Пространственно-временная динамика атмосферного озона и связанных с ним газовых примесей

Динамика годового хода содержания озона и двуокиси азота в атмосфере, спектральные и структурные закономерности их изменчивости. Изучение вариаций состава, температуры и динамики средней и верхней атмосферы под воздействием уровня солнечной активности.

Рубрика Физика и энергетика
Вид автореферат
Язык русский
Дата добавления 02.03.2018
Размер файла 1,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Чувствительность отклика озона максимальна в верхней атмосфере, где она может превышать 10% на 1% изменений потока солнечной радиации на длине волны 205 нм. В верхней стратосфере она может достигать 1%/%. Чувствительность термического отклика выше 110 км превышает 2 К на 1% изменений потока солнечной радиации на длине волны 205 нм, а ее значение в окрестности локального высотного максимума чувствительности в слое тропической стратопаузы над порядок меньше.

Значения фаз откликов температуры и атмосферных примесей на 27-суточный солнечный цикл тоже зависят от высоты и широты. Например, температурный отклик в окрестности стратопаузы и в термосфере происходит примерно в фазе с солнечным циклом, запаздывая по отношению к нему на 1-2 суток. Запаздывание увеличивается до 5 суток в верхней мезосфере. Концентрация озона над тропиками ниже 60 км изменяется примерно в фазе с солнечным циклом, опережая его в верхней части слоя на 1-2 суток, а выше 70 км - примерно в противофазе с солнечным циклом. Опережение обусловлено, в частности, температурной зависимостью скоростей реакций.

Чувствительность и фаза озонного отклика в стратосфере и нижней мезосфере в тропиках находятся в удовлетворительном согласии с имеющимися результатами наблюдений, в то время как выше 70-75 км имеются принципиальные различия между модельными и наблюдавшимися (только две серии данных) значениями фазы озонного отклика.

Что касается температурного отклика, то может быть несоответствие между характеристиками наблюдаемого отклика по данным разных авторов, но в то же время характеристики модельного отклика температуры в верхней стратосфере и нижней мезосфере соответствуют некоторым наблюдениям. Однако нет никакого соответствия между расчетным и наблюдавшимся (только одна серия данных) температурными откликами выше 75 км. В настоящее время недостаточно экспериментальных данных для всестороннего сопоставления модельных и наблюдаемых эффектов 27-суточного солнечного цикла.

Модельные расчеты показали, что атмосферная циркуляция может оказывать важное воздействие на отклик атмосферы на 27-суточный солнечный цикл в средне- и высокоширотной стратосфере и мезосфере в зимний период.

Глава 7 «Эффекты долговременной изменчивости». В 7-й главе исследуются эффекты долговременной изменчивости содержания озона и NO2 и термического режима мезосферы по данным наблюдений и с помощью численного моделирования.

В разделе 7.1 оцениваются линейные тренды характеристик годового хода (амплитуд и фаз гармоник) общего содержания озона по данным многолетних наземных измерений на мировой озонометрической сети. Оценки получены с помощью модели множественной линейной регрессии (описана в главе 6). Оказалось, что тренд фазы годовой гармоники ОСО, если он статистически значим, везде положительный. Но механизмы этого тренда в Антарктике и остальных областях разные. Величина тренда фазы на некоторых станциях достигает 8 сут, а на станции Сёва в Антарктиде - 18 сут за 10 лет. Амплитуда годовой гармоники ОСО со временем увеличивается в Антарктике и в тропической зоне, а в остальных местах она уменьшается. Во внетропических широтах тренд амплитуды годовой гармоники ОСО составляет по величине большую часть тренда среднегодового значения ОСО, что является результатом сезонной зависимости трендов ОСО. К выявленным трендам характеристик годового хода ОСО может приводить долговременное уменьшение ОСО в зимний период, предшествующий моменту годового максимума ОСО, а в Антарктиде - многолетнее уменьшение значений ОСО в период весенней «озонной дыры» с одновременным смещением сроков «дыры» на более поздние даты.

В разделе 7.2 выполнен анализ линейных трендов ОС NO2 по данным измерений на сети NDSC. Годовые и сезонные оценки трендов получены с помощью модели множественной линейной регрессии, учитывающей эффекты солнечной активности, Эль-Ниньо - Южного колебания, Североатлантического колебания и воздействие вулканического аэрозоля после извержений вулканов Пинатубо и Эль-Чичон. Впервые получена широтная структура трендов NO2 (рис. 7). В средних и низких широтах ЮП тренды преимущественно положительные, в то время как в средних и низких широтах СП - преимущественно отрицательные. Максимальные значения положительных и отрицательных трендов составляют по модулю около 10% за 10 лет. Годовые оценки трендов в высоких и полярных широтах, как правило, статистически незначимые. В целом можно отметить антисимметричное распределение годовых оценок трендов относительно экватора. Сезонные оценки трендов могут отличаться от годовых. Так, зимой не только в ЮП, но и в СП в целом преобладают положительные значения трендов ОС NO2. Летом статистически значимый тренд ОС NO2 отмечен в Арктике.

