Миграция электронных возбуждений и формирование спектров люминесценции в пространственно-неоднородных полупроводниковых структурах a3b5

Корреляция между неоднородно распределенными в пространстве локализованными состояниями и особенностями спектра излучения в полупроводниковых эпитаксиальных структурах a3b5. Влияние миграции электронных возбуждений на формирование спектра люминесценции.

Рубрика Физика и энергетика
Вид автореферат
Язык русский
Дата добавления 02.03.2018
Размер файла 353,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

РОССИЙСКАЯ АКАДЕМИЯ НАУК

ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ им. А.Ф. ИОФФЕ

На правах рукописи

Миграция электронных возбуждений и формирование спектров люминесценции в пространственно-неоднородных полупроводниковых структурах a3b5

специальность 01.04.10 - физика полупроводников

Автореферат

диссертации на соискание ученой степени доктора физико-математических наук

Криволапчук Владимир Васильевич

Санкт-Петербург

Оппоненты:

Копьев Петр Сергеевич, доктор физ.-мат. наук, Член-Корреспондент РАН,

Директор Центра физики наногетероструктур ФТИ им. А.Ф. Иоффе.

Новиков Борис Владимирович, доктор физ.-мат. наук, профессор, Зав.отделом НИИ физики Санкт-Петербургского Государственного Университета.

Глинский Геннадий Федорович, доктор физ.-мат. наук, профессор кафедры микроэлектроники Санкт-Петербургского электротехнического Университета.

Оппонирующая организация Физический институт им.П.Н. Лебедева РАН, Отделение Физики твердого тела, Москва.

Учреждение Российской Академии Наук Физико-технический институт им. А.Ф. Иоффе РАН 194021 Санкт-Петербург, ул. Политехническая, д.26

E-mail: post@mail.ioffe.ru

Предполагаемая дата защиты: 18 февраля 2009 г.

полупроводниковый миграция электронный люминесценция

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования.

Различные аспекты спектров люминесценции и их связи с параметрами полупроводниковых структур А3В5 интенсивно исследуются более тридцати лет. Интерес к данной проблеме связан с необходимостью установления взаимосвязи между разнообразными процессами, определяющими поведение электронных возбуждений в полупроводниковых структурах и свойствами материала.

Свойства реальных полупроводниковых кристаллов наряду с типом кристаллической решетки определяются разнообразными отклонениями от идеальности. К таким отклонениям относятся различные дефекты кристаллической решетки, которые отождествляются с локальными неоднородностями среды. Эти неоднородности обуславливают поведение электронной подсистемы кристаллов, которая определяет большинство фундаментальных и прикладных свойств полупроводниковых материалов. К наиболее важным свойствам, безусловно, относятся процессы рекомбинации неравновесных носителей или, иными словами, процессы преобразования энергии возбуждения. Наиболее информативным методом изучения поведения электронной подсистемы является исследование спектров люминесценции вблизи края собственного поглощения кристаллов (БКФЛ) и, особенно экситонных спектров. Это обусловлено тем, что характеристики спектра экситонной люминесценции (наличие тех или иных линий, их форма, интенсивность, полуширина, время затухания) достаточно полно отражают динамику неравновесных носителей заряда в кристаллах и поэтому позволяют судить о влиянии на нее процессов с участием разнообразных дефектов в материале. При этом характеристики спектра люминесценции определяются способностью электронных возбуждений (в частности, неравновесных носителей) перемещаться по кристаллу и в результате дойти до центров как излучательной, так и безызлучательной рекомбинации.

С точки зрения влияния миграции возбуждения на формирование спектра излучения представляется важной эволюция спектров в экситонной области (свободные и связанные экситоны) в зависимости от внутренних (характеристики кристалла) и внешних (условия эксперимента) параметров. Поэтому фундаментальной проблемой является исследование влияния на формирование спектров излучения транспорта неравновесных носителей в полупроводниковых структурах. Это обусловлено тем, что перенос является промежуточным процессом между первичным актом возбуждения и всеми конечными процессами, в которых используется энергия электронов. Именно поэтому вопросы, связанные с проблемой миграции возбуждения и взаимосвязи с особенностями излучения имеют очень давнюю историю. При этом необходимо отметить следующие аспекты, связанные с проблемами переноса возбуждения в полупроводниковых структурах: среда является, как правило, пространственно неоднородной и, вследствие этого, необходимо установить детальное соответствие между переносом возбуждения и особенностями формирования спектров излучения (а значит, процессами рекомбинации) с одной стороны и структурными параметрами материала с другой.

Целью настоящей работы явилось выяснение корреляции между локализованными состояниями, неоднородно распределенными в пространстве, и особенностями спектра излучения в полупроводниковых эпитаксиальных структурах А3В5. При этом основное внимание уделялось исследованию влияния миграции электронных возбуждений на формирование спектра люминесценции. В диссертации исследовались эпитаксиальные слои GaAs, GaN и квантовые ямы GaAs/AlGaAs и GaN/InGaN, содержащие в латеральной плоскости следующие неоднородности: квантовые точки; островки с микронными и субмикронными размерами и комплексы с редкоземельными ионами (в основном на примере европия и эрбия <Eu, Er>).

Научная новизна работы определяется тем, что в ней впервые получены следующие результаты:

Для случая n-GaAs

1. Исследована эволюция интеграла длительного послесвечения (BMS) в эпитаксиальных слоях n-GaAs в зависимости от одноосного сжатия (Pd), температуры (Tb) и магнитного поля (Bf).

2. Обнаружен резонансный механизм обмена носителями между подсистемой свободных электронов и резервуаром метастабильных локализованных электронов.

3. Установлено, что энергетическое положение метастабильного уровня соответствует энергетическому диапазону разрешенной зоны и отстоит от края зоны на величину нескольких миллиэлектроновольт (meV).

4. Найдено, что параметры спектра в экситонной области - спектральное положение, полуширина линий излучения D0,x и D0,h и соотношение интенсивностей этих линий коррелируют с величиной интеграла послесвечения (BMS), который отражает концентрацию метастабильных состояний в кристаллах n-GaAs.

Для связанных квантовых ям GaAs/AlGaAs:

5. Установлено, что в связанных квантовых ямах GaAs/AlGaAs в области определенных значений внешних электрических полей (Vdc) имеет место резкое изменение полуширины (FWHM) линии излучения пространственно-непрямого экситона и в процессе изменения наблюдается возникновение аномально больших низкочастотных флуктуаций интенсивности линии

6. Экспериментально определены границы резкого изменения ширины (FWHM) линии излучения пространственно-непрямого экситона в связанных квантовых ямах GaAs/AlGaAs при монотонном изменении величин внешнего электрического поля (Vdc) и интенсивности возбуждения (Ip).

