементом структуры 180-градусных доменных границ в ИЖГ, кардинально влияющих на их подвижность, являются нелинейные возбуждения системы спинов, локализованных в этих ДГ. Теоретический анализ нелинейного уравнения Ландау-Лифшица, описывающего динамику намагниченности применительно к использованной в эксперименте ситуации, еще не осуществлен. Однако из проведенных исследований можно заключить, микроскопическая картина формирования обнаруженных в монокристаллах ИЖГ явлений может быть описана в терминах магнитных солитонов по аналогии с тем, как это сделано при рассмотрении нелинейных возбуждений в объеме в целом однородно намагниченного ферромагнетика.

В системе спинов, локализованных в ДГ, в роли топологических солитонов выступают блоховские линии. Переменное магнитное поле возбуждает в этой системе поверхностные магноны, которые при высокой плотности магнонного газа образуют связанные состояния - своеобразные нелинейные волны намагниченности. При больших амплитудах отклонения векторов М от исходного состояния они преобразуются под влиянием магнитостатических полей в динамический солитон большой амплитуды, который при Q ? 180о можно рассматривать в ряде случаев как связанное состояние двух БЛ. Развал такого состояния при выключении переменного поля приводит к его преобразованию с некоторой вероятностью в статический субдомен.

В экспериментах подобного типа можно будет получать полную информацию о характеристиках нелинейных возбуждений намагниченности солитонного типа в квазидвумерной системе спинов, локализованных в ДГ, т.е. могут быть определены их скорость перемещения, частота осцилляций, пространственные характеристики и амплитуды. Однако для полного доказательства построенной, качественно непротиворечивой картины описанных явлений кинетики формирования и динамического преобразования структуры ДГ, необходимо развитие строгой теории, конкретизированной к использованной экспериментальной ситуации.

Динамические свойства доменных границ, содержащих блоховские линии, исследованы в следующей части параграфа 2.1. В слабых полях, вплоть до начала нелинейных процессов необратимого поступательного смещения всей системы БЛ вдоль границы, наблюдались совместные осцилляции ДГ и БЛ. С целью выявления закономерностей движения БЛ и спинов, локализованных в ДГ, и их влияния на динамические характеристики ДГ было проведено одновременное изучение изменения характера движения 180-градусных ДГ и БЛ внутри них при приложении к образцу переменных магнитных полей параллельных намагниченности в доменах h(t) или субдоменах Нх(t), оказывающих непосредственное давление на ДГ или БЛ, соответственно. МО измерения показали, что в поле как одной, так и другой ориентации вынужденные колебания ДГ и БЛ вдоль нее происходят синфазно, а их резонансные частоты совпадают. При этом очевидно, что БЛ, совершая одновременные осцилляции в двух взаимно перпендикулярных направлениях, вдоль и поперек ДГ, движутся по эллиптическим траекториям под влиянием гиротропных сил, введенных ранее для описания движения БЛ в ДГ. Чтобы исключить искажения формы резонансных кривых в условиях действия на БЛ гиротропной силы при приложении к ДГ поля h(t), зависимости амплитуды колебаний линии от частоты nB были измерены в условиях действия на нее постоянной силы, т.е. при фиксированном значении произведения nB·h0. Исходя из данных, полученных из резонансных кривых, были оценены эффективные значения массы БЛ mz и коэффициента вязкости bz при ее движении вдоль ДГ. Они равнялись ~1.8ґ10-12г/см и ~1.8ґ10-6г/см·с, соответственно. Анализ наблюдаемых взаимосвязанных колебаний ДГ и БЛ был также проведен на основе предложенной Тилем теории, учитывающей действия гиротропных сил и диссипативных процессов в движущейся ДГ с БЛ. Теоретические значения mz* и bz*, полученные для той же экспериментальной ситуации, равнялись 5ґ10-12г/см и 1.4ґ10-7г/см·с, соответственно.

Из сравнения полученных значений видно, что массы экспериментальная и расчетная имеют удовлетворительное согласие, тогда как коэффициенты вязкого трения расходятся примерно на порядок. Тем не менее, это различие меньше получаемого при исследовании подвижности ДГ в ИЖГ. Таким образом, из экспериментов по изучению динамики БЛ и ДГ можно заключить, что экспериментальные значения эффективного коэффициента вязкого трения движению ДГ и БЛ не могут быть описаны исходя лишь из идеального распределения М в структуре БЛ. Очевидно, что необходимо учитывать более сложное распределение намагниченности в БЛ и дополнительные каналы диссипации энергии движущихся ДГ и БЛ, которые обусловливают более высокие эффективные значения коэффициентов вязкого трения bz и by. В более высоких полях эти дополнительные каналы могут быть связаны с возбуждением внутренних степеней свободы ДГ, каковыми являются, например, элементарные и нелинейные волны, описанные в предыдущей главе и в первой части данного параграфа. А в слабых полях эффективные значения динамических параметров могут быть обусловлены более сложным распределением спинов в доменной границе в целом и в блоховских линиях в частности.