По расчетам на 2-мерной модели SOCRATES получены небольшие отрицательные значения трендов ОС NO2 в средних широтах обоих полушарий (рис. 7), что сильно расходится с результатами анализа данных наблюдений. Вероятная причина расхождений кроется во влиянии на фотохимические изменения стратосферного содержания NO2 изменений температуры и состава стратосферы с различной степенью компенсации их эффектов в NO2 в зависимости от конкретных, в том числе, региональных условий.

Раздел 7.3 посвящен моделированию долговременных изменений термического режима мезосферы. По ракетным данным и по измерениям гидроксильной эмиссии учеными из ИФА, Центральной аэрологической обсерватории и Абастуманской обсерватории обнаружено значительное охлаждение мезосферы и слоя мезопаузы (Golitsyn G.S., Semenov A.I., Shefov N.N., Fishkova L.M., Lysenko E.V., Perov S.P. Long-term temperature trends in the middle and upper atmosphere. Geophys. Res. Lett. V. 23. P. 1741-1744. 1996). Для выявления механизмов охлаждения нами были выполнены расчеты с помощью 2-мерной модели фотохимии, радиации и динамики атмосферы SOCRATES. Исследованы эффекты увеличения приземных концентраций парниковых газов (CO2, CH4, N2O и хлор-фтор-углеродов) за последние 50 лет в соответствии с наблюдаемыми трендами, увеличение концентрации водяного пара в средней атмосфере, а также эффекты вероятных изменений активности внутренних гравитационных волн (ВГВ).

Модельные расчеты показали, что наблюдаемое увеличение концентраций парниковых газов по отдельности вызывает охлаждение мезосферы. Охлаждение, порождаемое ростом концентраций хлор-фтор-углеродов, связано в основном с уменьшением содержания озона. Одновременное увеличение концентраций парниковых газов ведет к большему охлаждению, хотя отклик атмосферы в этом случае не есть арифметическая сумма индивидуальных эффектов. Общий эффект охлаждения в средней мезосфере составляет около 4-6 К. Ниже модельной мезопаузы (~90 км) он около 3-4 К, за исключением внетропических широт СП зимой, где этот слой охлаждается на 5-7 К. Однако величина охлаждения по модельным расчетам значительно меньше, чем по наблюдениям.

Эффект охлаждения значительно возрастает при усилении форсинга за счет ВГВ. Следует отметить, что форсинг за счет ВГВ в модели параметризуется. Расчеты показывают, что предписанное уменьшение ускорения зонального потока и диффузии за счет ВГВ обычно приводит к потеплению верхней мезосферы. Предписанное усиление ускорения и диффузии за счет ВГВ в большинстве случаев ведет к охлаждению этой области. На рис. 8 показан температурный отклик мезосферы в январе на 50-летнее увеличение приземных концентраций парниковых газов и одновременное усиление на 50% форсинга за счет ВГВ. В этом случае зимнее охлаждение верхней мезосферы во внетропических широтах СП достигает 7-15 К. Охлаждение летней мезопауза менее 2 К, в хорошем согласии с результатами наблюдений.

Повышенный диффузионный перенос, вызванный обрушением ВГВ, ведет к увеличению содержаний примесей, чье отношение смеси уменьшается с высотой. Концентрации метана и водяного пара претерпевают значительное увеличение, на десятки процентов, в слое мезопаузы. В отличие от этого, обусловленная ВГВ диффузия не оказывает значительного влияния на концентрацию СО2, чье отношение смеси в средней атмосфере характеризуется малым вертикальным градиентом. Увеличение СО2 почти полностью обусловлено увеличением приземной концентрации СО2, а не усилением диффузии за счет ВГВ.

Увеличение концентраций парниковых газов смещает радиационный баланс слоя верхней мезосферы и мезопаузы к более низким температурам. Другой эффект усиления связанной с ВГВ диффузии (которая обычно имеет место в слое мезопаузы) - это увеличение дивергенции направленного вниз диффузионного потока тепла, что также вызывает охлаждение. Этот механизм охлаждения мезопаузы более эффективен, если концентрации парниковых газов увеличиваются. Полученные модельные результаты предполагают, что изменения, вызванные ВГВ, могут быть так же важны при объяснении охлаждения верхней мезосферы и мезопаузы, как и наблюдаемые изменения концентраций парниковых газов. Следует также отметить, что модель не предсказывает каких-либо значительных изменений температуры в слое 92-95 км, в хорошем соответствии с наблюдениями.

