Механизмы зарядовой компенсации и свойства субмикрокристаллических феррит-гранатов при отклонениях от стехиометрии по катионному составу и кислороду
Условия синтеза и механизмы зарядовой компенсации замещенного железо-иттриевого граната (ЖИГ). Изучение влияния на структурные параметры и электромагнитные свойства ЖИГ концентрации двухвалентной примеси, размера частиц и зерен в субмикронном диапазоне.
Рубрика | Физика и энергетика |
Вид | автореферат |
Язык | русский |
Дата добавления | 01.05.2018 |
Размер файла | 3,0 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
На правах рукописи
Механизмы зарядовой компенсации и свойства субмикрокристаллических феррит-гранатов при отклонениях от стехиометрии по катионному составу и кислороду
Специальность 01.04.07 - физика конденсированного состояния
АВТОРЕФЕРАТ
диссертации на соискание ученой степени
кандидата физико-математических наук
Булатова Алсу Наилевна
Астрахань 2008
Работа выполнена на кафедре материаловедения и технологии наноструктурированных сред и в лаборатории физики конденсированного состояния Астраханского государственного университета
Научный руководитель: доктор физико-математических наук, профессор Карпасюк Владимир Корнильевич (Астраханский государственный университет)
Официальные оппоненты:
доктор технических наук, Лауреат Государственной премии Беляев Игорь Васильевич (НПО «Магнетон», г. Владимир);
кандидат физико-математических наук Радайкин Виталий Васильевич (Мордовский государственный университет, г.Саранск)
Ведущее учреждение: Государственный технологический университет «Московский институт стали и сплавов»
Защита состоится «26» декабря 2008 г. в 15 часов 30 минут на заседании диссертационного совета ДМ 212.009.06 при Астраханском государственном университете по адресу: 414056, г. Астрахань, ул. Татищева, 20а, в конференц-зале.
С диссертацией можно ознакомиться в библиотеке Астраханского государственного университета по адресу: 414056, г. Астрахань, ул. Татищева, 20а.
Автореферат разослан «____»____________2008 г.
Ученый секретарь диссертационного совета, кандидат физико-математических наук, доцент В.В. Смирнов
гранат зарядовый компенсация электромагнитный
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность.
Сложные оксиды металлов со структурой граната {Ме3 3+}[Fe2 3+] (Fe33+)O12 2- традиционно являются важным материалом для различных областей микроволновой техники и магнитооптики. В настоящее время огромное внимание уделяется получению мелкодисперсных, особенно наноразмерных материалов и наноструктурированных керамик, которые обеспечивают не только высокие служебные параметры, но и способствуют уменьшению размеров изделий. В связи с этим, сегодня наблюдается совершенствование методов синтеза и расширение сферы практического применения гранатов.
Проблема получения феррит-гранатов с необходимыми и хорошо воспроизводимыми свойствами сводится в значительной мере к получению материалов с заданным химическим составом и определённой керамической микроструктурой, так как многие магнитные параметры ферритов (например, коэрцитивная сила, магнитная проницаемость) являются структурно-чувствительными, то есть существенно зависят от характеристик керамической структуры материала, включая размер и форму кристаллитов, размер и распределение пор. Существенными условиями, определяющими высокие потребительские качества материалов и изделий на их основе, являются достижение однородности химического и фазового состава, а также однородного морфологического строения синтезированных продуктов. Одним из путей решения проблемы создания новых высококачественных функциональных материалов является использование криохимической технологии и метода пиролиза при синтезе.
Повышение качества ферритов и создание новых материалов затрудняется слабой изученностью влияния дефектов нестехиометрии, как по кислороду, так и по катионному составу на электромагнитные и оптические свойства гранатов. Исследования дефектности, отклонений от стехиометрии, механизмов зарядовой компенсации представляют и теоретический интерес, так как дают информацию о деталях структуры кристаллов и их взаимосвязях со свойствами.
Таким образом, разработка новых методов синтеза, экспериментальные и теоретические исследования корреляции состояния ионов переходных металлов и кислорода с характеристиками дефектности и электромагнитными параметрами, а также изучение зависимости физико-химических свойств от размера зерен нестехиометрических твердых растворов ферримагнетиков со структурой граната являются актуальными как в плане развития соответствующих методов и представлений физики твердого тела, так и в связи с потребностями технологии синтеза перспективных материалов и управления их характеристиками.
Технологии создания и обработки керамических материалов входят в перечень критических технологий, утвержденных Президентом РФ.
Работа частично поддержана грантом Федерального агентства по образованию в рамках аналитической ведомственной целевой программы “Развитие научного потенциала высшей школы (2006-2008 годы)” (проект РНП.2.1.1.7605).
Цель и задачи работы.
Целью настоящей работы явилось исследование влияния на структурные параметры и электромагнитные свойства замещенного железо-иттриевого граната (ЖИГ) концентрации двухвалентной примеси, размера частиц и зерен в субмикронном диапазоне, во взаимосвязи с условиями синтеза и выявление механизмов зарядовой компенсации.
Объектами исследования были поликристаллические железо-иттриевые гранаты составов Y3-c Cac Fe5 O12 (где с=0; 0,05; 0,1; 0,13; 0,15; 0,17; 0,2 форм.ед.), синтезированные методом твердофазного синтеза, с использованием пиролиза и ультрадисперсные порошки Y2.9Ca0.1Fe5O12, полученные на основе криохимической технологии.
