Регулирование напряжения при помощи линейных регуляторов
Схема линейного регулятора и принципы работы. Соотношение активного и индуктивного сопротивлений в распределительных и питающих сетях. Регулирование напряжения при помощи линейных регуляторов, при помощи устройств поперечной и продольной компенсации.
Рубрика | Физика и энергетика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 09.04.2018 |
Размер файла | 131,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Регулирование напряжения при помощи линейных регуляторов
Линейные регуляторы (ЛР) предназначены для создания в сети дополнительной ЭДС. Эта дополнительная ЭДС складывается с вектором напряжения сети и изменяет его. Таким образом выполняется регулирование напряжения сети. Линейные регуляторы используются в сети, если регулировочного диапазона устройства РПН силового трансформатора не хватает для обеспечения необходимого уровня напряжения в сети. Они применяются также при реконструкции сети, если там установлены трансформаторы без РПН. Линейные регуляторы могут включаться последовательно обмотке силового трансформатора (рис. 20.1 а) и на отходящих линиях электропередач (рис. 20.1 б).
линейный регулятор напряжение
Размещено на http://www.allbest.ru/
Схема линейного регулятора представлена на рис. 20.2. Линейный регулятор состоит из двух трансформаторов: питающего трансформатора 1 и после-довательного трансформатора 2. Первичная обмотка 3 питающего трансфор-матора является питающей. Она может быть включена и на фазное А - 0 и на линейное напряжение (А - В, А - С). Вторичная обмотка 4 питающего трансформатора имеет такое же переключающее устройство 5 как и транс-форматор с РПН. Один конец первичной обмотки 6 последовательного трансформатора присоединен к средней точке вторичной обмотки питающего трансформатора. Другой к переключающему устройству. Вторичная обмотка 7 последовательного трансформатора соединена последовательно с обмоткой высшего напряжения силового трансформатора. Добавочная ЭДС в обмотке 7 складывается с ЭДС силового трансформатора и изменяет ее.
Размещено на http://www.allbest.ru/
Рисунок 20.2 - Схема линейного регулятора
ЭДС, создаваемая линейным регулятором зависит:
от величины питающего напряжения;
от фазы питающего напряжения;
от коэффициента трансформации линейного регулятора.
Включая первичную обмотку питающего трансформатора в разные фазы сети, можно получить разные напряжения на выходе регулятора. В линейном регуляторе выполняется пофазное регулирование. Выполним построение векторных диаграмм для фазы А.
Когда первичная обмотка включена на фазу 0 - А, то ЭДС обмотки высшего напряжения силового трансформатора с помощью линейного регулятора регулируется по модулю (рис. 20.3 а). При таком регулировании добавочная ЭДС линейного регулятора ?Е совпадает по фазе с фазными напряжениями сети. Такое регулирование называется продольным. Коэффициент трансформации - действительная величина.
Если обмотка 3 питающего трансформатора включена на линейное напряжение В - С, то результирующая ЭДС обмотки силового трансформатора и вторичной обмотки 7 последовательного трансформатора изменяется по фазе (рис. 20.3 б). При этом ЭДС силового трансформатора и добавочная ЭДС оказываются сдвинутыми на 90_. Такое регулирование называется поперечным.
При включении обмотки 3 на фазы А и В, выполняется продольно - поперечное регулирование. Вектор добавочной ЭДС направлен вдоль линейных напряжений. Коэффициент трансформации является комплексной величиной. Линейные регуляторы большой мощности выполняются трехфазными мощностью 16 - 100 МВ•А с устройством РПН 15 % напряжением 6 - 35 кВ. На напряжение 35 - 150 кВ ЛР выполняются мощностью 92 - 240 МВ•А. В сетях 6 - 10 кВ ЛР выполняются в виде автотрансформаторов.
Так как регулирующие устройства силового трансформатора и линейного регулятора включены последовательно, то следует выяснить распределение функций между ними. Они могут быть следующими:
силовой трансформатор может осуществлять регулирование напряжение по одной из групп линий. При этом экономится один линейный регулятор. Но диапазон регулирования линейного регулятора должен быть достаточно большим, чтобы обеспечить необходимый уровень напряжения у электроприемников. Выдержки времени регуляторов силового трансформатора и линейного регулятора могут быть одинаковыми;
силовой трансформатор выполняет стабилизацию напряжения на шинах подстанции на среднем уровне. Диапазон регулирования линейного регулятора в этом случае может быть снижен. Такое регулирование позволяет существенно снизить мощность линейного регулятора. Регулирование напряжения должно выполняться в определенной последовательности. Так как силовой трансформатор осуществляет стабилизацию напряжения, а линейный регулятор - регулирование на отходящих ЛЭП, то выдержка времени линейного регулятора должна быть больше, чем у устройства РПН силового трансформатора. Это позволяет уменьшить число переключений у линейного регулятора устранением общих переключений при помощи РПН трансформатора.