7. На основании эволюции (не монотонного изменения) полуширины (FWHM) и возникновения аномально больших низкочастотных флуктуаций интенсивности линии излучения пространственно-непрямого экситона (при T<4.5K) построена фазовая энергетическая диаграмма состояния и определены условия существования коллективного состояния экситонов.

8. Обнаружено, что величине внешнего электрического поля (Vdc) и интенсивности возбуждения (Ip), отвечающим минимальному значению FWHM линии пространственно-непрямых экситонов появляется узкая диаграмма направленности излучения при резком одновременном увеличении линейной поляризации.

Случай не связанных квантовых ям InGaN/GaN и кристаллов GaN, легированных редкоземельными элементами (RE):

9. Установлено, что формирование спектра фото- и электролюминесценции в квантовых ямах (MQW) InGaN/GaN определяется коррелированным поведением встроенных электрических полей и долгоживущих локализованных состояний.

10. Исследован процесс обмена электронным возбуждением между различными неоднородностями в квантовых ямах на основе III-нитридов.

11. В структурах InGaN/GaN с разными величинами внешнего квантового выхода обнаружены различные функциональные зависимости анизотропии (линейной поляризации) излучения от мощности накачки.

12. Установлено, что зависимость величины линейной поляризации (Plin) от мощности возбуждения (Wex) обусловлена процессами переноса заряда между кластерами в латеральной плоскости.

13. Исследованы особенности спектра излучения квантовых ям InGaN/GaN, GaAs/AlGaAs при легировании редкоземельными ионами Eu и Er.

14. Экспериментально показано, что результат легирования РЗИ структур с квантовыми ямами, проявляющийся в спектрах люминесценции, существенно зависит от пространственно-энергетической упорядоченности слоев этих структур.

15. Обнаружено, что в зависимости от степени пространственно-энергетической упорядоченности слоев внедрение РЗИ приводит либо к переносу неравновесных носителей на атомные уровни РЗИ, либо к образованию изовалентных ловушек в барьере.

16. Показано, что в вюрцитных кристаллах GaN с n-типом проводимости результат легирования редкоземельными ионами (РЗИ) зависит от степени совершенства полупроводниковой матрицы (концентрации дефектов и величины ND - NA): в дефектном материале происходит трансформация состояний дефектов по величине радиуса локализации неравновесных носителей.

17. Обнаружен эффект сенсибилизации близ краевого излучения в вюрцитных кристаллах p-GaN при легировании Eu и Er и последующем легировании Zn.

Научная и практическая значимость работы.

Научная ценность работы состоит в том, что в ней на основании систематического изучения влияния транспорта электронных возбуждений на формирование спектров излучения установлена корреляция между процессами миграции электронных возбуждений, особенностями спектров излучения и параметрами пространственно-неоднородных полупроводниковых структур А3В5.

Новизна подхода обусловлена тем, что при решении поставленной проблемы использовались как присущие данному объекту (предварительно классифицированные) неоднородности, так и целенаправленно созданные в результате дополнительного легирования и приложения внешних полей (электрического, магнитного и деформационного). Кроме того, при системном анализе экспериментального материале в диссертации выделено два крайних случая: 1 - скорость захвата неравновесных носителей на центр ограничена скоростью энергетических потерь, то есть электроны быстрее достигают центра, чем захватываются на него; 2 - скорость захвата на центр ограничена, например, скоростью пространственной диффузии носителей к центрам захвата. Безусловно, что наличие каждого из этих случаев и соотношение между ними определяется многими факторами и, в том числе, условиями эксперимента. Применительно к полупроводниковым структурам А3В5 к первому случаю можно отнести совершенные эпитаксиальные слои n-GaAs (Nd - Na<1014сm-3; плотность дислокаций <104 см-2) и квантовые ямы на основе GaAs/AlGaAs. Второму случаю отвечает GaN и квантовые ямы (MQW) на основе InxGa1-xN.

В работе детально исследовано влияние внешних и встроенных электрических полей на эволюцию спектров излучения в квантовых ямах GaAs/AlGaAs и InGaN/GaN, а также в GaAs и GaN, при наличии пространственных неоднородностей, которые образуют связывающий потенциал электронных возбуждений. В ходе исследований впервые наблюдалась корреляция между характеристиками спектра излучения связанных экситонов и концентрацией резонансных («глубоких») центров и наличием пространственной неоднородности эпитаксиальных слоев GaAs. На примере различных эпитаксиальных слоев GaN и квантовых ям InGaN/GaN, GaAs/AlGaAs впервые экспериментально определен коррелированный с электрическим полем вклад ловушек, порождаемых флуктуациями потенциала на гетерограницах, в процесс формирования спектра люминесценции. На основании исследования эволюции спектров люминесценции двойных квантовых ям GaAs/AlGaAs показано, что характеристики линии фотолюминесценции определяются коллективными свойствами пространственно-непрямых экситонов. В рамках работы впервые изучено влияние легирования редкоземельными элементами на спектры близ краевой фотолюминесценции III-нитридов и определена роль миграции электронного возбуждения в процессе формирования спектра излучения. Обнаружено, что при совместном легировании эпитаксиальных слоев GaN Eu и Zn наблюдается эффект сенсибилизации (увеличение на порядок интенсивности близ краевой фотолюминесценции). Определена корреляция между спектрами фотолюминесценции и структурными параметрами наноструктур на основе InGaN/GaN, легированных Eu. В менее совершенных структурах внедрение РЗИ приводит к образованию изовалентных ловушек в барьере, которые эффективно захватывает неравновесные носители, в результате чего интенсивность фотолюминесценции структуры возрастает на порядок. В достаточно совершенных структурах в процессе миграции возбуждения происходит перенос неравновесных носителей на атомные уровни 5D2, 5D1 иона Eu.

Практическая ценность диссертации состоит в том, что продемонстрирована эффективность использования фотолюминесценции для получения разнообразной информации, как о свойствах электронной подсистемы, так и о структурных особенностях конденсированной среды. В результате этих исследований определена корреляция между структурными параметрами неоднородных наноструктур и механизмами миграции возбуждения и захвата носителей, что позволит на основании новых знаний повысить эффективность различных устройств, созданных на основе наноструктур.