Hа основании проведенного анализа литературных данных и собственных предварительных исследований были поставлены следующие задачи:
изучить условия получения порошков и керамических образцов железо-иттриевых гранатов выбранных составов методом твердофазного синтеза, с использованием пиролиза и криохимической технологии;
установить зависимости особенностей морфологии частиц, микроструктуры железо-иттриевого граната от методов синтеза;
установить характер зависимости значений удельной намагниченности насыщения ЖИГ от размера зерен и частиц;
исследовать зависимость структурных, электрических и магнитных параметров замещенного железо-иттриевого граната от концентрации двухвалентной примеси;
установить характер влияния отклонения от стехиометрии при окислительных и восстановительных отжигах на основные структурные параметры и магнитные свойства поликристаллических ЖИГ заданных составов;
определить валентное состояние ионов железа в железо-иттриевом гранате с иновалентной примесью;
изучить особенности механизмов зарядовой компенсации иновалентной примеси в железо-иттриевом гранате в зависимости от ее концентрации;
Решение указанных задач осуществлялось с использованием комплекса инструментальных методов исследования: рентгеновской дифрактометрии, магнитных и электрических измерений, мессбауэровской спектроскопии, электронной микроскопии и электронно-зондового микроанализа.
Научная новизна работы:
впервые найдены условия синтеза и получены керамические образцы ЖИГ системы Y3-c Cac Fe5 O12 с субмикронными размерами зерен (500 нм);
впервые установлены условия получения и исследованы ультрадисперсные порошки ЖИГ, легированные двухвалентной примесью кальция, со средними размерами частиц 100 нм;
впервые изучены особенности морфологии порошков, керамической структуры и субмикрокристаллического состояния замещенных ЖИГ, синтезированных методом пиролиза и по криохимической технологии;
впервые исследована зависимость магнитных свойств порошков и поликристаллических гранатов Y3-c Cac Fe5 O12, от размера зерен и частиц в субмикронном диапазоне.
Практическая ценность.
Найденные закономерности влияния размера зерен, концентрации двухвалентной примеси и отклонения от стехиометрии по кислороду на формирование электрических и магнитных свойств замещенных железо-иттриевых гранатов могут быть использованы для управления технологическими процессами синтеза.
Определенные зависимости морфологии, микроструктуры, магнитных и структурных свойств от технологии синтеза, существование критических значений концентрации ионов двухвалентной примеси в железо-иттриевых гранатах, при которых происходит смена механизмов зарядовой компенсации и изменение структурных и электромагнитных свойств, нашли отражение в программах учебных курсов «Физика магнитных явлений», «Электронное строение вещества», «Магнитные полупроводники», а также в тематике дипломных работ студентов.
На защиту выносятся:
установленные особенности морфологии, микроструктуры замещенных железо-иттриевых гранатов, в зависимости от способа и условий синтеза;
установленные зависимости значений удельной намагниченности насыщения от размера зерен и частиц изученных гранатов;
положение о существовании в твердых растворах ЖИГ, легированных кальцием, критических значений концентрации ионов двухвалентной примеси, при которых происходит смена механизмов зарядовой компенсации и изменение электромагнитных свойств;
установленные закономерности и модельные представления о влиянии изменений содержания кислорода на структурные и магнитные характеристики субмикрокристаллических ЖИГ с двухвалентной примесью.
Апробация работы и публикации.
Материалы диссертации были представлены и обсуждены на Всероссийской конференции с международным Интернет-участием «От наноструктур, наноматериалов и нанотехнологий к наноиндустрии» (Ижевск, июнь2007), Международной конференции « Oxide materials for electronic engineering-fabrication, properties and application» (Львов, 2007), на VI Международном семинаре «Нелинейные процессы и проблемы самоорганизации в современном материаловедении» (Астрахань, ноябрь 2006), на научной конференции АГУ (Астрахань, апрель 2007), на Всероссийской научно-практической конференции «Физико-химические, биологические и медицинские аспекты нанотехнологий» (Астрахань, сентябрь 2008).
По теме диссертации опубликовано 9 печатных работ, в том числе 3 в журналах, рекомендованных ВАК.
Структура и объем работы. Диссертация состоит из введения, четырех глав, заключения, списка цитируемой литературы. Работа содержит 130 страниц и включает 29 рисунков, 18 таблиц и список литературы, состоящий из 154 наименований.
СОДЕРЖАНИЕ РАБОТЫ
Во введении обоснована актуальность темы, сформулирована цель работы, дана характеристика научной новизны и практической значимости полученных результатов, приведены данные об апробации работы и публикациях по теме диссертации, приведены основные положения и результаты выносимые на защиту, дана краткая характеристика разделов и объема материала диссертации.
В первой главе представлен литературный обзор, посвященный исследованиям ферритов со структурой граната.
Приведены данные об особенностях их кристаллической решетки и катионного распределения по неэквивалентным кристаллографическим позициям.
На основе трехподрешеточной модели Нееля рассмотрены магнитные свойства ферримагнитных полупроводников со структурой граната. Дано описание особенностей магнитных моментов переходных элементов, находящихся в различных валентных состояниях, а также представления о высоко- и низкоспиновых состояниях ионов железа.