Экспериментальное изучение влияния структуры блоховских линий на их движение в 180-градусной доменной стенке под действием гиротропных сил проведено в §2.2. Одна из причин отмеченного выше несоответствия bz и bz* связана с тем, что теоретический анализ в §2.1 был выполнен на основе рассмотрения монополярных БЛ, в то время как в реальных условиях их структура спинов может быть закрученной, содержать нульмерные магнитные дефекты - блоховские точки. Их присутствие должно, прежде всего, значительно уменьшать суммарную гиротропную силу, действующую на БЛ, и, как следствие, приводить к увеличению измеряемой вязкости для движения БЛ.

Исследование большого количества блоховских линий показало, что они характеризуются неодинаковым исходным состоянием. Это проявлялось в различии их отклика на переменное или импульсное магнитное поле h(t).

Рис. 4. Зависимости амплитуды колебания БЛ (z0) от частоты (nB) синусоидального поля h(t), измерен ные при h0nB = 609Гц·Э и Ну = 0Э (кривая 1), 1.4Э (2), 2.1Э (3)

Для выявления вклада неоднородного вдоль блоховских линий распределения намагниченности на характеристики движения БЛ в условиях их осцилляции вблизи положений равновесия и дрейфа под влиянием переменного поля h(t) к кристаллу прикладывалось постоянное магнитное поле Ну, действующее перпендикулярно к плоскости 180-градусной доменной стенки в ИЖГ Было обнаружено, что амплитуда смещения БЛ в поле h(t) зависит от напряженности Hу, а инвертирование полярности этого подмагничивающего поля сопровождается изменением фазы колебания БЛ на величину p.

Обращает на себя внимание сильное влияние поля Ну на амплитуду колебаний БЛ (Рис. 4). Для оценки экспериментальных значений динамических параметров БЛ - эффективной массы и коэффициента вязкого трения, были выбраны кривые резонансного смещения БЛ записанные в очень слабом поле h(t), когда Фурье-анализ МО сигнала выявлял единственный пик, свидетельствовавший о том, что в этих условиях БЛ осциллировала только на частоте внешнего поля h(t). Значения mz ? 0.9ґ10-12 r/см, bz ? (0.4ч0.7)ґ10-6г/см·с были получены из резонансной кривой 3 на Рис. 4 по той же методике, что и в §2.1. Теоретический расчет, сделанный с учетом действия на БЛ гиротропных сил, дает величины mz* = 0.85ґ10-12r/см и bz* = 0.2ґ10-6г/см·с. Из сопоставления всех данных очевидно, что значения не только для mz, как это было в §2.1, но и для bz, полученные на основе эксперимента, оказываются одного порядка величины с вычисленными. Причем при увеличении поля Ну расхождение между экспериментальными и теоретическими данными уменьшается кардинально.

Очевидно, что структура БЛ в иттриевом феррогранате в большинстве случаев неоднородна по ее длине и включает в себя блоховские точки, которые могут смещаться под действием поля Ну. Однако достигалась ли полная поляризация БЛ в эксперименте сказать нельзя, поскольку при дальнейшем увеличении Ну зависимость z0(nB) принимала более сложную форму из-за формирования различных мод колебаний БЛ и доменной стенки. Они могут отражать изгибные колебания БЛ, их зависимость от состояния реальной структуры магнетика и т.д.

Фундаментальный характер преобразования структуры БЛ в поле Ну проявляется также в условиях их дрейфа. Установлено, что скорость направленного движения БЛ зависит от поля Ну. Это поле при достаточной напряженности выравнивает характеристики дрейфа всех БЛ и определяет направление их нелинейного движения.

Вся совокупность представленных экспериментальных данных дает право утверждать, что в иттриевом феррогранате не только доменные стенки, но и блоховские линии могут состоять из участков противоположной полярности, разделенных переходными областями - блоховскими точками. Их существование предсказывалось теоретически для высокоанизотропных магнитных пленок.