Регулирование напряжения при помощи устройств продольной компенсации
Напряжение у потребителей зависит от величины потерь напряжения в сети. Потери напряжения зависят от сопротивления сети. Потеря напряжения на участке сети, рассчитанная при заданном напряжении в конце, равна
(20.1)
Соотношение активного и индуктивного сопротивлений в распределительных и питающих сетях различно. Это наглядно видно на рис. 20.4.
Размещено на http://www.allbest.ru/
Рисунок 20.4 - Зависимость сопротивления сети от сечения провода
В распределительных сетях активное сопротивление больше ин-дуктивного. В потере напряжения основную роль играет составляющая . В питающей сети индуктивное сопротивление больше активного. Потеря напряжения в значительной степени определяется реактивным сопротивлением участка сети.
Изменение индуктивного сопротивления применяют для регулирования напряжения. Чтобы изменить индуктивное сопротивление, необходимо включить в линию электропередач батарею конденсаторов. Возможность регулирования напряжения при помощи устройства продольной компенсации покажем для простейшего участка сети (рис. 20.5). Потеря напряжения на участке определяется выражением (20.1). Допустим, что напряжение в конце участка ниже допустимого:
.
Размещено на http://www.allbest.ru/
Включим последовательно в линию электропередач батарею конденсаторов так, чтобы повысить напряжение до допустимой величины . Напряжение в конце участка сети будет равно:
где Хс - сопротивление батареи конденсаторов.
Запишем это выражение через ток, который протекает в линии электропередач:
(20.2)
Используем полученное выражение для построения векторной диаграммы регулирования напряжения при помощи устройства продольной компенсации.
Размещено на http://www.allbest.ru/
Рисунок 20.6 - Векторная диаграмма регулирования напряжения при помощи УПК
Из начала координат по действительной оси отложим вектор напряжения U1. Получим точку а. Под углом ц2 к нему отложим ток на участке Iл. Вектор падения напряжения в активном сопротивлении параллельно линии тока отложим от конца вектора напряжения U1 с учетом знака в выражении (20.2). Получим точку b. Из точки b перпендикулярно линии тока отложим вектор падения напряжения в индуктивном сопротивлении ЛЭП с учетом знака в выражении (20.2). Получим точку с. Соединим начало координат с точкой с. Полученный вектор - это вектор напряжения в конце участка. Его величина меньше допустимого значения напряжения . Из точки с перпендикулярно линии тока отложим вектор падения напряжения в сопротивлении батареи конденсаторов с учетом знака в выражении (20.2). Получим точку d. Соединив точку d с началом координат, получим вектор напряжения в конце участка . Его величина удовлетворяет требованиям.
Величину можно рассматривать как отрицательное падение напряжения или как дополнительную ЭДС.
Из выражения для можно определить сопротивление батареи конденсаторов. По его величине определить количество последовательных и параллельно включенных конденсаторов. При этом напряжение на батарее конденсаторов Uк и ток Iк в ней равны
Если номинальное напряжение одного конденсатора меньше фазного напряжения в месте установки батареи конденсаторов , то в фазе ставятся последовательно несколько конденсаторов. Их количество n определяется по выражению
В паспорте конденсатора указывается его номинальная мощность Qк. Зная эту величину, можно определить номинальный ток конденсатора Iк ном:
Если номинальный ток конденсатора меньше тока в ЛЭП , то ставят параллельно m конденсаторов:
Отношение
называется процентом компенсации. На практике применяют частичную компенсацию (с < 100 %) индуктивного сопротивления ЛЭП. Полная компенсация не применяется, так как это связано с возможностью появления перенапряжений в сети.
Применение УПК позволяет улучшить режимы напряжения в сети. Повышение напряжения зависит от значения и фазы тока, которых проходит через УПК. Поэтому возможности регулирования напряжения через УПК ограничены. Наиболее эффективно применение УПК для снижения отклонений напряжения на перегруженных радиальных ЛЭП.
Регулирование напряжения при помощи устройств поперечной компенсации
В питающих сетях значительное влияние на потерю напряжения в сети оказывает составляющая Q”?X. Изменяя поток реактивной мощности в сети, можно регулировать величину потери напряжения в сети. Для изменения потоков реактивной мощности применяются компенсирующие устройства - батареи конденсаторов, синхронные компенсаторы, статические источники реактивной мощности.
Возможность использования компенсирующих устройств для регулирования напряжения рассмотрим на примере синхронного компенсатора в простейшей сети (рис. 20.7).