Рассмотрены особенности механизма электропроводности в феррит-гранатах. Проведен анализ имеющихся в литературе данных о влиянии дефектов нестехиометрии и различных примесей на значение удельного сопротивления феррит-гранатов. Показаны основные закономерности формирования дефектов в оксидных системах и проблемы их классификации. При этом основное внимание уделено рассмотрению дефектов нестехиометрии и механизмам их зарядовой компенсации.
Приведены имеющиеся в литературе данные о влиянии окислительно-востановительных сред на структурные характеристики гранатов и особенностях зарядовой компенсации иновалентной примеси. Показано, что в настоящее время, остается открытым ряд вопросов, связанных со сменой механизма зарядовой компенсации при определенных концентрациях примеси в твердых растворах феррит-гранатов, допированных кальцием.
На основе анализа литературных данных показано, что в последние годы как в России, так и за рубежом активно проводятся исследования, посвященные разработке новых методов синтеза ферритов и изучению влияния размеров частиц и зерен на структурные и электромагнитные свойства феррит-гранатов, особое внимание при этом уделяется субмикронному и нано диапазону.
Во второй главе описаны методики синтеза объектов исследования. Представлены методы экспериментальных исследований, описание использованных приборов и установок, а также дана методика проведения окислительно-восстановительных отжигов.
Структурный и фазовый анализы был проведен на рентгеновском дифрактометре «Дрон-3М» методом порошковой рентгенографии.
Для исследований морфологии порошков, микроструктуры поверхности и микронеоднородностей были применены растровая электронная микроскопия (РЭМ) и рентгеноспектральный микроанализ. Микроструктура изучалась с помощью растрового электронного микроскопа JSM-5900LV и системы «Камебакс». Анализ изображений проводился в программе SIAMS FotoLab. Рентгеноспектральный микроанализ проводился для определения суммарного (среднего) состава образцов и изучения распределения концентрации элементов по их поверхности, а также определения состава неоднородностей. Анализ и обработка результатов, оценка погрешностей проводились статистическими методами с использованием теории малых выборок.
Для анализа распределения ионов железа по неэквивалентным узлам кристаллических решеток ферритов-гранатов и определения их валентного состояния была использована мессбауэровская спектроскопия. При исследованиях образцов применялся метод, основанный на съемке спектров поглощения гамма-квантов ядрами 57Fe. Образцы исследовалась на спектрометре МС-1101-Э под управлением ЭВМ с источником 57Со в матрице родия. Обработка, модельная расшифровка мессбауэровских спектров, определение их параметров производились с учетом априорной информации об объектах исследований с помощью программного комплекса MSTools.
Для определения электрической проводимости ферритовых образцов в работе был применен метод сопротивления растекания, основанный на измерении сопротивления структуры, состоящей из образца и металлического зонда, установленного на его плоской поверхности. Величина энергии активации электрической проводимости Еа определялась по тангенсу угла наклона кривой температурной зависимости тока объемной проводимости, построенной в координатах ln(I)=f(1/kT), где k - постоянная Больцмана, Т - температура образца.
Удельная намагниченность (у) измерялась в магнитном поле напряженностью 5,6 кЭ с использованием микровеберметра Ф-191.
С целью изменения содержания кислорода в образцах использовались окислительный отжиг при давлении кислорода 105 Па и восстановительный отжиг при парциальном давлении кислорода 10-8 Па при температуре 900оС. Окислительные отжиги производились в трубчатой печи СУОЛ-0,25 1/12,5-И2, поддержание температуры осуществлялось с точностью 40С. Подъем температуры в печи осуществлялся при введенных образцах, время изотермической выдержки варьировалось от 4 до 12 часов, затем образцы извлекались из печи и закаливались. Восстановительные отжиги производились в вакуумной циркуляционной установке, разработанной и созданной в ГУ ИМЕТ УрО РАН. После ввода образцов в изотермическую зону установки производилась откачка воздуха и подъем температуры. Время изотермической выдержки составляло от 4 до 12 часов, затем образцы извлекались из печи и закаливались в вакууме.
В качестве объектов исследования были выбраны составы Y3-c Cac Fe5 O12 (с=0; 0.05; 0.1; 0.13; 0.15; 0.17; 0.2 форм. ед.). Серии образцов железо- иттриевых гранатов выбранных составов, синтезировали с использованием метода обычных твердофазных реакций, с применением пиролиза и криохимической технологии.
Для синтеза феррит-гранатов заданного состава по керамической технологии в качестве исходных веществ использовали оксиды: Y2O3 (марки ИтО-II), CaCO3 (ч), Fe2 O3 (чда). После расчета шихты и предварительного взвешивания компонентов с точностью до 0.001г, навески перемешивали в среде этилового спирта в планетарной мельнице FRITSH в течение 60 минут. Затем производили сушку шихты в стальных кюветах, с использованием специальной сушильной печи, и прессование под давлением в виде таблеток. После предварительного обжига при 1150°С в течение 4 часов, проводили второй помол и смешивание в среде этилового спирта в планетарной мельнице в течение 60 минут с последующей сушкой и формировкой из пресспорошка, с добавлением связки (10 % от общего веса 10%-ного водного раствора поливинилового спирта), под давлением образцов в виде таблеток. Заключительным этапом был высокотемпературный обжиг образцов в воздушной атмосфере при 1300 °С в течение 8 часов с охлаждением до 110°С со скоростью 50°C/час и последующим охлаждением до комнатной температуры вместе с печью.