Глава 8 «Спектральные и структурные закономерности пространственно-временнуй изменчивости примесей». Восьмая глава посвящена анализу спектральных и структурных закономерностей пространственно-временной изменчивости озона и NO2 по данным сетевых и спутниковых измерений концентрации и общего содержания О3 и измерений приземного содержания NO2 на Звенигородской станции.

В разделе 8.1 рассмотрены спектральные закономерности временнуй изменчивости озона и NO2. На примере приземной концентрации озона на станции Хоэнпайсенберг показано, что спектры приземного озона в диапазоне периодов от часа до нескольких суток в различные сезоны подчиняются степенному закону с показателем, близким к -5/3.

Спектр содержания NO2 в приземном слое атмосферы, рассчитанный по результатам измерений на ЗНС, подчиняется степенному закону -0.4 в диапазоне периодов от нескольких суток до нескольких месяцев. Такое низкое значение показателя степени обусловлено сильной межсуточной изменчивостью NO2 в загрязненном приземном слое атмосферы.

Спектр самого длинного ряда наблюдений ОСО на станции Ароза (более 70 лет измерений) показывает, что на межгодовом и многолетнем масштабах ОСО испытывает квазирегулярные вариации, которые группируются в определенных диапазонах периодов. Как амплитуды, так и периоды этих вариаций непостоянны, а некоторые из вариаций могут со временем исчезать и появляться вновь. Выделяются две наиболее регулярные компоненты вариаций с периодами 1 и 1/2 года. На межгодовом и многолетнем масштабах в спектре ОСО проявляются вариации с квазидвухлетним (в среднем ~28 мес), квази-трехлетним (~3.5 лет), квази-пятилетним (~5.5 лет) и квазидесятилетним (~9.5 лет) периодами. Особо отметим сильную и очень четкую комбинационную компоненту с периодом около 20 мес. При этом важно, что на внутригодовом масштабе имеются вариации с другой комбинационной частотой ~8 мес.

В разделе 8.2 рассмотрены меридиональные структурные функции концентрации стратосферного озона для выявления статистических закономерностей горизонтального распределения озона. Для анализа использованы данные измерений отношения смеси озона с помощью аппаратуры SBUV со спутника Nimbus 7. На рис. 9 показан пример меридиональных структурных функции вдоль изобарической поверхности 50 гПа (~20.5 км). Видно их прекрасное соответствие степенному закону в диапазоне горизонтальных масштабов от 200 до 3300 км.

В ряде случаев на отдельных уровнях степенной закон выполняется до масштаба 6600 км. Степенной показатель структурных функций зависит от сезона и высоты и изменяется в пределах от 1 до 2. Такие высокие значения, по-видимому, связаны с наличием значительных пространственных градиентов среднего поля озона. Содержание озона проявляет довольно отчетливые тенденции изменений в широтном направлении с относительно малой изменчивостью на малых масштабах по сравнению с большими масштабами. Тенденции связаны со структурами широтного распределения озона большого масштаба, в основном масштаба 3300 км, или 30° широты, а иногда масштаба 6600 км, или 60° широты.

В Заключении сформулированы основные выводы диссертации.

1. Проведены экспедиционные наблюдения содержания озона и NO2 в Антарктике и в Атлантике и получен уникальный материал о временнуй изменчивости и широтном распределении этих примесей. Собран большой материал наблюдений содержания NO2 в стратосфере и тропосфере на Звенигородской научной станции ИФА РАН.

2. На основе данных спутниковых, сетевых наземных и озонозондовых измерений ОСО и концентрации озона в тропосфере и стратосфере исследована пространственная динамика широтно-высотного поля концентрации озона и широтно-долготная динамика ОСО в годовом ходе. По данным спутниковых измерений проанализирована широтно-высотная динамика стратосферного содержания метана, закиси азота, азотной кислоты в годовом ходе. Изучены количественные характеристики и пространственная динамика различных фаз годового цикла примесей для наиболее важных стадий: в режимах роста и уменьшения содержания примеси, в режимах формирования годовых экстремумов. Получены пространственные распределения структурных характеристик годового хода примесей - интервалов роста и превышения.

3. С использованием данных озонозондовых измерений показано, что важнейшим фактором сезонных вариаций концентрации озона в тропосфере в средних и полярных широтах является перенос озона в тропосферу из стратосферы. Этот механизм имеет большее значение в северном полушарии.

4. По данным измерений автором концентрации озона в приземном слое атмосферы и ОС NO2 в Антарктике изучены временные вариации содержания этих примесей в южной полярной области. Установлено, что одним из важных механизмов внутрисуточных и межсуточных вариаций приземного озона на побережье Антарктиды является циркуляция, связанная с режимом стокового ветра. Межсуточные вариации ОС NO2 в Антарктике в весенний период определяются эволюцией стратосферного циркумполярного вихря.