Экспериментальное изучение (§2.3) динамических свойств блоховских точек в монокристаллах иттриевого феррограната ИЖГ с К"2pМ 2 было осуществлено в условиях вынужденных высокочастотных колебаний блоховской линии под действием гиротропной силы при ее переполяризации внешним синусоидальным полем Hy(t). Результирующий МО сигнал в этом случае был промодулирован по амплитуде низкочастотным полем Hy(t). Глубина модуляции определялась амплитудой поля Ну и была пропорциональна амплитуде колебаний блоховской точки, что позволило впервые измерить амплитудно- частотную зависимость колебаний блоховской точки. Она имела релаксационный характер. Измерения подвижности ?B блоховских точек из их релаксационных кривых для различных линий и стенок давали значения порядка 102 см с-1Э-1. Полученная величина ?B оказалась на 2-3 порядка ниже величины подвижностей стенок и линий в тех же материалах. Существующая теория, развитая для высокоанизотропных одноосных магнитных пленок, не предсказывает столь большого различия. Оно может определяться особенностями перекачки энергии от точки Блоха к различным ветвям элементарных возбуждений.

Глава 3. Элементарные акты перемагничивания обменно-связанных гетерофазных тонкопленочных структур. Важной особенностью гетерофазных наномагнетиков является тот факт, что толщина магнитных слоев в типичных тонкопленочных структурах не превышает (и обычно существенно меньше) параметра ширины блоховской стенки д~(A/K)1/2. Это означает, что весь процесс перемагничивания происходит либо за счёт зарождения и эволюции параллельной поверхности плёнки частичной доменной границы - спиновой спирали в обменно-связанных структурах "ФМ/АФМ" и "ММФ/МЖФ", либо за счет формирования фаз с неколлинеарным в общем случае распределением намагниченности в смежных ФМ слоях в магнитных сверхрешетках и спиновых вентилях. Образование при перемагничивании в таких обменно-смещенных ферромагнетиках специфических обменных спиновых спиралей открывает перспективы экспериментального изучения их эволюции и преобразования в параллельные поверхности пленки доменные границы в медленно меняющихся магнитных полях.

Их исследования в последнее время особенно стимулировались обнаружением ряда необычных явлений - однонаправленной анизотропии, осцилляций обменного взаимодействия между магнитными слоями с изменением толщины прослоек от ферромагнитного к антиферромагнитному, эффекта гигантского магнитосопротивления, и др., и перспективами их использования в качестве основы для создания магнитных сенсоров, считывающих головок и элементов памяти в новых поколениях вычислительной техники и устройствах спинтроники. В связи с этим возникла настоятельная необходимость учета элементарных актов перемагничивания таких гетерофазных структур, проливающего свет на реальное распределение спинов вблизи межфазной поверхности и адекватное описание процессов динамического преобразования доменной структуры в них. Однако обсуждаемые простейшие модели лишь качественно объясняют некоторые из наблюдаемых особенностей распределения намагниченности до и после намагничивания в таких слоистых нанокомпозитов, а в экспериментальном плане элементарные акты перемагничивания остаются совершенно неизученными из-за невозможности наблюдать их в режиме реального времени традиционными методами. Возможность решения задачи такого исследования может быть реализована с разработкой и использованием для этой цели метода магнитооптической индикаторной пленки (МОИП).

...

Подобные документы

  • Способы преобразования звука. Применение преобразования Фурье в цифровой обработке звука. Свойства дискретного преобразования Фурье. Медианная фильтрация одномерных сигналов. Применение вейвлет-анализа для определения границ речи в зашумленном сигнале.

    курсовая работа [496,8 K], добавлен 18.05.2014

  • Разработка и получение магниточувствительных спинтронных структур на основе протравленных ионных треков в оксидированном кремнии, внутри которых формируются однородные нанокомпозиции с чередующимися слоями из ферромагнитных и немагнитных наночастиц.

    реферат [1,3 M], добавлен 26.06.2010

  • Солнечные электростанции как один из источников преобразования электроэнергии, принципы и закономерности их функционирования, внутреннее устройство и элементы. Порядок преобразования солнечной энергии в электрическую. Оценка энергетической эффективности.

    презентация [540,5 K], добавлен 22.10.2014

  • Структуры и свойства материй первого типа. Структуры и свойства материй второго типа (элементарные частицы). Механизмы распада, взаимодействия и рождения элементарных частиц. Аннигиляция и выполнение зарядового запрета.

    реферат [38,4 K], добавлен 20.10.2006

  • Проектирование трансформаторов тороидальной конструкции. Совокупность чисел, характеризующих фазность обмоток. Выбор материала сердечника. Простейший преобразователь напряжения. Определение типоразмера сердечника. Оптимальный режим перемагничивания.

