Силы инерции и основной закон механики

Основной закон механики и его следствия. Характеристика действия сил инерции и переменной массы. Контур циркулирующей среды центробежной силы инерции. Устранение вращающего момента устройства, возникающего из-за принудительного вращения оси гироскопов.

Рубрика Физика и энергетика
Вид лекция
Язык русский
Дата добавления 06.03.2018
Размер файла 1012,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Рис. 7.2

Угловая скорость прецессии [8, с.257]

dб /dt = M / IZ щ, (7.3)

где: М - момент силы; IZ - момент инерции гироскопа; щ - угловая скорость гироскопа.

Момент силы (подразумевается, что ? перпендикулярно F)

М = ? F, (7.4)

где: ? - расстояние от точки приложения силы F до центра инерции гироскопа; F - сила, приложенная к оси гироскопа.

Подставим (7.4) в (7.3) получим

dб /dt = ? F / IZ щ, (7.5)

В правой части формулы (7.5) составляющие ?, IZ , щ считаем постоянными, а сила F, в зависимости от времени t, пусть меняется по кусочно-линейному закону (рис.7.3).

Рис. 7.3

Известно, что линейная скорость связана с угловой скоростью следующим соотношением

v = R (dб /dt). (7.6)

Дифференцируя по времени формулу (7.6) получим ускорение

w = R (d2б /dt2). (7.7)

Подставим формулу (7.5) в формулу (7.7) получим

w = (R ? / IZ щ) (dF/dt). (7.8)

Таким образом, ускорение зависит от скорости изменения силы F, что делает центробежную силу действующей для поступательного движения системы.

Следует отметить, что при большой угловой скорости щ и dб /dt ?? щ , возникающий гироскопический момент уравновешивает момент силы F, поэтому движения в направлении воздействия этой силы не происходит [8, с.260].

Для компенсации перпендикулярной проекции центробежной силы Fц+ применяем второй такой же гироскоп, совершающий колебательное движение синхронно в противофазе с первым гироскопом (рис.7.4). Проекция центробежной силы Fц+ у второго гироскопа будет направлена встречно проекции у первого. Очевидно, что перпендикулярные составляющие Fц+ скомпенсируются, а параллельные FцРР сложатся.

 

Рис. 7.4

Если сектор колебаний гироскопов будет не более полуокружности, то не будет возникать противоположная центробежная сила, уменьшающая центробежную силу в направлении оси Х.

Для устранения вращающего момента устройства, возникающего из-за принудительного вращения оси гироскопов, необходимо установить ещё одну пару таких же гироскопов, оси которых вращаются в противоположную сторону. Секторы колебательного движения держателей с гироскопами в паре, оси гироскопов которых вращаются в одну сторону, должны быть симметрично направлены в одну сторону с секторами держателей с гироскопами, оси гироскопов которых вращаются в другую сторону (рис.7.5).

Рис. 7.5

Вычислим среднее значение [1, с.451] проекции FцРР центробежной силы для одного гироскопа (рис.7.2) на держателе, колеблющегося в секторе полуокружности от 0 до р и обозначим это значение через Fп

р

Fп = (1/ р ) ? (m w2t2/ R) sin б dб = 2m w2t2 / Rр. (7.9)

0

Для четырёх гироскопов на держателях среднее значение поступательной силы Fп за каждый полупериод будет:

Fп = 8m w2t2/ Rр. (7.10)

Пусть масса держателя намного меньше массы гироскопа, а масса гироскопа m = 1кг. Ускорение w = 5м/с2, причём ускорение гироскопа на порядок больше ускорения системы, тогда можно не учитывать небольшой интервал отсутствия действия центробежной силы в центре. Время нарастания скорости t = 1с. Радиус (длина) держателя R = 0,5м. Тогда по формуле (7.10) поступательная сила будет Fп = 8• 1• 52 •12 /0,5 р ? 127Н.

Литература

1. Выгодский М. Я. Справочник по высшей математике, 14-е изд., - М.: ООО «Большая медведица», АПП «Джангар», 2001, 864с.

2. Сивухин Д. В. Общий курс физики. Т.1. Механика. 5-е изд., стереот. - М.: ФИЗМАТЛИТ., 2010, 560с.

3. Шипов Г.И. Теория физического вакуума. Теория эксперименты и технологии. 2-е изд., - М.:Наука, 1996, 456с.

4. Ольховский И.И. Курс теоретической механики для физиков: Учебное пособие. 4-е изд., стер. - СПб.: Издательство «Лань», 2009, 576с.

