Синтез, анализ, формирование и обработка дискретно-кодированных по частоте радиолокационных сигналов
Характеристика методов формирования и обработки дискретно-кодированных по частоте сигналов. Разработка программного обеспечения, предназначенного для синтеза и анализа дискретно-кодированных сигналов. Оценка эффективности радиолокационных станций.
Рубрика | Физика и энергетика |
Вид | автореферат |
Язык | русский |
Дата добавления | 05.05.2018 |
Размер файла | 540,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Автореферат
Синтез, анализ, формирование и обработка дискретно-кодированных по частоте радиолокационных сигналов
Специальность 05.12.14 - Радиолокация и радионавигация
Каменский Илья
МОСКВА - 2008
Работа выполнена на кафедре «Радиолокация и радионавигация»
Московского авиационного института (государственного технического университета).
Научный руководитель доктор технических наук,
Гаврилов К.Ю.
Официальные оппоненты: доктор технических наук,
профессор Юдин В.Н.
кандидат технических наук,
с.н.с. Бартенев В.Г.
Ведущая организация - ОАО «Радиотехнический институт имени
академика А.Л. Минца».
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность темы
С момента появления первых радиолокационных станций (РЛС) задача выбора зондирующего сигнала стала одной из основных проблем радиолокации. Результатом поиска сигналов, позволяющих добиваться совместной высокой разрешающей способности по дальности и частоте, стало появление сложных сигналов с внутриимпульсной модуляцией. Одним из наиболее известных таких сигналов является сигнал с линейной частотной модуляцией (ЛЧМ сигнал). Тем не менее, функция неопределенности (ФН) ЛЧМ сигнала далека от ФН желаемого "кнопочного" вида.
Поиск сложных сигналов, обеспечивающих заданные свойства ФН, про-должается до сих пор и является актуальной задачей. Развитием теории сигна-лов занимались многие зарубежные и отечественные ученые: Ф. Вудворд, Ч. Кук и М. Бернфельд, Р. Фрэнк, Г. Ван Трис, Л. Френкс, Д. Хаффмен, Д.Е. Вакман, Р.М. Седлецкий, Л.Е. Варакин, М.Б. Свердлик, Г.И. Тузов, Я.Д. Ширман, В.Е. Гантмахер, Н.Е. Быстров, Д.В. Чеботарев, С.В. Голомб и Г. Гонг и другие.
В результате многолетних исследований в области синтеза широкополосных сигналов получены различные классы амплитудно-, фазо- и частотно-модулированных сигналов. Требования к их высокой помехозащищенности и энергетической и структурной скрытностям послужили основанием для более пристальных исследований фазовых и частотных сигналов, а также комбинированных видов модуляции при синтезе сложных сигналов. кодированные частота сигнал радиолокационный
Задача детального анализа и синтеза сложных сигналов с требуемыми характеристиками является достаточно сложной и не нашла пока решения в общем виде. Поэтому решение целесообразно проводить для некоторого конкретного класса сигналов, что дает возможность ввода специфических для этих сигналов ограничений и, как следствие, упрощения математического аппарата, используемого при синтезе и анализе рассматриваемых сигналов.
Среди наиболее известных и чаще других используемых на практике сигналов можно отметить: коды Баркера, М - последовательности (коды Хаффмена), многофазные коды Фрэнка, линейно- и V - образно частотно модулированные сигналы.
Появление и развитие дискретной, а в дальнейшем и цифровой техники послужило основанием для изучения класса дискретно-кодированных сигналов (ДКС). К таким сигналам можно отнести:
- амплитудно-кодированные ДКС;
- фазо-кодированные ДКС;
- частотно-кодированные ДКС;
- дискретно-кодированные сигналы с кодированием сразу нескольких параметров элементарных радиоимпульсов, составляющих ДКС.
Наиболее полно исследованы первые три разновидности ДКС. Большой вклад в данные исследования внесли такие ученые, как Ч. Кук и М. Бернфельд, Л.Е. Варакин, С.В. Голомб, А.А. Сикарев, О.Н. Лебедев и А.И. Фалько, В.П. Ипатов и другие.
Следует отметить, что разрешающая способность по задержке для фазо-кодированных ДКС ограничена длительностью элементарного радиоимпульса (одного дискрета), поэтому для достижения более высокой разрешающей способности по задержке целесообразно использование частотно-кодированных ДКС.
Американский ученый Дж. П. Костас предложил вид когерентного дискретно-кодированного по частоте сигнала (ДКЧС) с почти идеальной "кнопочной" функцией неопределенности (ДКЧС Костаса). Перспективность таких сигналов подтвердили в своих работах и развили аналитическую теорию и математический аппарат ряд известных западных ученых, среди которых С.В. Голомб, Х. Тейлор, Л.Р. Уэлч, А. Лемпель, А. Фридман, Н. Леванон, В. Чанг, К. Скарброух. На протяжении длительного времени вопросами анализа ДКЧС Костаса занимался Эдвард Титлебаум, который вместе с группой соавторов написал целый ряд статей по данной тематике, что в свою очередь подчеркивает неослабевающий интерес западных исследователей и актуальность темы данного диссертационного исследования.