5. На основе данных сетевых радиозондовых измерений скорости стратосферного ветра на экваторе и данных озонозондовых измерений концентрации озона, температуры, давления, направления и скорости ветра в тропосфере и стратосфере средних и полярных широт северного полушария выполнен всесторонний анализ квазидвухлетних вариаций этих параметров. Обнаружены два режима квазидвухлетней цикличности зональной скорости стратосферного экваториального ветра со средними периодами 2 и 2.5 года. Вариации с этими периодами обнаружены в концентрации озона, температуре, давлении, скорости ветра в стратосфере и тропосфере внетропических широт северного полушария. Во всех этих параметрах и в ОСО обнаружены вариации с периодами около 20 и 8.5 месяцев, соответствующими комбинационным частотам квазидвухлетних вариаций и годового цикла. Показано, что квазидвухлетние вариации озона, температуры, давления, скорости ветра в тропосфере и стратосфере внетропических широт северного полушария обусловлены комбинированным влиянием Эль-Ниньо - Южного колебания, Североатлантического колебания и квазидвухлетней цикличности в экваториальной стратосфере.

6. По данным сетевых и спутниковых измерений и с помощью численных моделей выполнено исследование вариаций состава, температуры и динамики средней и верхней атмосферы под воздействием вариаций уровня солнечной активности. Обнаружены и проанализированы эффекты воздействия 11-летнего цикла солнечной активности на годовой ход стратосферного озона и получены оценки вклада динамического переноса в 11-летние вариации концентрации стратосферного озона во внетропических широтах северного и южного полушарий. Рассчитаны широтно-высотные распределения амплитудных и фазовых характеристик вариаций температуры и концентраций примесей (озон, гидроксил, окись азота, двуокись азота, азотная кислота и др.), вызванных 27-суточными вариациями солнечной радиации, обусловленными собственным вращением Солнца. Показано, что термический и химический отклик атмосферы на 27-суточные вариации солнечной активности имеет перемежающийся и нелинейный характер.

7. На основе данных измерений широтных распределений общего содержания NO2, выполненных с участием автора, выполнен анализ особенностей широтного распределения стратосферного содержания NO2 в зависимости от сезона. По данным сетевых измерений содержания NO2 и измерений с участием автора на Звенигородской станции получены и проанализированы широтная структура амплитудных и фазовых характеристик сезонных и квази-десятилетних вариаций содержания NO2 в столбе стратосферы, а также широтная структура внутрисуточных вариаций и линейных трендов стратосферного содержания NO2 в зависимости от сезона. Установлено, в частности, что широтное распределение годовых оценок линейного тренда NO2 во внеполярных широтах примерно антисимметрично относительно экватора с преобладанием положительных значений тренда в южном и отрицательных значений в северном полушариях.

8. С помощью численного моделирования получены оценки долговременных изменений термического режима средней атмосферы в результате выброса в атмосферу парниковых газов и изменений активности внутренних гравитационных волн. Показано, что наблюдаемое увеличение концентрации углекислого газа, метана, закиси азота, хлор-фтор-углеродов в нижней тропосфере приводит к охлаждению слоя верхней мезосферы и мезопаузы на несколько градусов за 50 лет в зимнее время (до 5-7 К во внетропических широтах), в то время как охлаждение в летний сезон незначительное. Усиление активности внутренних гравитационных волн может значительно (до 2-х раз) увеличить эффект зимнего охлаждения этого слоя.

9. По данным спутниковых измерений концентрации стратосферного озона, сетевых наземных измерений приземной концентрации озона и измерений содержания NO2 (с участием автора) в приземном слое на Звенигородской станции выполнен анализ спектральных и структурных закономерностей изменчивости примесей. Показано, что временные спектры мощности флуктуаций приземной концентрации озона в диапазоне периодов от нескольких часов до нескольких суток подчиняются степенному закону с показателем, близким к -5/3. Обнаружено, что спектр вариаций приземного содержания NO2, вызванных эпизодами загрязнения, в диапазоне периодов от нескольких суток до нескольких месяцев характеризуется значениями степенного показателя, значительно меньшими по модулю единицы (~ -0.4). Обнаружено, что меридиональные вариации концентрации озона в стратосфере в диапазоне горизонтальных масштабов от 200 до 6500 км подчиняются закону статистического самоподобия со степенным показателем структурной функции большим единицы, зависящим от высоты и сезона.

Основным итогом диссертационной работы следует считать решение крупной научной проблемы исследования особенностей и механизмов пространственно-временнуй изменчивости атмосферного озона и связанных с ним малых газовых составляющих, в результате которого впервые для большой совокупности пространственно-временных масштабов получены статистически значимые закономерности изменений примесей, необходимые для совершенствования современных представлений о климате средней и верхней атмосферы.

ОСНОВНЫЕ ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИИ

1. Груздев А.Н. Влияние озонного нагревания на динамику планетарных волн // Известия АН СССР. Физика атмосферы и океана. 1985. Т. 21. № 11. С. 1148-1159.