Апробация работы. Основные результаты исследований, вошедших в диссертацию, были доложены и обсуждены на 19 отечественных и 7 международных конференциях, симпозиумах, школах и семинарах: Труды 11-й Всесоюзной конференции по физике полупроводников, с.323, Кишинев сентябрь 1988; Тезисы доклада на 12-й Всесоюзной конференции по физике полупроводников Киев, 1990; Abs. 1-th Int.Conf.on Epitaxial Growth, Hungary, Budapest, 1990; Тезисы докладов IIй Российской конференции по физике полупроводников, с. 98, 118, Зеленогорск 1996; Тезисы 3-й Всероссийской конференции по физике полупроводников, с.215, Москва 1997; Сборник трудов международного симпозиума Наноструктуры, с.189, С.-Пб, (2000); Сборник трудов международного симпозиума Наноструктуры, с.27, С.-Пб, (2001); Тезисы докладов VIй Российской конференции по физике полупроводников, с. 60, 74, 464, 467, 472, С.-Пб 2003; Тезисы докладов 2-й Всероссийской конференции-Нитриды галлия, индия и алюминия, с.28, 29, 30, С.-Пб,2003; Тезисы докладов 2-й Всероссийской конференции-Нитриды галлия, индия и алюминия, с.29, С.-Пб,2003; Тезисы докладов 3-й Всероссийской конференции-Нитриды галлия, индия и алюминия, с.29, Москва, 56, 71, 82, 145, 2004; Тезисы докладов 4-й Всероссийской конференции-Нитриды галлия, индия и алюминия, с.72, 100, 101, С.-Пб,2005; Тезисы докладов 5-й Всероссийской конференции-Нитриды галлия, индия и алюминия, с.129, 131. 133, 149, С.-Пб,2007; Тезисы докладов на международной школе по физике полупроводников, с.27-32, С.-Пб, 2005; Тезисы докладов VIIIй Российской конференции по физике полупроводников, с. 232, 310, 318, Екатеринбург 2007. А также на семинарах в ФТИ им. А.Ф. Иоффе.

Публикации. По теме исследования опубликовано 27 печатных работ, список которых приведен в конце диссертации.

Структура и объем диссертации. Работа состоит из введения, четырех глав, перечня основных результатов и списка цитированной литературы. Первая глава посвящена экспериментальному исследованию процессов миграции возбуждения в нелегированных эпитаксиальных слоях n - GaAs и влиянию этих процессов на формирование спектров фотолюминесценции расположенных вблизи края собственного поглощения. Показано, что в n - GaAs существуют метастабильные состояния с малым радиусом локализации, которые играют заметную роль в формировании люминесценции в экситонной области спектра. Рассмотрены процессы обмена электронным возбуждением между подсистемами дефектов с разным радиусом локализации носителей и неоднородным распределением этих дефектов в пространстве. Экспериментально показано, что пространственные неоднородности, обусловленные взаимным распределением дефектов с разным радиусом локализации носителей, и перенос возбуждения между ними определяют формирование спектра люминесценции в эпитаксиальных слоях n - GaAs. Вторая глава посвящена исследованию формирования линий излучения экситонов в связанных (двойных) квантовых ямах GaAs/AlGaAs. Впервые экспериментально исследована эволюция спектра люминесценции, отвечающего пространственно-непрямым экситонам в двойных квантовых ямах. Эволюция спектров люминесценции исследовалась при различных внешних воздействиях: температура; электрическое и магнитное поле; интенсивность возбуждения и угол падения возбуждающего света. Показано, что в двойных квантовых ямах для описания процесса формирования спектра люминесценции необходимо привлекать существование пространственных неоднородностей в латеральной плоскости и механизмы, обусловленные коллективным поведением экситонов, локализованных в этих неоднородностях. В третьей главе приведены результаты исследований спектров фотолюминесценции как собственно кристаллов GaN, так и кристаллов GaN, легированных редкоземельными элементами (Eu, Er, Sm, Tm). При этом основное внимание уделялось формированию спектра излучения вблизи края собственного поглощения (БКФЛ) эпитаксиальных слоев GaN, легированных Eu и Er (GaN<Eu,Er>). Экспериментально исследовано влияние транспорта неравновесных носителей на форму линий излучения БКФЛ в кристаллах, легированных редкоземельными элементами. Использование время-разрешенной спектроскопии позволило обнаружить пространственное упорядочение локализованных состояний в эпитаксиальных слоях. Обнаружено, что введение дополнительной примеси Zn в GaN<Eu,Er> приводит к значительному (на порядок) увеличению интенсивности излучения - эффект сенсибилизации. Четвертая глава посвящена результатам исследований процессов формирования излучения в наборе несвязанных квантовых ям (MQW) III-нитридов: AlGaN/GaN; InGaN/GaN. Показано, что при анализе формы спектра излучения необходимо учитывать пространственно-непрямые переходы с участием уровней пространственного квантования в наноструктурах. Показано, что определяющий вклад в излучение квантовых ям вносят локализованные состояния разнообразной природы. Изучены процессы миграции возбуждения в наноструктурах InGaN/GaN. Показано, как на основании исследования поляризационных характеристик линии излучения MQW определены особенности заселения локализованных состояний в таких квантовых ямах. Описаны исследования время-разрешенных спектров фото- и электролюминесценции, на основании анализа которых сделан вывод о значительном влиянии встроенных электрических полей на формирование линий излучения в квантовых ямах InGaN/GaN. Определена корреляция между спектрами фотолюминесценции и структурными параметрами наноструктур на основе InGaN/GaN, легированных Eu. В менее совершенных структурах внедрение РЗИ приводит к образованию изовалентных ловушек в барьере, которые эффективно захватывают неравновесные носители, в результате чего интенсивность фотолюминесценции структуры возрастает на порядок. В достаточно совершенных структурах в процессе миграции возбуждения происходит перенос неравновесных носителей на атомные уровни 5D2, 5D1 иона Eu.

Общий объем диссертации 329 страницы, включая 231 страниц текста, 95 рисунков, а также список литературы из 169 наименований.

СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы, сформулирована цель работы, охарактеризована новизна полученных результатов и изложены основные защищаемые положения. Первая глава посвящена экспериментальному исследованию процессов миграции возбуждения в нелегированных эпитаксиальных слоях n - GaAs и влиянию этих процессов на формирование спектров фотолюминесценции расположенных вблизи края собственного поглощения. Эпитаксиальные слои n - GaAs представляют собой, с точки зрения структурных особенностей, достаточно совершенные кристаллы. Тем не менее, в них присутствуют пространственные неоднородности, обусловленные взаимным распределением дефектов с разным радиусом локализации носителей. Ниже будет показано, что существуют метастабильные состояния с малым радиусом локализации, которые играют заметную роль в формировании люминесценции в экситонной области спектра. Это обусловлено тем, что одним из факторов, влияющим на формирование функции энергетического распределения, являются процессы взаимодействия экситонов (носителей) с метастабильными состояниями.