В последние годы отечественные исследователи также проявляют интерес к частотно-кодированным сигналам. Однако в отечественной открытой печати вопросы синтеза и анализа ДКЧС и, в частности, ДКЧС Костаса недостаточно полно освещены. Кроме того, практически отсутствуют аналитические обоснования выбора параметров для формирования и обработки ДКЧС, а также сами вопросы формирования и обработки подобного вида зондирующих сигналов.
Таким образом, задача синтеза, анализа, формирования и обработки зондирующих сигналов не потеряла своей актуальности и по сей день. Сложные дискретно-кодированные сигналы и, в частности, дискретно-кодированные по частоте сигналы привлекают к себе пристальное внимание исследователей и разработчиков вследствие ожидаемой возможности получения ФН "кнопочного" вида и обеспечения высокой помехозащищенности и скрытности работы РЛС с их использованием. Рассмотрению этих вопросов посвящена данная диссертационная работа.
Цель и задачи работы
Целью диссертационной работы является синтез дискретно-кодированных сигналов, применение которых позволит повысить тактические характеристики РЛС, анализ эффективности использования ДКЧС, рассмотрение вопросов технической реализации устройств их формирования и обработки, а также разработка программного обеспечения для реализации предлагаемых в работе методов синтеза и анализа дискретно-кодированных сигналов. Для достижения этой цели в работе решаются следующие задачи:
1. Получение аналитического выражения, описывающего функцию неопределенности дискретно-кодированных сигналов и анализ свойств ФН ДКЧС с помощью полученного выражения.
2. Синтез дискретно-кодированных по частоте сигналов Костаса, разработка алгоритмов синтеза системы ДКЧС Костаса требуемой размерности, разработка алгоритма синтеза псевдослучайного ДКЧС Костаса.
3. Получение аналитического выражения, описывающего функцию неопределенности составных дискретно-кодированных сигналов (СДКС) и анализ свойств ФН составных ДКЧС с помощью полученного выражения.
4. Разработка методов формирования и обработки дискретно-кодированных по частоте сигналов.
5. Оценка эффективности РЛС с применением дискретно-кодированных по частоте сигналов, включая анализ помехозащищенности и скрытности работы РЛС с их использованием.
6. Разработка программного обеспечения, предназначенного для синтеза и анализа дискретно-кодированных сигналов.
Методы исследования
При решении поставленных задач использовались методы математического анализа, теории конечных числовых полей (полей Галуа), методы математической статистики, анализа алгоритмов, методы формирования и обработки сигналов, цифровой обработки сигналов, объектно-ориентированного подхода для создания программного обеспечения, программирования трехмерной графики, математического моделирования на ЭВМ.
Научная новизна работы
1. Получено аналитическое выражение, описывающее функцию неопределенности дискретно-кодированных сигналов, с помощью которого проведен анализ ФН ДКЧС и даны рекомендации по выбору параметров ДКЧС.
2. Разработаны и проанализированы алгоритмы синтеза систем ДКЧС Костаса требуемой размерности и алгоритм синтеза псевдослучайного ДКЧС Костаса.
3. Получено аналитическое выражение, описывающее функцию неопределенности составных дискретно-кодированных сигналов, с помощью которого проведен анализ ФН составных ДКЧС и даны рекомендации по выбору параметров составных ДКЧС.
4. Предложены варианты построения устройств формирования и обработки ДКЧС и составных ДКЧС, позволяющих добиться высокой помехозащищенности и скрытности работы РЛС.
5. Произведена оценка помехозащищенности и скрытности работы РЛС с применением ДКЧС Костаса и составных ДКЧС Костаса.
Практическая ценность результатов работы
Разработано программное обеспечение, предназначенное для синтеза и анализа дискретно-кодированных сигналов. С его помощью проведены исследования различных дискретно-кодированных сигналов, трехмерное математическое моделирование ФН дискретно-кодированных сигналов, в том числе ДКЧС Костаса и составных ДКЧС Костаса. По результатам этих исследований даны рекомендации по выбору параметров зондирующих сигналов РЛС.
Даны рекомендации по выбору параметров устройств формирования и обработки ДКЧС и составных ДКЧС.
Проведен синтез ДКЧС Костаса и систем ДКЧС Костаса различных размерностей на ЭВМ.
Техническая реализация и внедрение
Результаты диссертационных исследований внедрены в разработки предприятия ОАО "Корпорация "Фазотрон-НИИР", что подтверждается актом внедрения, а также в учебный процесс МАИ в виде лабораторной работы "Исследование функций неопределенности дискретно-кодированных сигналов".