На основе криохимической технологии были получены порошки железо-иттриевого граната состава Y2.9Ca0.1Fe5O12. В качестве реагентов использовались нитраты металлов, входящих в его состав. Криогранулы исходных смесей солей, взятых в стехиометрическом соотношении конечного состава сложного оксида, на стадии криокристаллизации, помещались в охлажденый лоток, который устанавливался на греющую плиту, расположенную в сублимационной камере. В результате посредством вакуум-сублимационной сушки были получены мелкодисперсные порошки (прекурсоры) нитратов металлов для последующей термической обработки. Для кристаллизации и стабилизации параметров был проведен высокотемпературный отжиг порошков при температуре 780 0С, в течение 6 часов.
Рис. 1. Микрофотография гранул Y2,9Ca0,1Fe5O12
Для получения феррит-гранатов методом пиролиза в качестве основных реагентов использовали нитраты металлов, входящих в его состав. После смешивания нитратов, в заданном количестве, с глицином при температуре 900С до образования однородного вязкого геля, производили его нагревание до температуры 600 0 С с целью выпаривания горючих нитратов. При этом происходило осаждение органических соединений и образование темно- красного композита в виде липкого пепла (золы). Затем проводили формировку из полученного рыхлого композита-порошка под давлением образцов в виде таблеток и высокотемпературный отжиг образцов в воздушной атмосфере при 900°С в течение 5 часов с охлаждением до 700°С со скоростью 50°С/час и последующим охлаждением до комнатной температуры вместе с печью.
Проведенный рентгенографический анализ позволил сделать вывод об однофазности всех синтезированных образцов.
Третья глава посвящена сопоставительному изучению кристаллофизических параметров замещенных железо-иттриевых гранатов заданных составов, выявлению особенностей механизма зарядовой компенсации двухвалентной примеси в зависимости от ее концентрации, а также изучению зависимостей размера зерен, однородности и магнитных свойств образцов от условий синтеза. На рис.2. представлен характерный фрагмент микроструктуры образцов, синтезированных методом твердофазных реакций.
Рис. 2. Микрофотография участка поверхности образца Y3Fe5O12 .
Образцы, синтезированные по керамической технологии, характеризовались весьма широким распределением зерен по размерам от 2 до 12 мкм, со средним значением зерен ~ 5 мкм и высокой плотностью. На рисунке 3 представлена гистограмма распределения зерен по размерам.
Рис.3. Гистограмма распределения зерен по размерам для образца Y3Fe5O12
Для элементного анализа выбирали несколько точек в разных местах образца, в которые направляли электронный луч и регистрировали спектр рентгеновского излучения от каждой точки. Вид типичного спектра приведен на рисунке 4.
Рис.4 Спектр рентгеновского излучения образца Y2.87Ca0.13Fe5O12
Для исследования зависимости магнитных свойств поликристаллических феррит-гранатов от размера частиц, с использованием криохимической технологии и пиролиза были синтезированы образцы ЖИГ с иновалентным замещением кальцием. На рисунке 5 для примера показан характерный фрагмент микроструктуры одного из образцов. Образцы, синтезированные по криохимической технологии и методом пиролиза характеризовались более однородным распределением химического состава, чем полученные методом твердофазного синтеза.
Рис. 5. Микрофотография участка поверхности образца Y2,8Ca0,2Fe5O12 , синтезированного с использованием пиролиза
Согласно проведенной оценке размеров зерен по микрофотографии, средняя величина зерен составляла ? 500 нм (рис.6).
Рис.6. Гистограмма распределения зерен по размерам для образца Y2,8Ca0,2Fe5O12 .
Сравнительный анализ значений удельной намагниченности насыщения исследуемых составов железо-иттриевых гранатов, синтезированных различными способами, показал, что удельная намагниченность насыщения у образцов, полученных по керамической технологии, выше, чем у образцов такого же состава, полученных по другим технологическим схемам (табл. 1). Погрешность измерения составляла не более 1,5%.
Таблица 1
Значения уs (гаусс· см3/г) в зависимости от состава и условий синтеза
Технология синтеза |
Состав |
||||
Y3Fe5O12 |
Y2,9Ca0,1Fe5O12 |
Y2,85Ca0,15Fe5O12 |
Y2,8Ca0,2Fe5O12 |
||
тверд. фазные реакции |
26,52 |
25,55 |
26,34 |
26,42 |
|
хим. пиролиз |
25,44 |
24,74 |
25,03 |
25,27 |
|
криохимия |
--- |
24,47 |
--- |
--- |
Увеличение намагниченности насыщения с увеличением размера частиц можно объяснить ее обратной зависимостью от отношения площади поверхности к объему частиц. Эта зависимость может быть выражена следующим образом [3]:
Ms(D)=Ms(V)[1-в/D] , (1)
где Ms (D) - намагниченность насыщения образца со средним диаметром частиц D, Ms(V) объемная намагниченность насыщения и в-некоторая постоянная.
Исходя из полученных данных, в работе была проведена оценка величины в.