2. Груздев А.Н. О возможности влияния озона на динамику планетарных волн / В кн.: Атмосферный озон. Труды Y1 Всесоюзного симпозиума. Л.: Гидрометеоиздат, 1987. С. 266-270.

3. Груздев А.Н., Мохов И.И. Диагностика динамики стратосферного озона в годовом ходе по спутниковым данным // Исследования Земли из космоса. 1988. № 2. С. 3-10.

4. Арабов А.Я., Груздев А.Н., Гиргждене Р.В., Еланский Н.Ф. Измерения приземной концентрации озона на антарктической станции Мирный // Известия АН СССР. Физика атмосферы и океана. 1988. Т. 24. № 12. С. 1276-1281.

5. Gruzdev A.N., Mokhov I.I. Peculiarities of global dynamics of total ozone in annual course from surface measurements / In: Ozone in the Atmosphere. Eds. R.D. Bojkov and P. Fabian. A.DEEPAK Publishing. 1989. P. 117-119.

6. Груздев А.Н., Мохов И.И. Особенности внутригодовой глобальной динамики общего содержания озона // Метеорология и гидрология. 1990. № 7. С. 36-46.

7. Груздев А.Н., Ситнов С.А. Особенности внутригодовой изменчивости озона в полярных областях по данным озонного зондирования на станциях Резольют и Амундсен-Скотт // Известия АН СССР. Физика атмосферы и океана. 1991. Т. 27. № 4. С. 396-407.

8. Gruzdev A.N., Karol I.L., Kudryavtsev A.P., Mokhov I.I., Sitnov S.A. Peculiarities of polar ozone annual course: analysis of satellite and ozonesonde data and model results // Norsk Geologisk Tidsskrift. 1991. V.71. No. 3. P. 183-187.

9. Елохов А.С., Груздев А.Н. Измерения общего содержания озона и двуокиси азота на антарктических станциях Молодежная и Мирный весной 1987 - осенью 1988 гг. // Оптика атмосферы. 1991. Т. 4. № 9. С. 1006-1009.

10. Груздев А.Н., Елохов А.С. Приземное содержание озона на антарктических станциях Молодежная и Мирный по измерениям весной 1987 г. - осенью 1988 г. // Известия РАН. Физика атмосферы и океана. 1992. Т. 28. № 1. С. 55-63.

11. Груздев А.Н., Мохов И.И. Квазидвухлетняя цикличность в глобальном поле общего содержания озона по данным наземных измерений // Известия РАН. Физика атмосферы и океана. 1992. Т. 28. № 5. С. 475-486.

12. Елохов А.С., Груздев А.Н. Широтное распределение общего содержания озона и двуокиси азота над Атлантикой по измерениям в мае 1988 г. // Известия РАН. Физика атмосферы и океана. 1992. Т. 28. № 7. С. 739-744.

13. Груздев А.Н., Ситнов С.А. Годовой ход тропосферного озона и оценки тропосферно-стратосферного обмена в Арктике и Антарктике по данным озонного зондирования // Известия РАН. Физика атмосферы и океана. 1992. Т. 28. № 9. С. 943-952.

14. Gruzdev A.N., Elokhov A.S., Makarov O.V., Mokhov I.I. Some recent results of Soviet measurements of surface ozone in Antarctica: A meteorological interpretation // Tellus. 1993. V. 45B. № 2. P. 99-105.

15. Gruzdev A.N., Sitnov S.A. Tropospheric ozone annual variation and possible troposphere-stratosphere coupling in the Arctic and Antarctic as derived from ozone soundings at Resolute and Amundsen-Scott stations // Tellus. 1993. V. 45B. № 2. P. 89-98.

16. Elokhov A.S., Gruzdev A.N. Spectrometric measurements of total NO2 in different regions of the globe // Proceedings of SPIE. 1993. V. 2107. P. 111-121.

17. Груздев А.Н., Ситнов С.А. Анализ годового хода тропосферного и стратосферного озона по данным озонозондов // Известия АН. Физика атмосферы и океана. 1994. Т. 30. № 4. С. 491-500.

18. Груздев А.Н., Ситнов С.А. Характеристики внутригодовой изменчивости вертикального распределения озона по данным озонозондов // Известия АН. Физика атмосферы и океана. 1995. Т. 31. № 1. С. 69-76.

19. Gruzdev A.N., Mokhov I.I. Characteristics of intra-annual variations of N2O and CH4 in the middle atmosphere // Journal of Atmospheric and Terrestrial Physics. 1994. V. 56. № 9. P. 1095-1098.

20. Gruzdev A.N., Mokhov I.I. Analysis of satellite measurements of ozone, N2O and CH4: annual and semiannual variations in the stratosphere // Polar Research. 1994. V. 13. № 1. P. 13-22.