Основные положения, выносимые на защиту
1. Полученное аналитическое выражение для функции неопределенности дискретно-кодированных сигналов позволяет осуществлять исследование и расчет ФН ДКС с кодированием как одного, так и нескольких параметров сигнала. На основании анализа полученного выражения даны рекомендации по выбору параметров ДКЧС для достижения "кнопочной" ФН зондирующего сигнала.
2. Предложенный в работе итерационный алгоритм синтеза системы ДКЧС Костаса обеспечивает существенную экономию затрачиваемого машинного времени на выполнение поставленной задачи по сравнению с перестановочным алгоритмом, достигнутая экономия с увеличением размерности системы ДКЧС Костаса возрастает.
3. При формировании одного или нескольких ДКЧС Костаса, когда синтез системы ДКЧС Костаса необходимой размерности требует недопустимо больших вычислительных затрат, целесообразно использовать предложенный в работе псевдослучайный алгоритм синтеза ДКЧС Костаса.
4. Полученное аналитическое выражение для ФН составных дискретно-кодированных сигналов позволяет осуществлять исследование и расчет ФН составных ДКС с кодированием как одного, так и нескольких параметров сигнала. На основании анализа полученного выражения даны рекомендации по выбору параметров составных ДКЧС для достижения "кнопочной" ФН зондирующего сигнала.
5. Предложены устройства формирования и обработки дискретно-кодированных по частоте сигналов и структурная схема импульсной обзорной РЛС с возможностью оперативной смены зондирующего сигнала, что обеспечивает повышение помехозащищенности и скрытности работы РЛС.
6. Использование ДКЧС Костаса и составных ДКЧС Костаса позволяет добиться повышения использования энергетических возможностей РЛС, высокой совместной разрешающей способности РЛС по задержке и частоте при низком уровне боковых лепестков ФН, а также высокой помехозащищенности и скрытности работы РЛС.
Апробация результатов работы
Результаты диссертационной работы доложены на VIII Международном научно-техническом семинаре "Современные технологии в задачах управления, автоматики и обработки информации" (Алушта, 1999), 2-й Международной конференции "Цифровая обработка сигналов и ее применения" (Москва, 1999), IX Международном научно-техническом семинаре "Современные технологии в задачах управления, автоматики и обработки информации" (Алушта, 2000), 3-й Международной конференции "Цифровая обработка сигналов и ее применение" (Москва, 2000), 5-й Международной конференции "Цифровая обработка сигналов и ее применение" (Москва, 2003), Всероссийской научной конференции "Сверхширокополосные сигналы в радиолокации, связи и акустике" (Муром, 2003), Всероссийской конференции молодых ученых и студентов "Информационные технологии в авиационной и космической технике - 2008" (Москва, 2008).
Публикации
Основные результаты диссертации опубликованы в 13 работах: 3 статьи в журнале "Известия вузов. Радиоэлектроника", 1 работа в Межвузовском сборнике научных трудов, 1 работа в трудах МАИ и 8 работ в трудах всероссийских и международных научно-технических конференций.
Объем и структура работы
Диссертационная работа изложена на 149 листах машинописного текста и состоит из введения, шести глав, заключения, списка литературы, включающего 82 наименования. Иллюстративный материал представлен на 58 рисунках. Приложения к диссертации составляют 16 страниц.
ОДЕРЖАНИЕ РАБОТЫ
Во введении обоснована актуальность темы диссертации, проанализировано состояние проблемы, сформулирована цель работы, даны сведения о методах исследования, используемых в процессе работы над диссертацией. Представлены новые научные результаты, описана практическая ценность результатов работы, а также сформулированы основные положения, выносимые на защиту.
В первой главе получено аналитическое выражение для функции неопределенности дискретно-кодированного сигнала.
В общем виде ДКС можно представить выражением:
(1)
где N - размерность ДКС; n=0,1,…,N-1; an, fn и n - код амплитуды частоты и фазы соответственно; f0 - несущая частота и Pn(t) - импульс единичной амплитуды длительности Т:
- нормализующий коэффициент такой, что .
Согласно формуле (1) ДКС могут быть кодированы по амплитуде, фазе, частоте или одновременно по нескольким параметрам. Дискретно-кодированным по частоте сигналом (ДКЧС) будем называть дискретный частотный сигнал со следующими ограничениями:
амплитуду an элементарных импульсов в формуле (1) можно считать постоянной и равной единице, а фазы n - постоянными или равными нулю;
дискрет частоты fn в каждом элементарном импульсе длительностью T равен:
,
где f - шаг сетки частот, который можно рассматривать как масштабный коэффициент полосы частот сигнала, а n - элемент частотно-временной матрицы сигнала, определяющей правило кодирования частоты;
код частоты {n} для ДКЧС размерности N должен содержать все значения от 1 до N.