Поэтому рассмотрим влияние метастабильных состояний на спектр близкраевой стационарной фотолюминесценции в кристаллах GaAs n-типа. В диссертации на основании исследования затухания фотолюминесценции (ФЛ) вблизи края собственного поглощения показано, что в n-GaAs существуют локализованные метастабильные состояния (Ehms), которые эффективно захватывают неосновные носители - дырки. Наблюдаемое аномально длительное затухание (>10-6 с) ФЛ на линиях D0,h и D0,x обусловлено временем безактивационного выброса дырок из метастабильных состояний в валентную зону, после чего происходит связывание этих дырок с электронами мелких доноров и в результате осуществляется формирование линий D0,h и D0,x в задержанных спектрах ФЛ.

Проведенные эксперименты показывают, что медленное затухание интенсивности ФЛ наблюдается только в образцах n-типа, в которых при низких температурах (T<10K) всегда присутствуют электроны на мелких донорах (состояние D0). А поскольку для формирования линии излучения D0,h, кроме электрона на доноре требуется дырка в валентной зоне, то отсюда следует, что метастабильные центры должны задерживать дырки. Основными характеристиками затухания излучения являются время спада интенсивности - ф и величина интеграла под кривой затухания -рис.1а. Время спада определяется процессами высвобождения дырок из метастабильных состояний, а величина интеграла пропорциональна количеству метастабильных центров и зависит от механизмов их заселения, особенности которых рассмотрены ниже. Высвободившиеся в результате распада метастабильных центров носители рекомбинируют излучательно, формируя спектральные линии экситонной ФЛ в задержанных спектрах. Следует отметить, что заметные изменения заселенности при изменении внешних условий никак не коррелируют со временем высвобождения, которое для данного кристалла является величиной постоянной. Заселенность центров, достигаемая в стационарном состоянии, определяется эффективностью механизмов захвата носителей на эти центры и интенсивностью возбуждения (темпом генерации). Суммарное количество захваченных на метастабильные центры дырок после окончания импульса возбуждения пропорционально концентрации этих центров - NMS. Разница концентраций метастабильных центров в образцах проявляется в различной интенсивности послесвечения, наблюдаемого после окончания импульса возбуждения. Кривые затухания интенсивности ФЛ для разных образцов приведенные на рис.1b свидетельствуют о различной концентрации в них метастабильных центров. Экспериментально количество захваченных дырок может быть оценено из светосуммы излученной образцом после окончания импульса возбуждения. Эта светосумма может быть определена как площадь под кривой затухания фотолюминесценции и равна интегралу BMS= .

Исследование зависимости длительного послесвечения от интенсивности Iex осуществлялось в диапазоне 1 - 100 Вт/см2 при длительности импульса возбуждения фex =0.5 мкс. В результате определения BMS затухания линии излучения D0,h при различных интенсивностях оптического возбуждения получена зависимость величины BMS(Iex). Был произведен модельный численный расчет зависимости BMS(g) на основе кинетических уравнений с подгонкой параметров по экспериментальным точкам. Из расчета следует, что зависимость BMS=F(Iex) достаточно хорошо соответствует экспериментальным данным только в случае предположении захвата двух частиц.

С целью выяснения особенностей заселения метастабильных состояний и процессов переноса возбуждения между различными подсистемами локализованных состояний было исследовано поведение величины BMS в зависимости от температуры (Tb), одноосного давления (Pd) и магнитного поля (Bf). Анализ зависимости величины BMS от Tb, Pd и Bf (рис.2,3,4 - соответственно), основанный на результатах работ [1-3], показал, что заселение метастабильного состояния осуществляется в результате резонансного туннелирования свободных носителей в дискретное состояние локализованного центра. Кроме того, анализ приведенных выше экспериментальных данных зависимости величины BMS от Pd, Bf и Tb, позволяет также, в первом приближении, оценить границы энергии, в пределах которых находится уровень захвата EMS метастабильного центра.

Таким образом, совокупность экспериментальных данных, отражающих эволюцию величины BMS при увеличении Pd, Tb и Bf позволяет предположить существование уровня захвата в разрешенной зоне, который отстоит от края зоны на величину нескольких миллиэлектроновольт (meV) и сделать вывод о резонансном механизме обмена носителями между подсистемой свободных электронов и резервуаром метастабильных локализованных электронов.

Экспериментальные результаты были получены при исследовании кинетики затухания фотолюминесценции вблизи края собственного поглощения (БКФЛ) на линии, отвечающей рекомбинации электрона на мелком доноре с дыркой в валентной зоне (D0,h) и экситона, связанного на мелком нейтральном доноре (D0,x). При этом проведенные эксперименты показывают, что медленное затухание интенсивности ФЛ наблюдается только в образцах n-типа, в которых при низких температурах (T<10K) всегда присутствуют электроны на мелких донорах (состояние D0). А поскольку для формирования линии излучения D0,h, кроме электрона на доноре требуется дырка в валентной зоне, то отсюда следует, что метастабильные центры должны задерживать дырки. Однако в задержанных спектрах также присутствует линия экситона, связанного на мелком доноре - D0,x и линия свободного экситона. Это означает, что присутствие в n-GaAs метастабильных состояний проявляется и в кинетике затухания излучения экситонов связанных на нейтральных донорах (D0,x). При увеличении степени компенсации мелкими акцепторами вследствие появления дополнительного канала перехода электронов с нейтральных доноров на мелкий акцептор (D+ +e,A > D+,A0), возрастает количество заряженных доноров (D+) и в спектре появляется линия экситона, связанного на нейтральном акцепторе (A0,x) - 1.512 eV. Кроме того, критерием увеличения концентрации мелких акцепторов в n-GaAs является возрастание интенсивности полосы донорно-акцепторной рекомбинации (ДАП). При этом следует отметить, что по мере увеличения степени компенсации мелкими акцепторами величина интеграла BMS уменьшается.

При слабой средней мощности импульсного возбуждения спектр фотолюминесценции в момент импульса возбуждения (t=t0) идентичен стационарному спектру при такой же мощности (W0) непрерывного возбуждения. В этом случае в спектре фотолюминесценции в области связанных экситонов самой интенсивной является линия D0,x. Для выяснения корреляции между метастабильными центрами и видом стационарных спектров исследовались образцы n-GaAs двух типов, различающихся степенью компенсации мелкими акцепторами. В образцах первого типа в спектрах отсутствовала линия A0,x (малый уровень компенсации) и самой интенсивной линией спектра являлась линия D0,x. Ситуация изменяется в задержанных (время-разрешенных) спектрах, измеренных с различной временной задержкой Дtd после импульса возбуждения. В этом случае отношение интенсивностей линий D0,x и D0,h з=I(D0,x)/I(D0,h) зависит от величины времени задержки (td): по мере увеличения td величина з уменьшается (относительная интенсивность в спектре линии D0,h увеличивается). В отсутствие возбуждения (задержанные спектры) по мере опустошения дырочных ловушек уменьшается число долгоживущих электронов и вследствие этого уменьшается величина з=I(D0,x)/I(D0,h).