5. Справочник по физике для инженеров и студентов вузов / Б.М.Яворский, А.А.Детлаф, А.К.Лебедев. - 8-е изд.,перераб. и испр. - М.: ООО «Издательство Оникс», «Издательство «Мир и Образование», 2008, 1056с.

6. Хайкин С.Э. Физические основы механики, 2-е изд., испр. и доп. Учебное пособие. Главная редакция физико-математической литературы. М.: Наука, 1971, 752с.

7. Зорич В.А. Математический анализ. Часть 1. Изд. 2-е, испр. и доп. М.: ФАЗИС, 1997, 554с.

8. Александров Н.В. и Яшкин А.Я. Курс общей физики. Механика. Учеб. пособие для студентов заочников физ.-мат. фак. пед. ин-тов. М., «Просвещение», 1978, 416с.

9. Геронимус Я. Л. Теоретическая механика (очерки об основных положениях): Главная редакция физико-математической литературы изд-ва «Наука», 1973г., 512с.

10. Курс теоретической механики: учебник / А.А.Яблонский, В.М.Никифорова. - 15-е изд., стер. - М.: КНОРУС, 2010, 608с.

11. Турышев М.В., О движении замкнутых систем, или при каких условиях не выполняется закон сохранения импульса, «Естественные и технические науки», №3(29), 2007, ISSN 1684-2626.

12. Айзерман М.А. Классическая механика: Учебное пособие. - 2-е изд., перераб. - М.: Наука. Главная редакция физико-математической литературы, 1980, 368с.

13. Яворский В.М., Пинский А.А. Основы физики: Учебн. В 2 т. Т.1. Механика, Молекулярная физика. Электродинамика / Под ред. Ю.И.Дика. - 5-е изд., стереот. - М.: ФИЗМАТЛИТ. 2003. - 576с.

14. Киттель Ч., Найт В., Рудерман М. Механика: Учебное руководство: Пер. с англ./Под ред. А.И.Шальникова и А.С.Ахматова. - 3-е изд., испр. - М.: Наука. Главная редакция физико-математической литературы. 1983. - (Берклеевский курс физики, Том 1). - 448с.

15. Толчин В. Н., Инерцоид, Силы инерции как источник поступательного движения. Пермь. Пермское книжное издательство, 1977, 99с.

16. Фролов А.В. Вихревой движитель, «Новая энергетика», №3 (18), 2004, ISSN 1684-7288.

17. Берников В.Р. Некоторые следствия из основного закона механики, «Журнал научных публикаций аспирантов и докторантов», №5 (71), 2012, ISSN 1991-3087.

18. Берников В.Р. Силы инерции и ускорение, «Научная перспектива», №4, 2012, ISSN 2077-3153.

19. Берников В.Р. Силы инерции и их применение, «Журнал научных публикаций аспирантов и докторантов», №11 (65), 2011, ISSN 1991-3087.

20. Меньшиков В.А., Дедков В.К. Тайны тяготения. - М.: НИИ КС, 2007. -332с.

Размещено на Allbest.ru

...

Подобные документы

  • Применение стандартной установки универсального маятника ФПМО-4 для экспериментальной проверки теоремы Штейнера и определения момента инерции твердого тела. Силы, влияющие на колебательное движение маятника. Основной закон динамики вращательного движения.

    лабораторная работа [47,6 K], добавлен 08.04.2016

  • Методика определения момента инерции тела относительно оси, проходящей через центр масс. Экспериментальная проверка аддитивности момента инерции и теоремы Штейнера. Зависимость момента инерции от массы тела и ее распределения относительно оси вращения.

    контрольная работа [160,2 K], добавлен 17.11.2010

  • Кинетическая энергия вращения твердого тела и момент инерции тела относительно нецентральной оси. Основной закон динамики вращения твердого тела. Вычисление моментов инерции некоторых тел правильной формы. Главные оси и главные моменты инерции.

    реферат [287,6 K], добавлен 18.07.2013

  • Этапы нахождения момента инерции электропривода. Технические данные машины. Построение графика зависимости момента сопротивления от скорости вращения. Оценка ошибок во время измерения, полученных в связи с неравномерностью значений момента инерции.

    лабораторная работа [3,6 M], добавлен 28.08.2015

  • Определение момента инерции тела относительно оси, проходящей через центр его масс, экспериментальная проверка аддитивности момента инерции и теоремы Штейнера методом трифилярного подвеса. Момент инерции тела как мера инерции при вращательном движении.