В полученном выражении для ФН ДКС для удобства анализа и вычислений время запаздывания (задержка) и доплеровская частота заменены на нормированные величины и :
,
где , k=0,1,…,N-1 и ;
;
;
; ; ;
где - масштабный коэффициент полосы сигнала относительно длительности элементарного импульса T.
Полученное выражение является достаточно общим и позволяет осуществлять расчет и моделирование ФН ДКС с кодированием как одного, так и нескольких параметров сигнала.
В этой же главе проведено аналитическое исследование ДКЧС и даны рекомендации по выбору их параметров для достижения желаемой формы функции неопределенности. Показано, что для достижения высокой совместной разрешающей способности по задержке и частоте и низкого уровня боковых лепестков (УБЛ) в окрестности центрального максимума ФН параметр M, который определяется шагом сетки частот f и длительностью элементарного импульса T, целесообразно выбирать равным единице. При этом для достижения УБЛ в области пьедестала ФН на уровне 1/N предлагается использовать ДКЧС с кодами частоты, полученными на основе матриц Костаса. Применение ДКЧС Костаса позволит получить ФН "кнопочного" вида, характеристики которой будут улучшаться с ростом размерности N зондирующего сигнала.
Вторая глава посвящена рассмотрению вопросов синтеза дискретно кодированных по частоте сигналов Костаса. Рассмотрены основные известные аналитические конструкции сигналов Костаса: Уэлча, Лемпеля и Голомба. Показано, что использование известных аналитических конструкций матриц Костаса не позволяет сформировать полное множество возможных ДКЧС Костаса заданной размерности N. В связи с этим представляет интерес рассмотрение возможности формирования полного множества ДКЧС Костаса требуемой размерности с использованием ЭВМ. Для решения данной задачи рассматриваются два алгоритма - перестановочный и итерационный. Предложенный в работе новый итерационный метод формирования системы ДКЧС Костаса сравнивается с усовершенствованным в работе, известным перестановочным методом. Разработанные с использованием предложенных методов алгоритмы и программы для ЭВМ показали существенное преимущество нового итерационного алгоритма. Проведенный асимптотический анализ вычислительных затрат, необходимых для синтеза системы ДКЧС Костаса размерности N при помощи перестановочного и итерационного алгоритмов, показал, что с ростом размерности N преимущество в экономии машинного времени T от использования итерационного алгоритма по сравнению с перестановочным будет расти как , где N - натуральное, a - действительное положительное числа. На рис. 1 показана зависимость затраченного машинного времени на формирование системы ДКЧС Костаса при использовании перестановочного (Tпер) и итерационного (Tит) алгоритмов.
Далее в главе 2 обоснована целесообразность получения алгоритма для формирования отдельного псевдослучайного ДКЧС Костаса заданной размерности и предложен вариант построения псевдослучайного алгоритма синтеза ДКЧС Костаса. Проведенное компьютерное исследование предложенного псевдослучайного алгоритма показало его высокую эффективность при формировании ДКЧС Костаса достаточно высоких размерностей, когда применение итерационного алгоритма
Рис.1. Заисимость затраченного машинного времени на формирование системы ДКЧС Костаса от ее размерности.
синтеза системы ДКЧС Костаса такой размерности требует недопустимо больших вычислительных затрат.
В третьей главе рассматриваются составные дискретно-кодированные по частоте сигналы. Для проведения аналитического исследования функций неопределенности составных ДКЧС в работе получено выражение, описывающее ФН составных ДКС. Для упрощения аналитических выражений и удобства вычислений рассмотрен случай, когда период следования отдельных ДКС в составном ДКС (TП) кратен длительности элементарного импульса ДКС (T) и введены нормированная задержка сигнала и нормированная частота . Тогда: , где , а , т. е. , а полученное выражение для ФН СДКС имеет вид:
,
где
;
; ;
- нормированная частота заполнения элементарного импульса с индексами s, r.
Полученное соотношение является достаточно общим и позволяет осуществлять аналитическое исследование и расчет ФН СДКС с кодированием как одного, так и нескольких параметров сигнала.
Далее в главе в качестве составных дискретно-кодированных по частоте сигналов (СДКЧС) рассмотрены последовательности дискретно-кодированных по частоте сигналов (ПДКЧС) и дискретные составные частотные сигналы с частотной манипуляцией (ДСЧЧМ).
ПДКЧС представляет собой периодическую последовательность ДКЧС, дискрет частоты fs,r которого в каждом элементарном импульсе с индексами s,r равен: , где f - шаг сетки частот, который для ПДКЧС можно рассматривать как масштабный коэффициент полосы частот сигнала, а s,r - элемент частотно-временной матрицы, определяющий правило кодирования частоты s-го ДКЧС, входящего в составной сигнал. Тогда s,r в для ПДКЧС имеет вид:
,
где - масштабный коэффициент полосы ПДКЧС относительно длительности элементарного импульса T.