В образцах второго типа (с более высокой степенью компенсации) интенсивность линии A0,x соизмерима с интенсивностью линий D0,x и D0,h. Поскольку наличие мелких акцепторов изменяет соотношение количества дырок, захваченных на мелкие и метастабильные состояния в пользу мелких, то в образцах второго типа величина BMS мала или, другими словами, мала интенсивность люминесценции в долговременном хвосте затухания (задержанные спектры практически не регистрируются).

Таким образом, образцы первого и второго типов, отличающиеся степенью компенсации мелкими акцепторами, существенно различаются характером долговременного затухания фотолюминесценции в экситонной области. В образцах первого типа интенсивность линии D0,x всегда достаточно велика (з>1), а при уменьшении интенсивности возбуждения величина з стремится к величине характерной для задержанных спектров. В спектрах образцов второго типа интенсивность линии D0,x мала и, кроме того, присутствует линия A0,x, свидетельствующая о заметной компенсации. В случае достаточно большой степени компенсации это приводит к уменьшению концентрации нейтральных доноров - D0 и, соответственно D0,x. Этим и объясняется вариация величины з в различных образцах при одинаковом уровне возбуждения. Таким образом, отношение интенсивностей линий люминесценции D0,x и D0,h (з=I(D0,x)/I(D0,h)) в образцах n-GaAs определяется наличием метастабильных состояний и коррелирует с величиной NMS и степенью компенсации - з.

Далее рассмотрим образцы только первого типа, в которых линия (D0,x) является самой интенсивной для всех исследованных образцов. Заметное различие спектров исследованных образцов заключается в отличающихся (на порядок) значениях интенсивности, в спектральном положении линии D0,x и в ее величине полуширины (FWHM=0.15-0.30 meV). Для понимания взаимосвязи между подсистемами мелких и глубоких уровней рассмотрим, каким образом спектр излучения связанных и свободных экситонов (поляритонов) в кристалле зависит от наличия дефектов. В исследованных образцах полуширина линии D0,x изменялась от 0.12 до 0.31 meV. Известно, что такой разброс полуширины линии излучения D0,x обусловлен неоднородным уширением. Неоднородное уширение возникает вследствие того, что длины волн излучения экситонов, связанных на разных донорах D0 несколько различны. Причиной этого различия является дисперсия энергии термоактивации мелких доноров - EDT (и, следовательно, связанных на них экситонов). В свою очередь, причина дисперсии EDT кроется в различных значениях локального потенциала - Vloc в местах расположения донорных примесей. Следовательно, из анализа совокупности экспериментальных данных следует, что доминирующее влияние на дисперсию EDT оказывают не центры безызлучательной гибели и мелкие акцепторы, а подсистема дефектов иной природы, порождающих состояния с малым радиусом локализации носителей (глубокие уровни).

Ключом к пониманию причины возникновения дисперсии EDT (уширение линии D0x) является различие в спектральном положении этой линии и кинетике затухания её излучения в разных образцах. Оказалось, что существует заметная корреляция между величиной FWHM, спектральным положением линии D0,x и величиной интеграла BMS (рис.5). Поскольку неоднородная полуширина обусловлена дисперсией EDT мелких доноров, а интеграл BMS отражает количество глубоких метастабильных состояний, то эта корреляция указывает на существование пространственно-энергетической корреляции между подсистемами мелких и глубоких уровней. Существующий разброс (в диапазоне 1.5143-1.5158 eV) энергетического положения максимума излучения линии D0,x, спектральное положение которой изменяется от образца к образцу, обусловлено существованием в каждом конкретном образце напряжений разной величины. Т.о., из полученных данных следует, что существует корреляция между спектральными характеристиками (положением, полушириной) линии излучения экситона, связанного на мелком доноре D0,x и величиной интеграла BMS, отражающим количество метастабильных центров (рис5).

Как отмечалось выше, в кинетике затухания и спектрах стационарной фотолюминесценции проявляется корреляция между подсистемами примесей с разным радиусом локализации носителей, т.е. между мелкими донорами и глубокими, которые являются метастабильными. Причем из анализа закона медленного затухания (наличия эффекта «обеднения») линий D0,x и D0,h следует, что взаимное пространственное распределение дефектов с разным радиусом локализации носителей является неоднородным. Поскольку долговременная кинетика, отражающая метастабильные состояния наблюдается в эпитаксиальных слоях полученных разными способами, то становится ясным, что эти центры можно отнести к собственным точечным дефектам материала. Собственным дефектом в том смысле, что вероятность нахождения их в материале очень высока и, при этом, распределение их в пространстве, вообще говоря, неоднородно. В стационарных спектрах ФЛ пространственная неоднородность проявляется в зависимости спектров от интенсивности возбуждения. Действительно, поскольку концентрация избыточных электронов связана с заселенностью метастабильных состояний, постольку величина з зависит от интенсивности возбуждения. Существование двух типов кривых з(Iex) для образцов первого и второго типов обусловлено разной концентрацией электронов в зоне проводимости. Образцы первого типа характеризуются тем, что в них при формировании излучения большую роль играют метастабильные состояния, обеспечивающие медленную (ф=10-6 с) поставку носителей, участвующих в распаде состояний D0,x и D0,h и поэтому при заданном темпе генерации электронно-дырочных пар реализуется насыщение каналов рекомбинации. Для подтверждения этого положения исследовались образцы n - GaAs с различными величинами полного времени жизни электронных возбуждений. При этом необходимо заметить, что все образцы, как с большим, так и малым временем жизни по величине FWHM линии D0,x можно разделить на две группы: 1-образцы со значением FWHM < kT (0.15 - 0.18) meV; 2- образцы со значением FWHM > kT (0.2 - 0.24) meV. При увеличении Iex полуширина и форма линии D0,x в образцах первой группы (с малой величиной FWHM) практически не изменяется. В образцах второй группы форма линии D0,x изменяется драматически, FWHM линии значительно увеличивается и появляется провал интенсивности линии излучения (форма линии излучения D0,x при этом не претерпевала никаких изменений).