    курсовая работа [718,7 K], добавлен 16.07.2009

  • Изменение формы движущегося объекта и другие явления в рамках преобразования Лоренца. Гносеологические ошибки Специальной теории относительности А. Эйнштейна. Проблема определения границ применимости альтернативной интерпретации преобразования Лоренца.

    доклад [3,1 M], добавлен 29.08.2009

  • Характеристика методов наблюдения элементарных частиц. Понятие элементарных частиц, виды их взаимодействий. Состав атомных ядер и взаимодействие в них нуклонов. Определение, история открытия и виды радиоактивности. Простейшие и цепные ядерные реакции.

    реферат [32,0 K], добавлен 12.12.2009

  • Составление дифференциальных уравнений, описывающих динамические электромагнитные процессы, применение обобщенных приемов составления математического описания процессов электромеханического преобразования энергии. Режимы преобразования энергии.

    курсовая работа [2,5 M], добавлен 22.09.2009

  • Изучение понятия математической физики. Действительная и комплексная формы интеграла Фурье. Оригинал, изображение и операция над ними. Основные свойства преобразования Лапласа. Применение интегральных преобразований при интегрировании уравнений матфизики.

    курсовая работа [281,3 K], добавлен 05.04.2014

  • Сущность визуализации процесса намагничивания. Структура доменных стенок в областях нахождения пикселей. Основные свойства перовскитоподобных манганитов A1-xBxMnO3. Влияние высокого давления на структуру манганита Pr1-xSrxMnO3 с щелочноземельным металлом.

    контрольная работа [1,2 M], добавлен 22.06.2010

  • Основные характеристики и классификация элементарных частиц. Виды взаимодействий между ними: сильное, электромагнитное, слабое и гравитационное. Состав атомных ядер и свойства. Кварки и лептоны. Способы, регистрация и исследования элементарных частиц.

    курсовая работа [65,7 K], добавлен 08.12.2010

  • Создание схемы применения метода вторичного квантования для нахождения спектра элементарных возбуждений в ферромагнетиках с простейшей доменной структурой при учете дипольной энергии. Приведение квадратичной формы спиновой волны к диагональному виду.

    курсовая работа [339,8 K], добавлен 22.10.2014

  • Основные понятия, механизмы элементарных частиц, виды их физических взаимодействий (гравитационных, слабых, электромагнитных, ядерных). Частицы и античастицы. Классификация элементарных частиц: фотоны, лептоны, адроны (мезоны и барионы). Теория кварков.

    курсовая работа [1,0 M], добавлен 21.03.2014

  • Структура электромеханической системы. Приемы составления математического описания процессов электромеханического преобразования энергии. Анализ свойств двигателей в системах электропривода. Условия коммутации тока на коллекторе машин постоянного тока.

    реферат [2,5 M], добавлен 03.01.2010

  • Сущность магнитного поля, его основные характеристики. Понятия и классификация магнетиков - веществ, способных намагничиваться во внешнем магнитном поле. Структура и свойства материалов. Постоянные и электрические магниты и области их применения.

    реферат [1,2 M], добавлен 02.12.2012

  • Принципы преобразования тепловой энергии в электрическую. Фотоэлектрический метод преобразования в солнечных батареях. Преимущества и недостатки ветроэлектростанций. Конструкции и типы ветровых энергоустановок. Ядерные реакторы на быстрых нейтронах.

    реферат [25,3 K], добавлен 22.01.2011

  • Гидравлические машины как устройства, служащие для преобразования механической энергии двигателя в энергию перемещаемой жидкости или для преобразования гидравлической энергии потока жидкости в механическую энергию, методика расчета ее параметров.

    курсовая работа [846,7 K], добавлен 09.05.2014

  • Понятие измерительных приборов, их виды и классификация. Способы снятия показаний, входные и выходные сигналы. Структурная схема средства измерений прямого преобразования. Устройство и назначение вольтметров и амперметров. Принцип действия манометра.

    презентация [243,5 K], добавлен 28.03.2013

  • Анализ и экспериментальная проверка формул преобразования сопротивления, соединенных последовательно и параллельно. Механизм преобразование навыков построения потенциальных диаграмм, направления реализации и назначение данного процесса, результаты.

    лабораторная работа [26,8 K], добавлен 11.04.2016

  • Металлургическая отрасль в России: коксохимические цеха, установки доменных, мартеновских и конверторных, прокатных цехов. Варианты энергоснабжения металлургических предприятий. Оптимизация на коксохимическом, трубопрокатном и доменном производстве.

    реферат [1,4 M], добавлен 08.11.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.