ДСЧЧМ строится на основе исходного (ДКЧС размерности L) и производящего (ПДКЧС из L ДКЧС размерности N) сигналов. В соответствии с этим дискрет частоты fs,r в каждом элементарном импульсе с индексами s,r в ДСЧЧМ можно представить в следующем виде: , где fИ s и fПр s,r - дискреты частот исходного и производящего сигналов соответственно.
Дискрет частоты исходного сигнала ( fИ s), представляет собой поднесущую частоту для s-го ДКЧС производящего сигнала , где s - элемент частотно-временной матрицы исходного сигнала, а fИ - частотный интервал между соседними значениями поднесущих ДСЧЧМ , где MП - положительное действительное число, являющееся масштабным коэффициентом поднесущих частот ДСЧЧМ.
Дискрет частоты производящей ПДКЧС ( fПр s,r ) равен: . Таким образом, s,r для ДСЧЧМ имеет вид:
.
На рис. 2 и 3 приведены примеры частотно-временных матриц (ЧВМ) для ПДКЧС и ДСЧЧМ.
Рис.2. ЧВМ ПДКЧС (N = 8, L = 2, M =1).
Рис.3. ЧВМ ДСЧЧМ (N = 4, L = 3, M =MП=1).
На основе полученной в общем виде формулы ФН СДКС проведено исследование разрешающих способностей по частоте и задержке, а также УБЛ в сечениях при нулевой задержке и нулевом доплеровском сдвиге частоты принятого сигнала для ПДКЧС и ДСЧЧМ. Показано, что выбор периода следования ДКЧС в составных сигналах D =N позволяет добиться разрешающей способности по частоте и УБЛ в сечении при нулевой задержке соответствующего ДКЧС размерности LN, а выбор D = 2N - снизить УБЛ в области пьедестала ФН. Кроме того, использование параметров M и MП равных единице позволяет добиться для ДСЧЧМ разрешающей способности и УБЛ в окрестности центрального максимума в сечении при нулевом доплеровском сдвиге частоты принятого сигнала на уровне ДКЧС размерности LN.
Полученные в работе результаты показали, что использование составных ДКЧС позволяет обеспечить требуемые качественные показатели ФН при меньших размерностях кода частоты ДКЧС, входящих в составной сигнал, по сравнению с размерностью кода, необходимой при использовании отдельного ДКЧС для достижения аналогичных характеристик функции неопределенности.
В четвертой главе рассматриваются вопросы формирования и обработки дискретно-кодированных по частоте сигналов. Предложены цифровые схемы устройств формирования и обработки ДКЧС и составных ДКЧС. В качестве управляемого устройства формирования предлагается использовать управляемый синтезатор частот, построенный на базе синтезатора прямого синтеза частот. Предложенная схема формирователя дискретно-кодированных по частоте сигналов позволяет излучать ДКЧС и СДКЧС с переменными параметрами N, L, D и различными кодовыми последовательностями частоты. При этом максимальное значение N для ДКЧС и ПДКЧС равно количеству синтезируемых частот Nf, а L ограничивается только требуемым объемом отводимой памяти блока памяти, хранящего кодовые последовательности различных длительностей. Размерности синтезируемых ДСЧЧМ ограничены произведением LN Nf.
В качестве устройства обработки обосновывается целесообразность использования фильтровой схемы построения приемника и предлагается структурная схема цифрового управляемого фильтра сжатия (ЦУФС). Предложенная структурная схема ЦУФС позволяет обрабатывать любой ДКЧС и ПДКЧС с размерностью N, меньшей или равной количеству цифровых полосовых фильтров NФ, благодаря использованию цифровой управляемой линии задержки (ЦУЛЗ). Размерность ПДКЧС L и значение параметра D ограничиваются только требуемым объемом оперативной памяти ЦУЛЗ. Данная схема может использоваться и в случае ДСЧЧМ, произведение размерностей которого LNNФ. Кроме того, предъявлены требования к быстродействию АЦП определяемые шириной спектра ДКЧС (СДКЧС).
Также в главе 4 рассмотрена предлагаемая структурная схема импульсной обзорной РЛС с применением дискретно-кодированных по частоте (ДКЧ) сигналов. Приведенная структурная схема позволяет улучшить тактические характеристики РЛС, обеспечиваемые ДКЧ сигналами с большой базой и "кнопочной" функцией неопределенности, за счет возможности оперативной смены зондирующего сигнала. Показана возможность экономии аппаратных ресурсов за счет совместного использования одинаковых блоков, входящих в структурные схемы устройств формирования и обработки ДКЧ сигналов.