Глубина провала увеличивается по мере увеличения Iex и спектрально совпадает с положением максимума излучения при минимальной интенсивности возбуждения, но он расположен несимметрично относительно максимума, что свидетельствует о пространственно-неоднородном распределении состояний (примесей) с разным радиусом локализации носителей по толщине эпитаксиального слоя.

Из полученных экспериментальных данных следует, что в совершенных эпитаксиальных структурах n-GaAs существует пространственная неоднородность в распределении дефектов с разным радиусом локализации носителей и, кроме того, в толстых слоях (d>20 мm) присутствует неоднородность эпитаксиального слоя в направлении роста (по толщине).

Таким образом, в эпитаксиальных слоях n-GaAs существуют дефекты с долгоживущими (метастабильными) состояниями, энергетически резонансными разрешенной зоне, на которых локализуются носители. Релаксация решетки в окрестности этих дефектов [4,5] приводит к резонансному обмену электронными возбуждениями между подсистемами свободных и локализованных на метастабильных состояниях носителей. Параметры спектра излучения в экситонной области (спектральное положение, полуширина и соотношение интенсивностей линий D0,x и D0,h) определяются процессами обмена и концентрацией метастабильных состояний.

Вторая глава посвящена исследованию особенностей формирования спектра люминесценции в связанных (двойных) квантовых ямах AlGaAs/GaAs. Термин “связанные ямы” означает, что расстояние между ямами (толщина барьера) соизмеримо с такими пространственными характеристиками, как длина туннелирования (с заметной величиной вероятности) носителей сквозь барьер и радиус экситона в яме. Из этого следует важное следствие, а именно: вероятность взаимодействия между носителями, локализованными в разных ямах с изменением их пространственно-энергетических характеристик велика (несколько подробнее - ниже). В результате высока вероятность возникновения упорядоченного пространственного разделения фотовозбужденных электронов и дырок в полупроводниковой структуре с двойными квантовыми ямами. Определяющим свойством (особенно применительно к эксперименту) связанных квантовых ям AlGaAs/GaAs является то, что, во-первых, основным каналом рекомбинации является излучательный канал и, во-вторых, велика доля свободных (квази-двумерных в латеральной плоскости) экситонов. При этом в латеральной плоскости связанных ям AlGaAs/GaAs имеются ловушки, образованные флуктуациями потенциала и захватывающие экситоны (носители). Ниже будет показано, каким образом пространственно-неоднородное упорядочение фотовозбужденных электронов и дырок в направлении (z) в сочетании с пространственно-неоднородным распределением экситонов в латеральной плоскости (x,y) приводит к кардинальным изменениям особенностей формирования спектров излучения.

В качестве объекта исследования, удовлетворяющего этим условиям, использовались структуры представляющие собой две туннельно-связанные квантовые ямы GaAs (10 nm), разделенные барьером Ga0.3Al0.7As (4 nm). Неравновесные носители (электроны и дырки) возникающие в структуре вследствие фотовозбуждения после быстрой (ф<10-10 c) энергетической релаксации оказываются локализованными в обеих ямах, где связываются в экситоны. В двойных квантовых ямах можно выделить два типа оптических переходов. В одном случае электрон и дырка рождаются в одной яме, тогда вследствие большой величины интеграла перекрытия (~ M2) волновых функций носителей в одной яме велика вероятность образования и последующей аннигиляции пространственно прямых (DX) двумерных (в плоскости x,y) свободных экситонов каждой из ям. В другом случае электроны и дырки в разных ямах образуют пространственно-непрямой экситон (IX) и затем аннигилируют. В случае реализации ситуации “плоских зон“ вероятность аннигиляции пространственно непрямых экситонов, в силу малости интеграла перекрытия M2, невелика.

Ситуация кардинально изменяется при наличии электрического поля Ef в направлении перпендикулярном плоскости слоев (z) [6]. В этом случае относительное энергетическое положение уровней пространственного квантования ям изменяется на величину ДE ~ qzEf. Вследствие того, что носители стремятся занять наиболее выгодные низшие энергетические состояния, происходит изменение заселенности состояний в ямах - максимально заселено электронное состояние в одной яме и дырочное в другой. В результате происходит пространственное разделение неравновесных носителей с разным знаком заряда, напоминающее (отчасти) конденсатор. Из этого следует, что в таком случае основным путем рекомбинации неравновесных носителей является аннигиляция образованных таким образом пространственно непрямых экситонов. Поэтому в спектре люминесценции возрастает, в меру величины интеграла перекрытия (~ M2), интенсивность излучения пространственно непрямого экситона.

Прежде, чем переходить к дальнейшему рассмотрению особенностей формирования спектра излучения в структурах с двойными квантовыми ямами остановимся на важных следствиях пространственного разделения неравновесных носителей.

I - поскольку время излучательной гибели экситонов пропорционально величине фm~1/M2, то, в силу пространственной разделения e-h, IX обладает значительно большим временем излучательной рекомбинации (фR>10-6 с), чем прямой экситон DX, образованный из электронов и дырок, локализованных в одной и той же яме. Из этого следует, что в “прямозонном” материале (GaAs) квантовых ям оказывается возможным на практике получать при низких температурах термализованный газ IX экситонов достаточно высоких концентраций (~1010 см-2) даже при сравнительно небольших плотностях оптической накачки (~1 W cm-2), что является нетривиальной особенностью этой системы. Действительно, высокое накопление носителей возможно (и было реализовано) в материалах высокого качества с малой величиной вероятности излучательной рекомбинации, к которым относятся либо “непрямозонные” Ge и Si, либо материал с запрещенным дипольным переходом - Cu2O.

II - заключается в том, что экситоны состоят из пространственно-разделенных электронов и дырок, вследствие чего, подсистема IX экситонов обладает отличным от нуля макроскопическим электрическим дипольным моментом P=eD, где D есть расстояние между электронами и дырками в разных слоях, что приводит к диполь- дипольному отталкиванию, вследствие чего образование экситонных молекул (биэкситонов) становится невозможным.

Из приведенных выше общих свойств экситонов в ДКЯ следует ожидать, что экспериментальными параметрами, управляющими фазовым состоянием системы экситонов, являются интенсивность фотовозбуждения IP (определяющая плотность экситонов - nC) и величина внешнего электрического поля Eex (определяющего в конечном итоге время жизни - ф). В зависимости от этих управляющих параметров должна изменяться эволюция линии излучения IX. В результате этих особенностей в системе ДКЯ, можно ожидать появления предсказанной теоретически [7,8] фазы коллективно взаимодействующих экситонов, что приводит в результате к кардинальному изменению механизмов формирования спектра излучения.