Рисунок 20.7 - Включение синхронного компенсатора
Напряжение в конце ЛЭП до установки синхронного компенсатора определяется выражением
Пусть напряжение в конце ЛЭП ниже допустимого. После включения синхронного компенсатора напряжение в конце линии электропередач определяется следующим образом:
(20.3)
Если из выражения для U2 доп вычесть выражения для U2, можно определить мощность синхронного компенсатора. В практических расчетах считают что . Поэтому выражение для определения мощности синхронного компенсатора выглядит следующим образом:
Синхронный компенсатор может работать в режиме перевозбуждения и недовозбуждения.
При перевозбуждении СК генерирует реактивную мощность равную его номинальной мощности При недовозбуждении СК потребляет реактивную мощность равную половине номинальной мощности Режим потребления приводит в увеличению потери напряжения в сети и дальнейшему снижению напряжения у потребителей. Режим недовозбуждения синхронного компенсатора можно использовать в режиме минимальной нагрузки, когда нужно снизить напряжение в сети.
Для построения векторных диаграмм запишем выражение (20.3) через ток, который протекает в линии электропередач:
. (20.4)
Построим векторную диаграмму при работе СК в режиме перевозбуждения (рис. 20.8 а). Из начала координат по действительной оси отложим вектор напряжения U1. Получим точку а. Под углом ц2 к нему отложим ток нагрузки Iнагр. Вектор падения напряжения в активном сопротивлении направлен параллельно линии тока нагрузки. Отложим его от конца вектора напряжения U1 с учетом знака в выражении (20.4). Получим точку b. Из точки b перпендикулярно линии тока нагрузки отложим вектор падения напряжения в индуктивном сопротивлении ЛЭП с учетом знака в выражении (20.4). Получим точку с. Соединим начало координат с точкой с. Полученный вектор - это вектор напряжения в конце участка до установки СК. Его величина меньше допустимого значения напряжения .
В режиме перевозбуждения ток синхронного компенсатора опережает напряжение U2 на 90о. Из точки с параллельно линии тока СК отложим вектор падения напряжения в активном сопротивлении ЛЭП с учетом знака в выражении (20.4). Получим точку d. Из точки d перпендикулярно линии тока СК отложим вектор падения напряжения в индуктивном сопротивлении ЛЭП с учетом знака в выражении (20.4). Получим точку е. Соединив точку е с началом координат, получим вектор напряжения в конце участка . Его величина удовлетворяет требованиям.
Построим векторную диаграмму в режиме недовозбуждения (рис. 20.8 б). Построение вектора напряжения в конце ЛЭП до подключения синхронного компенсатора выполняется аналогично предыдущим построениям. Его величина больше допустимого значения напряжения . В режиме перевозбуждения ток синхронного компенсатора отстает от напряжения U2 на 90о. Остальные построения выполняются аналогично. Из точки с параллельно линии тока СК отложим вектор падения напряжения в активном сопротивлении ЛЭП с учетом знака в выражении (20.4). Получим точку d. Из точки d перпендикулярно линии тока СК
отложим вектор падения напряжения в индуктивном сопротивлении ЛЭП. Получим точку е. Соединив точку е с началом координат, получим вектор напряжения в конце участка . Его величина удовлетворяет требованиям.
Векторная диаграмма регулирования напряжения при использовании батареи конденсаторов аналогична векторной диаграмме СК, который работает в режиме перевозбуждения.
Размещено на Allbest.ru
...Подобные документы
Устройства поперечной и продольной компенсации, улучшение коэффициента мощности, компенсация потери напряжения. Уменьшения несимметрии напряжения, вызванной однофазными тяговыми нагрузками. Защита установок поперечной ёмкостной и продольной компенсации.
лекция [273,4 K], добавлен 27.07.2013Структурные схемы автоматических регуляторов с типовыми сервоприводами, воспроизводящие основные законы регулирования методом параллельной и последовательной коррекции. Переходная характеристика ПД-регулятора, параметры настройки и функциональные схемы.
реферат [300,7 K], добавлен 27.02.2009Природные запасы горючих ископаемых и гидравлические ресурсы как основные энергетические ресурсы страны. Знакомство с особенностями регулирования напряжения силовых трансформаторов. Характеристика основных способов определения токов короткого замыкания.
контрольная работа [647,4 K], добавлен 22.11.2013Расчет электрических нагрузок населенного пункта и зоны электроснабжения; регулирование напряжения. Определение количества, мощности и места расположения питающих подстанций, выбор трансформатора. Себестоимость передачи и распределения электроэнергии.
курсовая работа [633,0 K], добавлен 29.01.2011Требования к уровню напряжения в электрической сети согласно ГОСТ, допустимые значения положительного и отрицательного отклонений напряжения в точках общего присоединения. Устройства компенсации реактивной мощности и вольтодобавочные трансформаторы.