В пятой главе проведена оценка эффективности РЛС с применением дискретно-кодированных по частоте сигналов. Сравнительная оценка эффективности использования различных ДКС в соответствии со свойствами их функций неопределенности подтвердила высокую эффективность применения ДКЧС Костаса, ПДКЧС и ДСЧЧМ, синтезированных на основе ДКЧС Костаса для повышения качественных характеристик РЛС. На рис. 4 приведено трехмерное тело функции неопределенности ДСЧЧМ Костаса при L=2, N=8.
Рис.4. ФН ДСЧЧМ Костаса L=2, N=8.
Полученные выводы справедливы и для более высоких размерностей L и N исследуемых ДКЧС и СДКЧС. При этом для достижения наилучших характеристик ФН среди СДКЧС при L>2 рекомендуется использовать ДСЧЧМ Костаса с кодом поднесущих частот, соответствующим кодовой последовательности Костаса размерности L.
Далее в главе 5 проведен анализ помехозащищенности РЛС с применением дискретно-кодированных по частоте сигналов. Исследовано влияние пассивной коррелированной помехи и различных активных помех на качество работы предложенного управляемого фильтра сжатия. Проведенный анализ помехозащищенности РЛС с применением дискретно-кодированных по частоте сигналов при воздействии различных помех показал, что в присутствии сосредоточенной помехи (заградительной шумовой помехи) при размерности ДКЧС N=20 достигается выигрыш в отношении сигнал-помеха на выходе фильтра сжатия около 30 дБ, а для ПДКЧС и ДСЧЧМ при той же размерности N и L=5 выигрыш составляет 37 дБ и 43 дБ соответственно. При воздействии узкополосных помех и размерности ДКЧС N=20 достигается выигрыш в отношении сигнал-помеха на выходе фильтра сжатия 23 дБ, а для ПДКЧС и ДСЧЧМ при той же размерности N и L=5 выигрыш составляет 30 дБ и 37 дБ соответственно. Кроме того, показано, что с ростом количества ДКЧС L, входящих в СДКЧС при фиксированном N, наибольший выигрыш в отношении сигнал-помеха обеспечивает ДСЧЧМ.
С увеличением размерностей N и L дискретно-кодированных по частоте сигналов растет коэффициент улучшения среднего отношения сигнал-помеха KУ при наличии пассивной коррелированной помехи и выигрыш в отношении сигнал-помеха для случая воздействия сосредоточенной, узкополосных и импульсных помех, будет возрастать.
Отмечено, что возможность оперативной смены рабочего ДКЧС (СДКЧС) существенно повышает помехозащищенность РЛС особенно в случае фильтрации мощных узкополосных, импульсных и структурных помех.
Таким образом, использование ДКЧС и СДКЧС с применением рассмотренных в главе 4 схем управляемых устройств формирования и обработки позволяет построить эффективную РЛС, инвариантную к целому комплексу помех.
Также в главе 5 проведен анализ скрытности работы РЛС с применением дискретно-кодированных по частоте сигналов, в результате которого показано, что использование РЛС с применением ДКЧС и СДКЧС Костаса позволяет повысить энергетическую и структурную скрытность, обеспечивая высокую эффективность работы РЛС.
Шестая глава посвящена основным вопросам разработки программного обеспечения (ПО), которое использовалось при синтезе и анализе ДКС. Разработанный в рамках диссертационной работы комплекс программного обеспечения "Моделирование ДКС" включает в себя несколько отдельных программ, наиболее важными из которых являются: программа расчета и моделирования ДКС "Моделирование ДКС", программа синтеза аналитических конструкций ДКЧС Костаса "АналитКостас", программа синтеза систем ДКЧС Костаса с помощью перестановочного и итерационных алгоритмов "Система ДКЧС" и программа синтеза псевдослучайных ДКЧС Костаса "Псевдослучайный ДКЧС". Все программы разработаны для выполнения под управлением операционных систем Windows 9x, Me, NT, 2000, XP компании "Microsoft Corporation". При разработке ПО использовался объектно-ориентированный подход, решались задачи 2-х и 3-х мерной визуализации с помощью графической библиотеки OpenGL и ее расширений (GLUT).
ОСНОВНЫЕ РЕЗУЛЬТАТЫ РАБОТЫ
1. Получено аналитическое выражение для функции неопределенности дискретно-кодированных сигналов, позволяющее осуществлять исследование и расчет ФН ДКС с кодированием как одного, так и нескольких параметров сигнала. На основании анализа полученного выражения даны рекомендации по выбору параметров ДКЧС для достижения "кнопочной" ФН зондирующего сигнала.
2. Предложен новый итерационный алгоритм синтеза системы ДКЧС Костаса требуемой размерности, обеспечивающий существенную экономию затрачиваемого машинного времени на выполнение поставленной задачи по сравнению с перестановочным алгоритмом и эта экономии с увеличением размерности системы ДКЧС Костаса растет.
3. При формировании одного или нескольких псевдослучайных ДКЧС Костаса, когда синтез системы ДКЧС Костаса необходимой размерности требует недопустимо больших вычислительных затрат, целесообразно использовать предложенный в работе псевдослучайный алгоритм синтеза ДКЧС Костаса.