С целью изучения влияния диамагнитного неизовалентного замещения на магнитную структуру железо-иттриевого граната были получены мессбауэровские спектры поликристаллических ЖИГ с различной концентрацией двухвалентной примеси Са, синтезированных методом твердофазных реакций. Спектры образцов, содержащих кальций в количестве 0,1 форм. ед., имеют изомерный сдвиг 0,079 мм/с, который скорее всего вызван присутствием ионов Fe4+ . В то же время, образцы с более высоким содержанием кальция характеризуются изомерным сдвигом 0,13 мм/с, что позволяет говорить об отсутствии ионов четырехвалентного железа. При этом у гранатов, не допированных кальцием, и у образцов с содержанием Са 0,2 форм.ед. наблюдается квадрупольный дублет (3-5%) с параметрами, характерными для атомов Fe в октаэдрических позициях, который, вероятно, вызван возникновением ионов Fe2+ в этих позициях.
Результаты рентгеноструктурного анализа (табл.2) показали, что увеличение концентрации Са немонотонно влияет на значение параметра кристаллической решетки железо-иттриевого граната.
Для изучения механизма зарядовой компенсации двухвалентной примеси был проведен анализ распределения ионов и дефектов по кристаллографически неэквивалентным позициям в структуре синтезированных ЖИГ с использованием методики, основанной на сравнении величин экспериментального параметра элементарной ячейки - а и вычисленного по формуле Строки [4], которая считается наиболее точной и надежной на сегодняшний день[1]:
a = b1 + b2 rc + b3 ra + b5 rc ra + b6 rc rd + b4 rd (Е) … (2),
b1 = 7.02954; b2 = 3.31277; b3 = 2.49398;
b4 = 3.34124; b5 = -0.87758; b6 = -1.38777;
где rc, ra, rd - средневзвешенные эффективные ионные радиусы катионов, занимающих {c}, [a], (d) позиции структуры граната. Cредневзвешанные ri, входящие в (1), определяются валентностью, магнитоспиновым состоянием катионов, их распределением по кристаллографическим позициям, типом и количеством точечных дефектов. Расчеты были проведены как без учета зарядовой компенсации, так и с учетом образования Fe4+ в тетра- позициях (таб.2).
Таблица 2
Зависимость параметра кристаллической решетки а, Е замещенных железо-иттриевых гранатов от условий синтеза и содержания Са: 1 -расчет, без учета зарядовой компенсации; 2 - расчет с учетом образования
Технологии синтеза |
Содержание Са в форм.ед |
||||
0 |
0,1 |
0,15 |
0,2 |
||
пиролиз |
12,373 |
12,372 |
12,373 |
12,373 |
|
криохимия |
---- |
12,372 |
----- |
------- |
|
1 |
12,373 |
12,384 |
12,391 |
12,393 |
|
2 |
12.372 |
12.372 |
12.371 |
На основе проведенного сравнительного анализа экспериментальных значений параметра решетки и вычисленных по формуле Строки, были сделаны следующие выводы.
· У образцов ЖИГ состава Y3Fe5O12, полученных методом пиролиза, параметр решетки практически совпадает с параметром решетки стехиометрического ЖИГ, вычисленного по формуле Строки. Это связано с отсутствием дефектов нестехиометрии в катионной и анионной подрешетках.
· Согласно проведенным расчетам, несмотря на то, что ионный радиус кальция (rCa2+=1.12Е) больше ионного радиуса иттрия (rY3+=1.019Е), увеличение концентрации кальция должно приводить к уменьшению параметра решетки. Это связано с образованием в тетра - позициях решетки граната ионов Fe4+ (ионный радиус Fe4+ (rFe4+=0.585Е) меньше ионного радиуса Fe3+ (r Fe3+=0.64Е)) и с возникновением анионных вакансий.
· У образцов с малым содержанием кальция до 0.13 форм. ед. зарядовая компенсация осуществляется перезарядкой ионов Fe3+ в Fe4+ , что приводит к первоначальному уменьшению параметра решетки.
· При дальнейшем увеличении концентрации кальция наблюдается значительное расхождение экспериментальных и расчетных значений параметра решетки, что, скорее всего, связано с включением иных механизмов зарядовой компенсации.
Для изучения зависимости механизма проводимости и распределения ионов и дефектов по кристаллографически неэквивалентным позициям в структуре исследуемых образцов с применением послойной сошлифовки были установлены электрические характеристики Y3Fe5O12 на разном удалении от поверхности образца, показанные на рисунке 7. Кроме того, были получены статические ВАХ и значения удельного сопротивления для замещенных железо-иттриевых гранатов с различной концентрацией Ca, представленные в таблице 3.
а) б)
Рис. 7 Зависимость от глубины сошлифовки а) - вольт-амперных характеристик, б) - энергии активации образца Y3Fe5O12
Таблица 3
Удельное сопротивление поликристаллических ЖИГ с различной концентрацией кальция
с, Ом•см |
Содержание Са, форм.ед. |
|||||
0,1 |
0,13 |
0,15 |
0,17 |
0,2 |
||
1,76•106 |
5,1•104 |
2.6•105 |
6.5•105 |
5.1•106 |
По мере увеличения концентрации двухвалентной примеси Са происходит нарастание концентрации ионов Fe4+, что сопровождается уменьшением сопротивления образцов. В образце с содержанием Са 0.15 форм.ед. наблюдаемое увеличение сопротивления можно объяснить появлением качественно новых образований - однозарядных ионов кислорода, повышение концентрации которых, согласно теории [2], сопровождается усилением обменного взаимодействия, имеющего ферромагнитный характер, и снижением проводимости в области низких температур. В образцах с большим содержанием кальция происходящее увеличение сопротивления можно связать с появлением анионных вакансий, приводящих к нарушению косвенного обменного взаимодействия и процесса переноса электронов, увеличению их рассеяния и, соответственно, повышению энергии активации и уменьшению проводимости.
