Электроокисление 1-диэтиламино-4-метил-гекcин-2-ола-4 при различных скоростях вращения микродиского электрода

Электродные процессы окисления используемых реагентов. Описание механизма и кинетики электроокисления деполяризаторов в неводных и смешанных средах при различных скоростях вращения микродиского электрода. Определение природы анодного тока окисления.

Рубрика Физика и энергетика
Вид статья
Язык русский
Дата добавления 11.03.2018
Размер файла 14,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Электроокисление 1-диэтиламино-4-метил-гекcин-2-ола-4 при различных скоростях вращения микродиского электрода

Рахматов Элдор

Электродные процессы окисления используемых реагентов, не сопровождающиеся образованием новой фазы в неводных протолитических средах, изучены не достаточно полно (крайне слабо). Между тем, исследование процессов позволило бы полнее и более точно установить механизм и кинетику электроокисления этих деполяризаторов в неводных и смешанных средах.

Для определения природы анодного тока окисления исследованных реагентов, прежде всего необходимо было изучить зависимость величины предельного тока (ld) от числа оборотов дискового микроанода. Поэтому проведенные при 24?С и различных оборотах электрода (380, 725, 1085 и 1400 об/мин) исследования показали, что величина предельного тока окисления реагентов пропорциональна числу оборотов дискового микроанода, причем, как было обнаружено, что все четыре экспериментальные точки, отвечающие различным скоростям врашения электрода весьма хорошо укладываются на прямую, проходящую через начало координат, что свидетельствует о диффузионной природы предельного тока окисления реагентов. Выявленное ограничение предельного тока, обусловленное скоростью массопереноса было установлено для всех исследованных протолитических растворителей и фоновых электролитов. Установленный таким приемом факт позволяет считать, что к оптимизированным скоростям вращения микроанода и анодному окислению изученных электроактивных веществ вполне возможно применять уравнение конвективной диффузии для дискового вращающего электрода, что, достаточно хорошо согласуется с литературными данными.

Полученные экспериментальные данные позволяют сделать вывод о том, что скорость анодного окисления исследованных деполяризаторов и использованных неводных средах и различных по кислотно-основным свойствам фоновых электролитах лимитируется диффузией их к поверхности анода.

Диффузионная природа анодных токов окисления реагентов также была подтверждена найденным средним значением температурного коэффициента предельного тока их окисления при скорости вращения микроэлектрода, равной 1085 об/мин в интервале температур 24-40 ?С, который равен 3, 4 - 5, 5 % на градус.

Значения температурного коэффициента предельного тока вычисляли по общепринятым в литературе методам и правилам[1]. В более широком интервале температур эксперименты не проводились поскольку ниже 24?С используемые фоновые электроды частично осаждались ввиду их ограниченной растворимости, а выше 40?С имело место растворение агар-агарового геля соединительного мостика.

Определение числа электронов при электроокислении реагентов. Число электронов, принимающих участие в окислении одной молекулы деполяризатора на платиновом вращающемся микродисковом электроде, можно было бы определить на основе теоретического уравнения математического описания процесса для предельного тока на микроаноде, однако для применения такого способа расчета предельного тока требуется значение величин коэффициента диффузии деполяризатора в исследуемом неводном протолитическом растворителе и фоновом электролите. Между тем, величины коэффициента диффузии используемых деполяризаторов в неводных и смешанных средах в литературе отсутствуют. Применение же для этой цели приближенного значения коэффициента диффузии исследованных реагентов, рассчитанных по уравнению Стокса-Эйнштейна, мало надежно, в особенности для много электронных процессов. Расчет числа электронов по уравнению волны, как известно, дает правильные результаты лишь только в случае хорошо обратимых процессов, в которых ограничивающей стадией является доставка деполяризатора к поверхности электрода, а не стадии разряда. Подавляющее же большинство органических соединений окисляются на платиновом аноде необратимо, что не исключено для исследованных реагентов, поскольку уже полученные предварительные данные подтвердили такой факт.

окисление реагент деполяризатор ток

Литература

1. Дамаскин Б.Б., Петрий О.А. Введение в электрохимическую кинетику. М.: Высшая школа. - 1983. - 399 с.

Размещено на Allbest.ru

...

Подобные документы

  • Процессы высокотемпературного окисления металлов. Высокотемпературное окисление вольфрама. Изучение нестационарного тепломассообмена и кинетики окисления вольфрамового проводника. Устойчивые и критические режимы окисления вольфрамового проводника.

    курсовая работа [3,4 M], добавлен 28.03.2008

  • Вычисление скорости молекул. Различия в скоростях молекул газа и жидкости. Экспериментальное определение скоростей молекул. Практические доказательства состоятельности молекулярно-кинетической теории строения вещества. Модуль скорости вращения.

    презентация [336,7 K], добавлен 18.05.2011

  • Механизм анодного окисления кремния. Влияние толщины пленки, сформированной методом ионной имплантации и водородного переноса, на ее электрофизические свойства. Электрофизические свойства структур "кремний на изоляторе" в условиях анодного окисления.