4. Проведен синтез ДКЧС Костаса и систем ДКЧС Костаса различных размерностей на ЭВМ. С помощью полученных результатов экспериментально опровергнута гипотеза о монотонности роста объема системы ДКЧС Костаса с увеличением размерности сигнала.
5. Получено аналитическое выражение для функции неопределенности составных дискретно-кодированных сигналов, позволяющее осуществлять исследование и расчет ФН составных ДКС с кодированием как одного, так и нескольких параметров сигнала. На основании анализа полученного выражения даны рекомендации по выбору параметров составных ДКЧС для достижения "кнопочной" ФН зондирующего сигнала.
6. Предложены устройства формирования и обработки дискретно-кодированных по частоте сигналов и структурная схема импульсной обзорной РЛС с возможностью оперативной смены зондирующего сигнала, что обеспечивает повышение помехозащищенности и скрытности работы РЛС.
7. Показано, что использование ДКЧС Костаса и составных ДКЧС Костаса позволяет добиться повышения энергетической эффективности передатчика РЛС, высокой совместной разрешающей способности РЛС по задержке и частоте при низком уровне боковых лепестков ФН, а также высокой помехозащищенности и скрытности работы РЛС.
8. Разработано программное обеспечение, которое целесообразно использовать при исследовании различных дискретно-кодированных сигналов.
ПУБЛИКАЦИИ ПО ТЕМЕ ДИССЕРТАЦИИ
1. Каменский И. В. Анализ функций неопределенности дискретно-кодированных по частоте и фазе широкополосных сигналов // Будущее авиации и космонавтики: Сб. тезисов статей научно-исследовательских работ студентов. - М.: Изд-во МАИ, 1998. - С. 52-55.
2. Каменский И. В., Плёкин В. Я. Анализ функций неопределенности дискретно-кодированных сигналов // Радиоэлектроника. - 1999. - Т. 42. - № 6. - С. 58-66. (Изв. высш. учеб. заведений).
3. Каменский И. В. Функция неопределенности систем дискретно-кодированных сигналов // Современные технологии в задачах управления, автоматики и обработки информации: Сборник трудов VIII международного научно-технического семинара. - М.: Издательство МАИ, 1999. - С. 86-88.
4. Каменский И. В., Плёкин В. Я. Анализ возможности использования систем дискретно-кодированных сигналов в задачах обнаружения и оценивания параметров радиолокационных сигналов // Доклады 2-й Международной конференции "Цифровая обработка сигналов и ее применения", 21-24 сентября, Москва, 1999. - С. 130-135.
5. Каменский И. В. Анализ алгебраических конструкций дискретно-кодированных по частоте сигналов Костаса // Современные технологии в задачах управления, автоматики и обработки информации: Сборник трудов IX международного научно-технического семинара, посвященного 70-летию МАИ и 70-летию МЭИ. - М.: Издательство "Научтехлитиздат", 2000. - С. 77-78.
6. Каменский И. В., Плёкин В. Я. Анализ функции неопределенности систем дискретно-кодированных сигналов // Доклады 3-й Международной конференции "Цифровая обработка сигналов и ее применение", Москва, 2000. - Доклады-2. - С. 199-203.
7. Каменский И. В., Плёкин В. Я. Свойства функции неопределенности дискретно-кодированных по частоте сигналов Костаса // Радиоэлектроника. - 2001. - № 5. - С. 59-68. (Изв. высш. учеб. заведений.).
8. Каменский И. В., Плёкин В. Я. Свойства функции неопределенности составных дискретно-кодированных по частоте сигналов // Радиоэлектроника. - 2001. - № 8. - С. 57-66. (Изв. высш. учеб. заведений.).
9. Каменский И. В., Плёкин В. Я. Анализ помехозащищенности РЛС с применением дискретно-кодированных по частоте сигналов при воздействии сосредоточенной помехи // Доклады 5-й Международной конференции "Цифровая обработка сигналов и ее применение", Москва, 2003. - Доклады-1. - С. 191-194.
10. Каменский И. В., Плёкин В. Я. Цифровая обработка дискретно-кодированных по частоте сигналов // Доклады 5-й Международной конференции "Цифровая обработка сигналов и ее применение", Москва, 2003. - Доклады-1. - С. 194-196.
11. Каменский И. В., Плёкин В. Я. Анализ помехозащищенности РЛС с применением дискретно-кодированных по частоте сигналов при воздействии активных помех // Методы и устройства передачи и обработки информации: Межвуз. сб. науч. тр. - Вып. 3. / Под ред. В. В. Ромашова, В. В. Булкина. - СПб.: Гидрометеоиздат, 2003. - С. 152-159.