презентация [1,5 M], добавлен 10.07.2015Расчет переходного процесса. Амплитудное значение напряжения в катушке. Значение источника напряжения в момент коммутации. Начальный закон изменения напряжения. Метод входного сопротивления. Схема электрической цепи для расчета переходного процесса.
курсовая работа [555,6 K], добавлен 08.11.2015Выбор напряжения питающей линии предприятия, схема внешнего электроснабжения и приемной подстанции; определение мощностей трансформаторов по суточному графику нагрузки, проверка их работы с перегрузкой. Расчет экономического режима работы трансформатора.
курсовая работа [1,2 M], добавлен 26.12.2010Разложение периодической функции входного напряжения в ряд Фурье. Расчет гармонических составляющих токов при действии на входе цепи напряжения из 10 составляющих. Построение графика изменения входного напряжения и тока в течение одного периода в 1 ветви.
курсовая работа [1,1 M], добавлен 10.04.2014Схема компенсационного стабилизатора напряжения на транзисторах. Определение коэффициентов пульсации, фильтрации и стабилизации. Построение зависимости выходного напряжения от сопротивления нагрузки. График напряжения на входе и выходе стабилитрона.
лабораторная работа [542,2 K], добавлен 11.01.2015Расчет сопротивления внешнего шунта для измерения магнитоэлектрическим амперметром силового тока. Определение тока в антенне передатчика при помощи трансформатора тока высокой частоты. Вольтметры для измерения напряжения с относительной погрешностью.
контрольная работа [160,4 K], добавлен 12.05.2013История открытия и создания двигателей постоянного тока. Принцип действия современных электродвигателей. Преимущества и недостатки двигателей постоянного тока. Регулирование при помощи изменения напряжения. Основные линейные характеристики двигателя.
курсовая работа [1,3 M], добавлен 14.01.2018Решение линейных и нелинейных электрических цепей постоянного тока, однофазных и трехфазных линейных электрических цепей переменного тока. Схема замещения электрической цепи, определение реактивных сопротивлений элементов цепи. Нахождение фазных токов.
курсовая работа [685,5 K], добавлен 28.09.2014Сущность технологического процесса, осуществляемого в котельной установке. Описание работы схемы автоматизации. Устройство и работа составных частей. Исполнительный механизм МЭО-40. Расчет и выбор регуляторов. Выбор приборов и исполнительных устройств.
курсовая работа [1023,3 K], добавлен 02.04.2014Составление баланса активной мощности и выбор генераторов проектируемой ТЭЦ, обоснование схемы и напряжения электрической сети. Выбор и размещение трансформаторов, компенсирующих устройств и сечений проводов. Регулирование напряжения в узлах нагрузки.
курсовая работа [582,2 K], добавлен 06.03.2011Методика учета потерь на корону. Зависимость потерь на корону от напряжения для линии электропередачи при заданных метеоусловиях. Расчет и анализ исходного режима без учета короны. Схемы устройств регулирования напряжения в электрических сетях.
дипломная работа [7,7 M], добавлен 18.03.2013Проектирование релейной защиты устройств электроснабжения электрифицированных железных дорог. Защита установок продольной и поперечной емкостной компенсации. Принципиальная схема дифференциальной защиты УПК от перегрузки, по напряжению; расчет уставок.
курсовая работа [1,9 M], добавлен 25.02.2014Выбор конфигурации, номинального напряжения сети. Выбор трансформаторов и схем электрических соединений. Сечение проводов воздушных линий электропередачи. Технико–экономические показатели. Уточнённый расчёт радиально-магистральной сети напряжением 220 кв.
курсовая работа [1,3 M], добавлен 25.10.2016Расчет источника гармонических колебаний. Запись мгновенных значений тока и напряжения в первичной обмотке трансформатора и построение их волновых диаграмм. Расчет резонансных режимов в электрической цепи. Расчет напряжения в схеме четырехполюсника.
курсовая работа [966,0 K], добавлен 11.12.2012Характеристика действующих сил поезда. Регулирование скорости поезда изменением питающего напряжения на двигателе. Принцип импульсного метода регулирования напряжения. Характеристики поезда при изменении напряжения. Диаграммы мгновенных значений токов.
презентация [616,4 K], добавлен 27.09.2013Электрические цепи при гармоническом воздействии. Работа цепи при воздействии источников постоянного напряжения и тока. Расчет схемы методом наложения (суперпозиции). Нахождение токов в ветвях схемы методом контурных токов. Напряжения на элементах цепи.
курсовая работа [933,0 K], добавлен 18.12.2014