21. Gruzdev A., Mokhov I. Quasi-biennial oscillation in total ozone: Global behavior derived from ground-based measurements / In: Ozone in the Troposphere and Stratosphere. Pt.1 (R.D. Hudson, ed.). 1994. P. 397-400.

22. Sitnov S., Gruzdev A. Manifestation of quasi-biennial oscillations in ozone vertical distribution / In: Ozone in the Troposphere and Stratosphere. Pt.1 (R.D. Hudson, ed.). 1994. P. 393-396.

23. Elokhov A.S., Gruzdev A.N. Total ozone and total NO2 latitudinal distribution derived from measurements in the Atlantic Ocean in May 1988 / In: Ozone in the Troposphere and Stratosphere. Pt.2 (R.D. Hudson, ed.). 1994. P. 695-698.

24. Gruzdev A.N. Possible changes in the dose of biologically active ultraviolet radiation received by the biosphere in the summertime Arctic due to total ozone interannual variability // The Science of the Total Environment. 1995. V. 160/161. P. 669-675.

25. Elokhov A.S., Gruzdev A.N. Estimation of tropospheric and stratospheric NO2 from spectrometric measurements of column NO2 abundances // Proceedings of SPIE. 1995. V. 2506. P. 444-453.

26. Груздев А.Н., Макаров О.В. Анализ нелинейной изменчивости в рядах измерений приземной концентрации озона в Антарктиде // Известия АН. Физика атмосферы и океана. 1996. Т. 32. № 1. С. 101-107.

27. Ситнов С.А., Груздев А.Н. Анализ квазидвухлетней цикличности в вертикальных распределениях озона и метеопараметров по данным озонозондов // Известия АН. Физика атмосферы и океана. 1996. Т. 32. № 3. С. 370-382.

28. Голицын Г.С., Арефьев В.Н., Гречко Е.И., Груздев А.Н., Еланский Н.Ф., Елохов А.С., Семенов В.К. Газовый состав атмосферы и его изменения // Оптика атмосферы и океана. 1996. Т. 9. № 9. С. 1214-1232.

29. Груздев А.Н., Ситнов С.А. Различия вертикальных распределений озона и метеопараметров в фазах квазидвухлетней цикличности (по данным озонозондов) // Известия АН. Физика атмосферы и океана. 1997. Т. 33. № 1. С. 91-103.

30. Gruzdev A.N. Scale invariance of meridional distributions of stratospheric ozone // Advances in Space Research. 1997. V. 19. P. 607-610.

31. Gruzdev A.N. Long-term variations and trends in the total ozone annual cycle / Proceedings of the First SPARC General Assembly (Melbourne, Australia, 2-6 December 1996). 1997. V. 1. P. 205-208.

32. Bezverkhny V.A., Gruzdev A.N. Long-term variations in interannual quasi-periodicities of total ozone / Proceedings of the First SPARC General Assembly (Melbourne, Australia, 2-6 December 1996). 1997. V. 1. P. 209-212.

33. Gruzdev A.N., Bezverkhny V.A. Estimation of possible trends in ozone flux across the tropopause. Proceedings of the First SPARC General Assembly (Melbourne, Australia, 2-6 December 1996). 1997. V. 2. P. 378-381.

34. Безверхний В.А., Груздев А.Н. Долговременные вариации квазидвухлетней цикличности атмосферного озона и скорости экваториального стратосферного ветра // Доклады АН. 1998. Т. 363. № 1. С. 110-113.

35. Elokhov A.S., Gruzdev A.N. Measurements of column contents and vertical distribution of NO2 at Zvenigorod Scientific Station // Proceedings of SPIE. 1998. V. 3583. P. 547-554.

36. Груздев А.Н., Безверхний В.А. Многолетние вариации квазидвухлетней цикличности экваториального стратосферного ветра // Известия АН. Физика атмосферы и океана. 1999. Т. 35. № 6. С. 773-785.

37. Елохов А.С., Груздев А.Н. Измерения общего содержания и вертикального распределения NO2 на Звенигородской научной станции // Известия АН. Физика атмосферы и океана. 2000. Т. 36. № 6. С. 831-846.

38. Gruzdev A.N., Bezverkhny V.A. Two regimes of the quasi-biennial oscillation in the equatorial stratospheric wind // Journal of Geophysical Research. 2000. V. 105. No. D24. P. 29435-29443.

39. Elokhov A.S., Gruzdev A.N. Ground-based spectrometric measurements of vertical distribution of NO2: Ten years of observations at Zvenigorod Scientific Station / In: IRS 2000: Current Problems in Atmospheric Radiation, W. L. Smith and Yu. M. Timofeyev (Eds.). A. Deepak Publishing, Hampton, Virginia. 2001. P. 859-863.