На основе результатов изучения электропроводности, данных мессбауэровской спектроскопии, значений параметра кристаллической решетки в работе делается вывод о смене механизма зарядовой компенсации при концентрациях двухвалентной примеси кальция около 0.15 и 0,2 форм.ед.
В четвертой главе на основе проведения высокотемпературных отжигов образцов в окислительных и восстановительных средах изучено влияние дефектов нестехиометрии на структурные и магнитные параметры железо- иттриевого граната с двухвалентной примесью.
Значения параметра решетки, приращение удельной намагниченности насыщения у исследуемых образцов, после окислительных и восстановительных отжигов, приведены соответственно в таблице 4 и 5.
Таблица 4
Зависимость параметра решетки а , ? замещенного железо-иттриевого граната от времени отжига в различных атмосферах
Параметр кристаллической решетки а, ? |
||||||||
Состав |
Отжиг на воздухе 25 часов |
Отжиг в вакууме, час. |
Отжиг в кислороде, час. |
|||||
4 |
8 |
12 |
4 |
8 |
12 |
|||
Y3Fe5O12 |
12,379 |
12.378 |
12.378 |
12.377 |
12,378 |
12,378 |
12,377 |
|
Y2,95Ca0,05Fe5O12 |
12,377 |
12,376 |
12,376 |
12,375 |
12,377 |
12,376 |
12,376 |
|
Y2,9Ca0,1Fe5O12 |
12,375 |
12,374 |
12,374 |
12,373 |
12,374 |
12,373 |
12,373 |
|
Y2,87Ca0,13Fe5O12 |
12,374 |
12,374 |
12,373 |
12,373 |
12,374 |
12,373 |
12,372 |
|
Y2,85Ca0,15Fe5O12 |
12,375 |
12,375 |
12,376 |
12,374 |
12,375 |
12,375 |
12,374 |
|
Y2,83Ca0,17Fe5O12 |
12,375 |
12,374 |
12,375 |
12,374 |
12,374 |
12,373 |
12,373 |
|
Y2,8Ca0,2Fe5O12 |
12,376 |
12,375 |
12,374 |
12,373 |
12,375 |
12,375 |
12,374 |
Таблица 5
Приращение удельной намагниченности насыщения уs ,у образцов после отжигов в вакууме и кислороде
Содержание Са, форм.ед. |
уs, гаусс ·см3/г |
Д уs,гаусс·см3/г |
||||||
Отжиг в вакууме, час |
Отжиг в кислороде, час |
|||||||
4 |
8 |
12 |
4 |
8 |
12 |
|||
0,05 |
26,42 |
0,52 |
-0,14 |
-0,49 |
-0,22 |
-0,79 |
0,29 |
|
0,1 |
25,55 |
1,23 |
-0,16 |
-0,27 |
-0,13 |
-0,24 |
1,07 |
|
0,13 |
23,98 |
3,01 |
2,76 |
1,8 |
-0,53 |
1,34 |
2,43 |
|
0,15 |
26,34 |
0,55 |
0,26 |
-0,26 |
-0,41 |
-1,03 |
0,45 |
|
0,17 |
26,77 |
-0,79 |
-1,2 |
-1,44 |
-0,52 |
-1,35 |
-0,39 |
|
0,2 |
26,42 |
0,51 |
0,82 |
0,96 |
-0,28 |
-1,21 |
-0,82 |
При восстановлении образцов с небольшим содержанием кальция до 0.13 форм.ед., идет активное образованием анионных вакансий, что приводит к снижению значений параметра решетки при отжигах в вакууме. При этом первоначальная перезарядка ионов Fe4+ в Fe3+ вызывает рост значений намагниченности насыщения, а дальнейшее увеличение времени отжига приводит к образованию анионных вакансий и спаду значений намагниченности насыщения. Особый интерес вызывают образцы состава Y2,85Ca0,15Fe5O12, в которых вероятно одновременно присутствуют однозарядные ионы кислорода О- и в небольшой концентрации ионы Fe4+. Первоначально восстановление ЖИГ такого состава также вызывает преобразование валентного состояния ионов Fe4+ в Fe3+ , что сопровождается ростом значений уs. Дальнейший переход анионов О- в О-2 (при этом ионы [Fe3+]a в окта подрешетке переходят в высокоспиновое состояние) и образование кислородных вакансий приводят к уменьшению значений намагниченности насыщения и параметра решетки. Аналогичный процесс компенсации заряда наблюдается и в образце с содержанием Са 0.17 форм.ед. Однако наличие анионных вакансий в исходном состоянии и отсутствие ионов Fe4+ приводит к постепенному уменьшению значений уs и а на протяжении всего времени восстановительного отжига. При концентрации иновалетной примеси 0.2 форм. ед. происходят монотонное уменьшение параметра решетки и увеличение значений удельной намагниченности насыщения. Это связанно с ростом концентрации анионных вакансий и образованием ионов Fe2+.