Рассматривая особенности формирования спектров необходимо заметить, что форма линии излучения экситонов в ДКЯ является неоднородной и определяется излучением экситонов из различных пространственных областей (дi) латеральной плоскости ДКЯ, отличающихся друг от друга толщинами слоев КЯ, флуктуациями состава барьеров ДКЯ, а также величиной локального электрического поля примесей. Суммарное количество таких областей Удi, вносящих вклад в экспериментально наблюдаемую линию излучения зависит от площади, с которой собирается сигнал, которая, в свою очередь, определяется площадью лазерного пятна возбуждения на образце и телесным углом "зрения" спектрометра. В нашем случае площадь лазерного пятна Sex?7.85*10-6 см2 (диаметр около 10-2 см) и эта величина равна приведенной площади, связанной с углом зрения спектрометра, с которой регистрируется сигнал люминесценции. Интенсивность излучения каждого спектрального участка линии IX, отвечающей пространственной области (дi) латеральной плоскости ДКЯ, пропорциональна заселенности экситонами соответствующего пространственного участка в плоскости квантовой ямы. Экситоны в каждом пространственном участке латеральной плоскости могут занимать как локализованные, так и свободные состояния. Применительно к свободным состояниям, для которых существует (можно ввести) волновой вектор k, важным обстоятельством является то, что излучают не все свободные экситоны, а лишь те, которые находятся в излучательном поясе вблизи дна экситонной зоны, что следует из закона сохранения импульса при акте излучательной рекомбинации. В то же время, в излучательной рекомбинации в пределах неоднородно уширенной линии излучения (FWHM=3-5 meV) принимают участие все экситоны, занимающие локализованные состояния. В диссертации показано, что при T=1.8K и P=5 Wcm-2 во всей исследованной области спектральных положений IX (для всех значений внешнего электрического поля Vdc) вклад свободных экситонов в результирующую интенсивность линии фотолюминесценции пространственно-непрямых экситонов является определяющим.

Важно отметить, что при монотонном увеличении прикладываемого электрического поля (Vdc) полуширина (FWHM) смещающейся в длинноволновую сторону линии IX испытывает драматическое изменение. При некотором спектральном положении линии, определяемом величиной Vdc, происходит резкое уменьшение FWHM в несколько (до 3.5) раз - рис. 6a. Такое поведение полуширины линии объясняется следующим: в результате увеличении фR, которое возрастает вследствие уменьшения интеграла перекрытия (~ M2) волновых функций электрона и дырки при увеличении Ef возникает эффект накопления экситонов в пространственно-ограниченной области; вследствие резкого пространственного ограничения уменьшается вклад различных областей в неоднородную ширину и происходит сужение линии IX. Представленное на рис.6а сужение реализуется при фиксированной плотности оптической накачки IP = 2.5 Wcm-2. Аналогичным образом были измерены серии спектров ФЛ при различных приложенных к образцу напряжениях Vdc для случаев других фиксированных плотностей накачки в диапазоне 0.6 < IP < 12.5 Wcm-2. В этом диапазоне также наблюдался эффект сужения линии излучения IX, спектральное положение которой зависело, однако, не только от величины приложенного к образцу напряжения Vdc, но и от уровня накачки IP. Последнее обстоятельство указывает на изменение реального поля, приложенного к ДКЯ, в зависимости от уровня оптического возбуждения образца. Для того чтобы убедиться в том, что приведенная выше эволюция линии люминесценции обусловлена эффектом накопления IX-экситонов, представлялось важным получить аналогичную зависимость при прямом увеличении концентрации IX-экситонов и постоянном значении электрического поля, а значит, при фиксированном фR и параметре D. При этом экспериментальным критерием того, что величины (Vdc, D, фR) не изменяются, является постоянное спектральное положение линии люминесценции IX-экситонов. Для этого определялась величина FWHM линии IX при ее фиксированном спектральном положении при изменении интенсивности фотовозбуждения IP, величина которой определяет концентрацию экситонов nix~IP, и постоянном значении Vdc. Экспериментальная зависимость величины FWHM линии IX, занимающей в спектрах ФЛ одно и то же положение EIX=1.543 eV, от уровня накачки IP представлена на рис. 6b. Из рисунка видно, что с увеличением уровня накачки IP наблюдается сильное уменьшение величины FWHM линии IX. При этом величина FWHM линии IX уменьшается, как и в предыдущем случае, приблизительно в три раза, а затем вновь увеличивается. Поскольку величина nix~IP, то полученная экспериментальная зависимость характеризует, очевидно, поведение пространственно-непрямых экситонов (IX) с фиксированными энергетическими параметрами (как и других экситонных состояний) в зависимости от концентрации пространственно-непрямых экситонов (nix), меняющейся при изменении уровня накачки. Эта зависимость качественно согласуется с теоретическими результатами, полученными в ряде работ других авторов [7,8].

Таким образом, совокупность экспериментальных данных, представляющих зависимость FWHM от электрического поля (при фиксированном IP) и от IP (при фиксированном eD), позволяют сделать вывод, что в ДКЯ при T2 K (такое поведение линии IX наблюдалось только при температурах ниже 4.5K) реализуется переход пространственно-непрямых экситонов в конденсированное состояние. Коллективное состояние с необходимостью означает существование пространственного объекта с размерами большими, чем радиус экситона. Наблюдаемое сильное сужение линии излучения IX указывает на подавление сильного неоднородного уширения линии IX и является результатом “выключения” потенциального рельефа ДКЯ в пределах площади пятна возбуждения вследствие накопления экситонов в одной флуктуации макроскопического размера.

Важным обстоятельством для доказательства существования коллективной фазы экситонов и понимания, связанных с этим состоянием, особенностей формирования и спектральных характеристик линии люминесценции в структуре с пространственно-энергетическими неоднородностями является тот факт, что экспериментально определены условия (границы) аномального поведения линии излучения. Это дает основания полагать, что приведенное выше поведение полуширины линии отражает, по существу, фазовую энергетическую диаграмму состояния непрямых экситонов в ДКЯ.

Кроме того, особенностью линии IX является наличие аномально больших флуктуаций интенсивности (I(t)) ее спектрального контура во времени (важным является то, что флуктуаций интенсивности прямого экситона при этом не наблюдается). Эти флуктуации наблюдаются в области резкого изменения величины FWHM. Такое поведение интенсивности люминесценции является необычным для излучательных характеристик электронных (экситонных) переходов в GaAs. Следует отметить, что глубина амплитудной модуляции этих флуктуаций не зависит от ширины регистрируемого спектрального диапазона в пределах контура линии IX, который определяется спектральной шириной щели спектрометра. Неизменность глубины модуляции указывает на то, что флуктуации интенсивности не обусловлены изменением спектрального положения дEIX линии (“дрожанием“) в пределах ширины щели спектрометра (во всяком случае, дEIX<0.1 meV), а вызваны другими причинами. Кроме того, отсутствует корреляция между флуктуациями интенсивностей ФЛ линии IX и флуктуациями тока через структуру. Поэтому можно полагать, что наблюдаемые в областях существенного изменения FWHM (то есть в областях перехода системы IX из одной устойчивой фазы в другую) флуктуации интенсивности линии IX, суть критические флуктуации вблизи фазового перехода.