40. Елохов А.С., Груздев А.Н. Наблюдения загрязнения нижней тропосферы в районе Звенигорода двуокисью азота по данным десятилетних спектрометрических измерений / Вторая международная конференция “Состояние и охрана воздушного бассейна и водно-минеральных ресурсов курортно-рекреационных регионов”. Кисловодск, 8-14 октября 2000 г. Сборник докладов. Кисловодск, 2001. С. 72-80.

41. Груздев А.Н., Елохов А.С. Тренды содержания NO2 в стратосфере над Звенигородом // Доклады АН. 2002. Т. 382. № 5. С. 678-681.

42. Груздев А.Н., Безверхний В.А. Об источниках квазидвухлетней цикличности в атмосфере северного полушария // Доклады АН. 2003. Т. 389. № 4. C. 528-531.

43. Gruzdev A.N., Bezverkhny V.A. About sources of quasi-biennial variations in the Northern Hemisphere extratropical atmosphere / Proc. XX Quadrennial Ozone Symposium, 1-8 June 2004, Kos, Greece. 2004. P. 341-342.

44. Gruzdev A.N., Elokhov A.S., Brasseur G.P. Trends in stratospheric column NO2 at Zvenigorod, Russia / Proc. XX Quadrennial Ozone Symposium, 1-8 June 2004, Kos, Greece. 2004. P. 963-964.

45. Gruzdev A.N., Elokhov A.S. Spectrometric measurements of NO2 in the near-surface layer at Zvenigorod, Russia / Proc. XX Quadrennial Ozone Symposium, 1-8 June 2004, Kos, Greece. 2004. P. 965-966.

46. Груздев А.Н., Безверхний В.А. Квазидвухлетняя цикличность в атмосфере над Северной Америкой по данным озонозондов // Известия РАН. Физика атмосферы и океана. 2005. Т. 41. № 1. С. 36-50.

47. Gruzdev A.N., Brasseur G.P.. Long-term changes in the mesosphere calculated by a two-dimensional model // Journal of Geophysical Research. 2005. V. 110. No. D3. D03304, doi:10.1029/2003JD004410.

48. Gruzdev A.N., Elokhov A.S. Ground-based spectrometric measurements of vertical distribution and column abundance of NO2 at Zvenigorod, Russia // Proceedings of SPIE. 2005. V. 5832. doi:10.1117/12.619837. P. 292-299.

49. Pyle J., Shepherd Th., Bodeker G., Canciani P., Dameris M., Forster P., Gruzdev A., Mьller R., Muthama N.J., Pitari G., Randel W. Ozone and climate: A review of interconnections / In: Safeguarding the Ozone Layer and the Global Climate System. Issues Related to Hydrofluorocarbons and Perfluorocatbons. IPCC Special Report. IPCC. 2005. P. 83-132.

50. Груздев А.Н., Безверхний В.А. Квазидвухлетние вариации озона и метеопараметров над Западной Европой по данным озонного зондирования // Известия РАН. Физика атмосферы и океана. 2006. Т. 42. № 2. С. 224-236.

51. Груздев А.Н., Брассёр Г.П. Воздействие 11-летнего цикла солнечной активности на характеристики годового хода общего содержания озона // Известия РАН. Физика атмосферы и океана. 2007. Т. 43. № 3. С. 379-391.

52. Груздев А.Н. Широтная структура трендов и эффекта солнечной активности в стратосферном содержании NO2 // Доклады АН. Т. 416. № 1. 2007.

53. Груздев А.Н. Широтная структура вариаций стратосферного содержания NO2 // Известия РАН. Физика атмосферы и океана. 2008. Т. 44.

Размещено на Allbest.ru

...

Подобные документы

  • Методы биологической защиты. Вычисление стены лабиринта от рассеянного тормозного и рентгеновского излучения. Расчет концентрации озона в помещении ускорителя и рентгеновского симулятора. Объемная активность азота от тормозного излучения ускорителя.

    курсовая работа [962,3 K], добавлен 23.07.2014

  • Законы и аксиомы динамики материальной точки, уравнения движения. Условие возникновения свободных и затухающих колебаний, их классификация. Динамика механической системы. Теорема об изменении количества движения. Элементы теории моментов инерции.

    презентация [1,9 M], добавлен 28.09.2013

  • Физика атмосферы. Спектральные исследования атмосферы Земли. Линии кислорода. Линии натрия. Линии водорода и гидроксила ОН. Атмосферный озон. Поляризационные исследования атмосферы Земли. Взаимодействии атмосферы Земли с излучением Солнца.

    реферат [44,6 K], добавлен 03.05.2007

  • Применение моделирования динамики яркостной температуры методом инвариантного погружения и нейронных сетей; решение обратной задачи радиометрии – получение физических данных исследуемого объекта (почв). Обзор моделей нейронных сетей, оценка погрешности.