    дипломная работа [327,8 K], добавлен 29.09.2013

  • Сущность метода определения местного коэффициента теплоотдачи при течении теплоносителя в трубе. Измерение коэффициента теплоотдачи для различных сечений трубы при различных скоростях движения воздуха. Определение длины начального термического участка.

    лабораторная работа [545,9 K], добавлен 19.06.2014

  • Определение значений ряда характеристик вращения двигателя. Расчет величины токов переключения ступеней реостата. Графическое выражение электродинамических характеристик двигателя и значений скоростей вращения. Схема включения пусковых резисторов.

    контрольная работа [556,4 K], добавлен 27.12.2010

  • Особенности распределения диполей на цилиндрическом корпусе с заостренной головной частью параболической образующей, их влияние на обтекание тела вращения. Сущность условия безотрывного обтекания в случае движения под углом атаки и одновременном вращении.

    реферат [146,6 K], добавлен 15.11.2009

  • Понятие электрического тока. Поведение потока электронов в разных средах. Принципы работы вакуумно-электронной лучевой трубки. Электрический ток в жидкостях, в металлах, полупроводниках. Понятие и виды проводимости. Явление электронно-дырочного перехода.

    презентация [2,3 M], добавлен 05.11.2014

  • Описание устройства и принципа действия двигателей постоянного тока. Коэффициент полезного действия, рабочие и механические характеристики. Анализ основных качеств: пусковой, тормозной и перегрузочный момент, быстродействие и регулируемость вращения.

    реферат [166,2 K], добавлен 11.12.2010

  • Основные характеристики и механизм возникновения магнитного центра Земли. Понятие энергии геодинамо. Рассмотрение природы вращения Земли. Интегральный электромагнитогидродинамический и термический эффект. Причины возникновения циклонов, тайфунов, торнадо.

    дипломная работа [2,3 M], добавлен 19.03.2012

  • Исследование устойчивости вращения твердого тела при сферическом движении с неподвижным центром вращения. Сферическое движение сегментных оболочек с мгновенным центром вращения. Исследование устойчивости сферического движения эллипсоидной оболочки.

    учебное пособие [5,1 M], добавлен 03.03.2015

  • Электрический ток в различных средах. Цифровые и аналоговые интегральные микросхемы. Составление системы уравнений для расчета токов. Определение токов и падений напряжений на ветвях, потребляемой мощности цепи. Построение векторной диаграммы токов.

    курсовая работа [640,4 K], добавлен 19.05.2015

  • Сравнение характеристик электрических машин различных типов. Понятие постоянных и переменных потерь энергии. Способы измерения частоты вращения асинхронного двигателя. Определение критического момента и номинальной мощности электрической машины.

    презентация [103,7 K], добавлен 21.10.2013

  • Двигатели постоянного тока, их применение в электроприводах, требующих широкого плавного и экономичного регулирования частоты вращения, высоких перегрузочных пусковых и тормозных моментов. Расчет рабочих характеристик двигателя постоянного тока.

    курсовая работа [456,2 K], добавлен 12.09.2014

  • Изучение принципа работы электропривода постоянного тока и общие требования к функционированию контроллера. Разработка микропроцессорной системы управления электродвигателем постоянного тока, обеспечивающей контроль за скоростью вращения вала двигателя.

    курсовая работа [193,7 K], добавлен 14.01.2011

  • Униполярные машины, основанные на опыте М. Фарадея. Сборка частей двигателя с железным магнитопроводом. Механическая мощность двигателя. Направление вращения ротора. Сопротивление проводника рабочей обмотки. Переходные процессы в коллекторных двигателях.

    реферат [23,9 K], добавлен 02.04.2016

  • Основные требования, предъявляемые к станочным приводам. Краткое описание электропривода и его основных узлов. Система импульсно-фазового управления. Защита от обрыва цепи обратной связи по частоте вращения. Расчёт параметров настройки регулятора тока.

    курсовая работа [1,8 M], добавлен 10.06.2013

  • Основные принципы построения электропривода, предназначенного для регулирования скорости вращения двигателя постоянного тока. Функциональная схема однофазного однополупериодного нереверсивного управляемого выпрямителя, работающего на активную нагрузку.

    курсовая работа [1,7 M], добавлен 06.12.2012

  • Порядок определения момента вращения при вращении одного цилиндра относительно другого. Расчет силы трения, действующей на внутренний цилиндр. Динамический коэффициент вязкости. Вычисление разности давлений в точках, заполненных водой резервуаров.

    контрольная работа [315,0 K], добавлен 05.04.2011

  • Кинематический расчет привода. Определение передаточного числа привода и его ступеней. Силовой расчет частоты вращения валов привода, угловой скорости вращения валов привода, мощности на валах привода, диаметра валов. Силовой расчет тихоходной передачи.

    курсовая работа [262,3 K], добавлен 07.12.2015

  • Приведение переменных и параметров рабочего механизма к валу исполнительного двигателя. Основные характеристики и параметры электропривода. Силовые полупроводниковые преобразователи, принцип их действия и структура. Схемы двигателей постоянного тока.

    дипломная работа [1,0 M], добавлен 30.04.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.