...

Подобные документы

  • Яркость люминесценции кристаллов. Основные физические характеристики люминесценции. Изучение спектра, кинетики и поляризации излучения люминесценции. Яркость фосфоресценции органических молекул. Начальные стадии фосфоресценции кристаллофосфоров.

    реферат [36,8 K], добавлен 05.06.2011

  • Уровни свободного иона. Мощность поглощения планковской радиации. Универсальное соотношение между спектрами поглощения и люминесценции. Параметры экситонов в различных полупроводниковых материалах. Образование центров люминесценции в результате прогрева.

    курсовая работа [1,3 M], добавлен 10.06.2011

  • Подготовка монохроматора к работе. Градуировка монохроматора. Наблюдение сплошного спектра излучения и спектров поглощения. Измерение длины волны излучения лазера. Исследование неизвестного спектра.

    лабораторная работа [191,0 K], добавлен 13.03.2007

  • Общие положения теории люминесценции. Разгорание и затухание люминесценции. Зависимость интегральной и мгновенной яркости электролюминесценции от напряжения, частоты, температуры. Действие на люминофоры инфракрасного излучения. Электрофотолюминесценция.

    дипломная работа [51,1 K], добавлен 05.04.2008

  • Основные принципы действия электронных, ионных и полупроводниковых приборов. Движение свободных частиц. Четыре группы частиц, используемых в полупроводниковых приборах: электроны, ионы, нейтральные атомы, или молекулы, кванты электромагнитного излучения.

    реферат [619,2 K], добавлен 28.11.2008

  • Методы изготовления квантовых точек. Перспективы их использования в устройствах и приборах. Однофотонное поглощение света. Сравнительный анализ энергетического спектра и плотности электронных состояний в массивном полупроводнике, проволоке и точке.

    курсовая работа [548,5 K], добавлен 29.04.2014

  • Основные понятия люминесценции кристаллов. Квантовый и энергетический выход люминесценции. Способы возбуждения электролюминесценции. Влияние внешних электрических полей и высоких гидростатических давлений на характеристики галофосфатных люминофоров.

    дипломная работа [1,7 M], добавлен 07.07.2015

  • Исследование формирования катодолюминесцентного излучения, генерации, движения и рекомбинации неравновесных носителей заряда. Характеристика кинетики процессов возгорания и гашения люминесценции, концентрации легирующих примесей в ряде полупроводников.

    курсовая работа [1,6 M], добавлен 10.06.2011

  • Классификация квантоворазмерных гетероструктур на основе твердого раствора. Компьютерное моделирование физических процессов в кристаллах и квантоворазмерных структурах. Разработка программной модели энергетического спектра электрона в твердом теле.

    дипломная работа [2,2 M], добавлен 21.01.2016

  • Системы условных обозначений при использовании полупроводниковых приборов в электронных устройствах для унификации их обозначения и стандартизации параметров. Графические обозначения и стандарты. Биполярные транзисторы, принципы и правила их обозначения.

    презентация [338,7 K], добавлен 09.11.2014

  • Фотоэлектрические свойства неоднородных полупроводниковых образцов. Энергетическая структура омического контакта в присутствии неравномерно распределенных электронных ловушек. Фотоэлектрические свойства кристаллов, обработанных в газовом разряде.

    дипломная работа [3,3 M], добавлен 18.03.2008

  • Оптические свойства полупроводников. Механизмы поглощения света и его виды. Методы определения коэффициента поглощения. Пример расчета спектральной зависимости коэффициента поглощения селективно поглощающего покрытия в видимой и ИК части спектра.

    реферат [1,2 M], добавлен 01.12.2010

  • Современное состояние элементной базы полупроводниковых оптических преобразователей. Воздействие электромагнитного излучения видимого и инфракрасного диапазонов на параметры токовых колебаний в мезапланарных структурах на основе высокоомного GaAs n-типа.

    дипломная работа [1,8 M], добавлен 18.07.2014

  • Создание схемы применения метода вторичного квантования для нахождения спектра элементарных возбуждений в ферромагнетиках с простейшей доменной структурой при учете дипольной энергии. Приведение квадратичной формы спиновой волны к диагональному виду.

    курсовая работа [339,8 K], добавлен 22.10.2014

  • Виды реакций твердых тел. Радиационно-химическое разложение ионных и ионно-молекулярных кристаллов. Релаксация и автолокализация электронных возбуждений. Механизмы фундаментальной реакционной способности. Твердофазные превращения без изменения состава.

    презентация [710,4 K], добавлен 22.10.2013

  • Основные элементы конструкции волоконных лазеров. Фотонно-кристалические активированные волокна. Энергетические уровни ионов иттербия в кварцевом стекле. Влияние нагрева на спектры поглощения и люминесценции, на эффективность генерации волоконных лазеров.

    дипломная работа [1,7 M], добавлен 09.10.2013

  • Сущность и способы получения спектра, особенности его формы в изолированных атомах и разреженных газах. Принцип работы и назначение спектрографов, их структура и компоненты. Методика возбуждения излучения неоновой и ртутной ламп и лампы накаливания.

    лабораторная работа [402,2 K], добавлен 26.10.2009

  • Типы источников излучения, принципы их классификации. Источники излучения симметричные и несимметричные, газоразрядные, тепловые, с различным спектральным распределением энергии, на основе явления люминесценции. Оптические квантовые генераторы (лазеры).

    реферат [1,8 M], добавлен 19.11.2010

  • Сущность и законы флуоресценции, принципы регистрации данного явления, кинетика и поляризация. Спектры возбуждения люминесценции. Фотообесцвечивание красителей. Зависимость флуоресценции от микроокружения молекулы. Иммуно-флуоресцентная микроскопия.

    контрольная работа [1,4 M], добавлен 19.08.2015

  • Явления оптической и термической перезарядки, их роль в полупроводниках и полупроводниковых структурах. Особенности оптических переходов при наличии нескольких глубоких и мелких уровней в запрещённой зоне, в основном, при комбинированном возбуждении.

    реферат [35,2 K], добавлен 22.06.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.