    курсовая работа [1,5 M], добавлен 11.02.2011

  • Натурное наблюдение и мониторинг по эксплуатации солнечных коллекторов на территории Центральной Якутии. Проектирование и строительство энергоэффективных зданий. Эксплуатация, запуск системы отопления в доме. Динамика годового потребления природного газа.

    статья [19,4 K], добавлен 20.06.2015

  • Модели сплошной среды–идеальная и вязкая жидкости. Уравнение Навье-Стокса. Силы, действующие в атмосфере. Уравнение движения свободной атмосферы. Геострофический ветер. Градиентный ветер. Циркуляция атмосферы. Образование волновых движений в атмосфере.

    реферат [167,4 K], добавлен 28.12.2007

  • Основной закон динамики вращательного движения твердого тела относительно неподвижной оси. Изучение методических рекомендаций по решению задач. Определение момента инерции системы, относительно оси, перпендикулярной стержню, проходящей через центр масс.

    реферат [577,9 K], добавлен 24.12.2010

  • Три основных закона динамики Исаака Ньютона. Масса и импульс тела. Инерциальные системы, принцип суперпозиции. Импульс произвольной системы тел. Основное уравнение динамики поступательного движения произвольной системы тел. Закон сохранения импульса.

    лекция [524,3 K], добавлен 26.10.2016

  • Процентное соотношение газов в атмосфере Земли. Вес атмосферы по подсчетам Паскаля. Опыт, доказывающий существование атмосферного давления, и история открытия учёными этого явления. Нормальное атмосферное давление и его изменение в зависимости от высоты.

    презентация [323,6 K], добавлен 14.05.2014

  • Электродинамические явления в моделях климата: электрические заряды и электростатическое поле, механизмы их генерации и перераспределения в конвективном облаке. Возникновение грозовых разрядов как источника оксидов азота в атмосфере и пожароопасности.

    курсовая работа [915,5 K], добавлен 07.08.2013

  • Анализ аксиоматики динамики. Понятие инерциальных систем отсчета. Область применимости механики Ньютона. Понятие взаимодействий и сил. Фундаментальные взаимодействия в природе. Силы трения, сопротивления и тяжести. Особенности движения в поле силы.

    презентация [2,9 M], добавлен 08.10.2013

  • Применение машины Атвуда для изучения законов динамики движения тел в поле земного тяготения. Принцип работы механизма. Вывод значения ускорения свободного падения тела из закона динамики для вращательного движения. Расчет погрешности измерений.

    лабораторная работа [213,9 K], добавлен 07.02.2011

  • Определение динамики, классической механики. Инерциальные системы отсчета. Изучение законов Ньютона. Основы фундаментального взаимодействия тел. Импульс силы, количество движения. Единицы измерения работы и мощности. Свойства потенциального поля сил.

    презентация [0 b], добавлен 25.07.2015

  • Динамика частиц, захваченных геомагнитным полем, ее роль в механизме динамики космического изучения в околоземном пространстве. Геометрия радиационных поясов Земли. Ускорение частиц космического излучения. Происхождение галактических космических лучей.

    дипломная работа [1,2 M], добавлен 24.06.2015

  • Изучение кинематики и динамики поступательного движения на машине Атвуда. Изучение вращательного движения твердого тела. Определение момента инерции махового ко-леса и момента силы трения в опоре. Изучение физического маятника.

    методичка [1,3 M], добавлен 10.03.2007

  • Водородная связь в воде, ее основные критерии. Аномальные свойства воды. Понятие о электролизе и электролитах. Электрокристаллизация и ее закономерности. Динамика сетки водородных связей при электрокристаллизации воды. Кристаллические и аморфные льды.

    дипломная работа [1,7 M], добавлен 15.12.2013

  • Общие рекомендации по решению задач по динамике прямолинейного движения материальной точки, а также движения нескольких тел. Основные формулы и понятия. Применение теорем динамики к исследованию движения материальной точки. Примеры решения типовых задач.

    реферат [366,6 K], добавлен 17.12.2010

  • Основы динамики вращения твёрдого тела относительно неподвижной и проходящей через него оси, кинетическая энергия его частиц. Сущность теоремы Гюгенса-Штейнера. Расчет и анализ результатов зависимости момента инерции шара и диска от массы и радиуса.

    курсовая работа [213,6 K], добавлен 02.05.2012

  • Основные задачи динамики твердого тела. Шесть степеней свободы твердого тела: координаты центра масс и углы Эйлера, определяющие ориентацию тела относительно центра масс. Сведение к задаче о вращении вокруг неподвижной точки. Описание теоремы Гюйгенса.

    презентация [772,2 K], добавлен 02.10.2013

  • Термодинамические процессы в сухом и влажном воздухе. Термодинамические процессы фазовых переходов. Уравнение Клаузиуса-Клапейрона. Уравнение переноса водяного пара в атмосфере. Физические процессы образования облаков. Динамические процессы а атмосфере.

    реферат [487,9 K], добавлен 28.12.2007

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.