Во время протекания окислительных отжигов у образцов с небольшим содержанием Са, в которых изначально присутствовали катионы Fe4+, сначала происходит увеличение их концентрации, что обусловливает снижение параметра решетки и увеличение значений удельной намагниченности насыщения. При увеличении времени отжигов происходит уменьшение содержания анионных вакансий и возникновение катионных вакансий в октаэдрической подрешетке, которые эффективно снижают намагниченность последней, в результате чего намагниченность насыщения возрастает. При более высоком содержании Са сначала происходит уменьшение кислородных вакансий с соответствующим появлением ионов Fe4+ и образованием катионных вакансий в окта-подрешетке, что вызывает уменьшение параметра решетки и значений удельной намагниченности насыщения.
ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ
Получены однородные по химическому и фазовому составу ультрадисперсные порошки замещенного железо-иттриевого граната,со средним размером частиц ~100 нм.
Получены однородные по химическому и фазовому составу субмикрокристаллические феррит-гранаты со средними размерами зерен около 500 нм.
Уменьшение размера частиц порошков и зерен в керамических образцах ЖИГ приводит к снижению значений удельной намагниченности насыщения, что обусловлено ее обратной зависимостью от отношения площади поверхности к объему частиц.
С использованием методики, основанной на сравнении экспериментальных и расчетных значений параметра решетки, был сделан вывод о возможности зарядовой компенсации двухвалентной примеси при малых концентрациях ионами Fe4+, расположенными в тетра - позициях решетки.
В железо-иттриевых гранатах, допированных кальцием, в субмикрокристаллическом состоянии существуют критические значения концентрации двухвалентной примеси, при котором происходит смена механизмов зарядовой компенсации.
При концентрациях двухвалентной примеси Са2+ от 0,05 до 0,13 форм.ед. зарядовая компенсация двухвалентной примеси осуществляется ионами Fe4+ , при содержании Са2+ (0,15-0,17 форм.ед.) возникают однозарядные ионы кислорода O-, дальнейшее увеличение примеси приводит к возникновению анионных вакансий.
ОСНОВНЫЕ ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИИ
1. М.Ф. Булатов, В.К. Карпасюк, А.А. Ляпин, А.Н. Булатова. Влияние ионов марганца и калия на свойства феррогранатовых пленок после обработки растворами KMnO4// Изв. ВУЗов. Материалы электронной техники - 2004. - №4. - С41-44.
2. М.Ф. Булатов, С.Б. Убизский, А.Н. Булатова. Влияние ионов Ca2+ на магнитные и оптические свойства эпитаксиальных пленок (TmBi)3(FeGa)5O12 при их росте// Вестник Воронежского государственного технического университета. Серия «Материаловедение». - 2004. - Выпуск 1.15. - С.29-33.
3. Булатов М.Ф., Булатова А.Н. Управление структурными параметрами феррогранатовых составов за счет окислительно-восстановительных отжигов. //Южно-Российский вестник геологии, географии и глобальной энергии.- 2006.- №9(22).- С. 172-175.
4. Булатова А.Н., Смирнов В.В. Влияние состава и условий синтеза на магнитные свойства и структуру замещенных феррит-гранатов// Физика и xимия обработки материалов -2008.- №5.-С.61-64.
5. М.Ф.Булатов, Г.Г. Поляков, А.Н. Булатова. Модельное описание состава твердых растворов и микронеоднородностей кристаллической структуры феррогранатов // Сб. Микронеоднородности в эпитаксиальных пленках феррогранатов.-Астрахань: Издательский дом «Астраханский университет», 2004.-С.18.
6. Булатов М.Ф., Булатова А.Н. Структурный гистерезис в железо-иттриевых гранатах // VI Международный семинар «Нелинейные процессы и проблемы самоорганизации в современном материаловедении». Тезисы докладов: Издательский дом «Астраханский университет».- 2007.- С.98.
7. Булатова А.Н., Трутнев Н.С., Булатов М.Ф. Технология получения наноразмерных феррогранатов состава (YCa)3Fe5O12 // Международная конференция « Oxide materials for electronic engineering-fabrication properties and application (OMEE-2007)»: Вестник Львовского политехнического университета.- 2007.- №592.-С.8-12
8. Булатова А.Н. Синтез и исследование корреляции магнитных свойств со структурными характеристиками феррит - граната иттрия с иновалентным замещением Са //Материалы научной конференции АГУ: Издательский дом «Астраханский университет».-2007.- С.22-24
9. Булатова А.Н. Синтез замещенных железо-иттриевых гранатов с субмикронными размерами зерен методом пиролиза //Материалы Всероссийской научно-практической конференции «Физико-химические, биологические и медицинские аспекты нанотехнологий»: Издательский дом «Астраханский университет».-2008.-С.103-105.
Размещено на Allbest.ru
...Подобные документы
Структуры и свойства материй первого типа. Структуры и свойства материй второго типа (элементарные частицы). Механизмы распада, взаимодействия и рождения элементарных частиц. Аннигиляция и выполнение зарядового запрета.
реферат [38,4 K], добавлен 20.10.2006Анализ влияния компенсации реактивной мощности на параметры системы электроснабжения промышленного предприятия. Адаптивное нечеткое управление синхронного компенсатора с применением нейронной технологии. Моделирование измерительной части установки.
дипломная работа [1,7 M], добавлен 02.06.2017Анализ публикаций о новых магнитоэлектрических материалах. Особенности синтеза при высоких давлениях керамик Bi2NiMnO6 и Bi2CoMnO6, их структурные особенности, фазовые превращения, магнитные и электрические свойства в зависимости от условий синтеза.