    лабораторная работа [157,2 K], добавлен 23.01.2011

  • Главные оси инерции. Вычисление момента инерции однородного стержня относительно оси, проходящей через центр масс. Вычисление момента инерции тонкого диска или цилиндра относительно геометрической оси. Теорема Штейнера и главные моменты инерции.

    лекция [718,0 K], добавлен 21.03.2014

  • Определение момента инерции тела относительно оси, проходящей через центр массы тела. Расчет инерции ненагруженной платформы. Проверка теоремы Штейнера. Экспериментальное определение момента энерции методом крутильных колебаний, оценка погрешностей.

    лабораторная работа [39,3 K], добавлен 01.10.2014

  • Аксиоматика динамики. Первый закон Ньютона (закон инерции). Сущность принципа относительности Галилея. Инертность тел. Область применения механики Ньютона. Закон Гука. Деформации твердых тел. Модуль Юнга и жесткость стержня. Сила трения и сопротивления.

    презентация [2,0 M], добавлен 14.08.2013

  • Исследование момента инерции системы физических тел с помощью маятника Обербека. Скорость падения физического тела. Направление вектора вращения крестовины маятника Обербека. Момент инерции крестовины с грузами. Значения абсолютных погрешностей.

    доклад [23,1 K], добавлен 20.09.2011

  • Изучение зависимости момента инерции от расстояния масс от оси вращения. Момент инерции сплошного цилиндра, полого цилиндра, материальной точки, шара, тонкого стержня, вращающегося тела. Проверка теоремы Штейнера. Абсолютные погрешности прямых измерений.

    лабораторная работа [143,8 K], добавлен 08.12.2014

  • Построение графиков координат пути, скорости и ускорения движения материальной точки. Вычисление углового ускорения колеса и числа его оборотов. Определение момента инерции блока, который под действием силы тяжести грузов получил угловое ускорение.

    контрольная работа [125,0 K], добавлен 03.04.2013

  • Динамика вращательного движения твердого тела относительно точки и оси. Расчет моментов инерции простых тел. Кинетическая энергия вращающегося тела. Закон сохранения момента импульса. Сходство и различие линейных и угловых характеристик движения.

    презентация [4,2 M], добавлен 13.02.2016

  • Определение и физический смысл момента инерции. Моменты инерции простейших 1-D, 2-D и 3-D тел. Рассмотрение теоремы Гюйгенса-Штейнера о параллельных и перпендикулярных осях. Свойства главных центральных осей инерции и примеры использования симметрии тела.

    презентация [766,1 K], добавлен 30.07.2013

  • Основные концепции классической механики Ньютона: принципы относительности и инерции, законы всемирного тяготения и сохранения, законы термодинамики. Прикладное значение классической механики: применение в пожарной экспертизе, баллистике и биомеханике.

    контрольная работа [29,8 K], добавлен 16.08.2009

  • Экспериментальное изучение динамики вращательного движения твердого тела и определение на этой основе его момента инерции. Расчет моментов инерции маятника и грузов на стержне маятника. Схема установки для определения момента инерции, ее параметры.

    лабораторная работа [203,7 K], добавлен 24.10.2013

  • Сила инерции как геометрическая сумма сил противодействия движущейся материальной частицы телам, сообщающим ей ускорение. Знакомство с основными принципами механики, анализ. Рассмотрение особенностей движений механической системы с идеальными связями.

    презентация [152,6 K], добавлен 09.11.2013

  • Определение положения центра тяжести, главных центральных осей инерции и величины главных моментов инерции. Вычисление осевых и центробежных моментов инерции относительно центральных осей. Построение круга инерции и нахождение направлений главных осей.

    контрольная работа [298,4 K], добавлен 07.11.2013

  • Гидроаэромеханика. Законы механики сплошной среды. Закон сохранения импульса. Закон сохранения момента импульса. Закон сохранения энергии. Гидростатика. Равновесие жидкостей и газов. Прогнозирование характеристик течения. Уравнение неразрывности.

    курсовая работа [56,6 K], добавлен 22.02.2004

  • Основной закон динамики вращательного движения твердого тела относительно неподвижной оси. Изучение методических рекомендаций по решению задач. Определение момента инерции системы, относительно оси, перпендикулярной стержню, проходящей через центр масс.

    реферат [577,9 K], добавлен 24.12.2010

  • Методы определения моментов инерции тел правильной геометрической формы. Принципиальная схема установки. Момент инерции оси. Основное уравнение динамики вращательного движения. Измерение полных колебаний с эталонным телом. Расчёт погрешностей измерений.

    лабораторная работа [65,1 K], добавлен 01.10.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.