реферат [3,1 M], добавлен 26.06.2010Физические свойства висмута и его полиморфных модификаций. Исследование влияния мощных пучков заряженных частиц на микроструктуры и свойства мишеней. Преимущества применения методов рентгеноструктурного фазового анализа для расчета дифракционных картин.
курсовая работа [5,2 M], добавлен 13.08.2013Магнитооптические и оптические свойства редкоземельных гранатов - галлатов и алюминатов. Спектр оптического поглощения параматнитного граната. Поведение полевых зависимостей зеемановского расщепления линий поглощения. Анализ результатов исследования.
статья [344,3 K], добавлен 22.06.2015Состав газоразрядной плазмы. Восстановление плазмой нейтральности. Энергетический спектр тяжелых частиц (атомов и молекул). Столкновения частиц в плазме. Диффузия и амбиполярная диффузия в плазме. Механизмы эмиссии электронов из катода в газовом разряде.
контрольная работа [66,6 K], добавлен 25.03.2016Устройства поперечной и продольной компенсации, улучшение коэффициента мощности, компенсация потери напряжения. Уменьшения несимметрии напряжения, вызванной однофазными тяговыми нагрузками. Защита установок поперечной ёмкостной и продольной компенсации.
лекция [273,4 K], добавлен 27.07.2013Применение согласующего устройства. Основные условия согласования. Применение шлейфов для компенсации реактивности. Согласующее устройство на основе шлейфов. Применение параллельного шлейфа. Четвертьволновый трансформатор, согласование в диапазоне частот.
презентация [269,6 K], добавлен 20.02.2014Основные параметры и свойства положительного столба (ПС) тлеющего и дугового разрядов. Метастабильные атомы в ПС. Явление катафореза в смеси газов. Основные механизмы накачки возбужденных энергетических уровней газа. Излучение ПС, параметры плазмы.
контрольная работа [511,1 K], добавлен 25.03.2016Деформация как изменение взаимного положения частиц тела, связанное с их перемещением относительно друг друга, ее причины и механизмы. Виды: растяжение, сжатие, кручение, изгиб и сдвиг. Основные факторы, влияющие на жесткость и прочность твердого тела.
презентация [1,3 M], добавлен 26.01.2014Соотношения неопределенностей. Волна де Бройля, ее свойства. Связь кинетической энергии с импульсом релятивистской частицы. Изучение закона Ньютона и Максвелла. Теория Бора. Действие магнитной силы Лоренца. Молекулярно-кинетическая теория идеальных газов.
презентация [255,3 K], добавлен 27.11.2014Расчет нагрузок и выбор трансформатора для питания нагрузки без компенсации и после компенсации реактивной энергии. Расчёт сечения и выбор проводов для питания подстанции. Расчёт и выбор автоматов на 0,4кВ. Организация эксплуатации и безопасность работ.
курсовая работа [1,1 M], добавлен 11.02.2011Назначение, состав, работа и основные характеристики системы компенсации давления. Автоматическое включение и работа спринклерной системы. Функционирование локализующей системы безопасности в аварийных ситуациях с течью теплоносителя первого контура.
презентация [403,8 K], добавлен 24.08.2013Математические модели оптимизационных задач электроснабжения. Обзор способов повышения коэффициента мощности и качества электроэнергии. Выбор оптимальных параметров установки продольно-поперечной компенсации. Принцип работы тиристорного компенсатора.
дипломная работа [986,2 K], добавлен 30.07.2015Основные свойства стандартного случайного числа. Потенциал парного взаимодействия частиц. Изучение метода Монте-Карло на примере работы алгоритма Метрополиса-Гастингса для идеальной Леннард-Джонсовской жидкости. Радиальная функция распределения частиц.
курсовая работа [1,2 M], добавлен 27.08.2016Энергетическое разрешение полупроводникового детектора. Механизмы взаимодействия альфа-частиц с веществом. Моделирование прохождения элементарных частиц через вещество с использованием методов Монте–Карло. Потери энергии на фотоядерные взаимодействия.
курсовая работа [502,5 K], добавлен 07.12.2015Свойства всех элементарных частиц. Связь протонов и нейтронов в атомных ядрах. Классификация элементарных частиц. Величина разности масс нейтрона и протона. Гравитационные взаимодействия нейтронов. Экспериментальное значение времени жизни мюона.
реферат [24,3 K], добавлен 20.12.2011История развития представления о жидких кристаллах. Жидкие кристаллы, их виды и основные свойства. Оптическая активность жидких кристаллов и их структурные свойства. Эффект Фредерикса. Физический принцип действия устройств на ЖК. Оптический микрофон.
учебное пособие [1,1 M], добавлен 14.12.2010Оценка стоимости конденсаторных установок и способы снижения потребления реактивной мощности. Преимущества применения единичной, групповой и централизованной компенсации. Расчет экономии электроэнергии и срока окупаемости конденсаторных установок.
реферат [69,8 K], добавлен 14.12.2012Основные понятия, механизмы элементарных частиц, виды их физических взаимодействий (гравитационных, слабых, электромагнитных, ядерных). Частицы и античастицы. Классификация элементарных частиц: фотоны, лептоны, адроны (мезоны и барионы). Теория кварков.
курсовая работа [1,0 M], добавлен 21.03.2014