12. Каменский И. В., Плёкин В. Я. Оценка помехозащищенности РЛС с применением дискретно-кодированных по частоте сигналов при воздействии узкополосных помех // Всероссийская научная конференция "Сверхширокополосные сигналы в радиолокации, связи и акустике", Муром, 1-3 июля 2003. Сб. докл. - Муром: Изд.-полиграфический центр МИ ВлГУ, 2003. - С. 420-423.
13. Каменский И. В. Импульсная обзорная РЛС с применением дискретно-кодированных по частоте сигналов // Всероссийская конференция молодых ученых и студентов "Информационные технологии в авиационной и космической технике-2008". 21-24 апреля 2008, Москва. Тезисы докладов. - М.: Изд-во МАИ-ПРИНТ, 2008. - С. 85-86.
Размещено на Allbest.ru
...Подобные документы
Основные понятия и определения систем передачи дискретных сообщений. Сигнальные созвездия при АФМ и квадратурная АМ. Спектральные характеристики сигналов с АФМ. Модулятор и демодулятор сигналов, помехоустойчивость когерентного приема сигналов с АФМ.
дипломная работа [1,9 M], добавлен 09.07.2013Характеристика спектрального метода анализа сигналов, при помощи которого можно оценить спектральный состав сигнала, а также количественно выяснить его энергетические показатели. Корреляционный анализ сигнала для оценки прохождения сигнала через эфир.
курсовая работа [169,7 K], добавлен 17.07.2010Последовательность сбора инвертирующего усилителя, содержащего функциональный генератор и измеритель амплитудно-частотных характеристик. Осциллограмма входного и выходного сигналов на частоте 1 кГц. Схема измерения выходного напряжения, его отклонения.
лабораторная работа [2,3 M], добавлен 11.07.2015Изучение принципа работы универсального электронно-лучевого осциллографа. Получение и графическое изображение амплитудно-частотных и фазочастотных характеристик делителя напряжения. Проведение градуировки генератора по частоте. Наблюдение фигур Лиссажа.
лабораторная работа [1,9 M], добавлен 13.11.2010Формула для сигнала при гармонической модуляции. Амплитуда и частота несущего колебания. Компьютерное моделирование ЧМ-сигналов с помощью программного пакета Electronics Workbench. Спектр частотно-модулированного сигнала. Частота модулирующего колебания.
лабораторная работа [565,1 K], добавлен 04.06.2015Способы преобразования звука. Применение преобразования Фурье в цифровой обработке звука. Свойства дискретного преобразования Фурье. Медианная фильтрация одномерных сигналов. Применение вейвлет-анализа для определения границ речи в зашумленном сигнале.
курсовая работа [496,8 K], добавлен 18.05.2014Принципы проектирования электрического фильтра и усилителя напряжения. Анализ спектра сложного периодического сигнала. Оценка прохождения входного сигнала через радиотехнические устройства. Разработка схем электрического фильтра и усилителя напряжения.
курсовая работа [323,7 K], добавлен 28.03.2015Понятие и содержание квантования по уровню как процесса преобразования сигнала с непрерывным множеством значений в сигнал с дискретными значениями. Определение погрешности квантования и его шума. Особенности квантования сигналов при наличии помех.
презентация [130,4 K], добавлен 19.08.2013Общие свойства линейных цепей с постоянными параметрами. Рассмотрение преобразования сигналов линейными цепями в частотной и временной области. Простейшие цепи и их характеристики: фильтры интегрирующего, дифференцирующего и частотно-избирательного типа.
контрольная работа [739,7 K], добавлен 13.02.2015Измерение мощности низкочастотных и высокочастотных колебаний электрических сигналов. Диагностирование мощности колебаний сверхвысокочастотного излучения ваттметрами (поглощающего типа и проходящей мощности). Основные цифровые методы измерения мощности.
контрольная работа [365,0 K], добавлен 20.09.2015Понятие о радиолокации. Принципы радиолокационного обнаружения целей. Методы измерения координат и скорости движения целей. Основные тактико-технические данные радиолокационных станций (РЛС). Типы бортовых РЛС, их назначение и краткая характеристика.
реферат [842,5 K], добавлен 10.10.2011Коливання ребристих оболонок на пружній основі з використанням геометрично нелінійної теорії стержнів і оболонок типу Тимошенка. Взаємодія циліндричних та сферичних оболонок з ґрунтовим середовищем. Чисельні алгоритми розв'язування динамічних задач.
автореферат [103,4 K], добавлен 10.04.2009Применение методов обработки сигналов и математической статистики для построения моделей изучаемых процессов. Природа ошибок, методы их идентификации. Качественное пояснение среднего и погрешностей как коридоров рассеяний. Прямые и косвенные измерения.
реферат [92,7 K], добавлен 19.08.2015Выбор шин и их проверка на устойчивость к токам короткого замыкания. Проверка шин по частоте собственных колебаний, по условиям короны и на механическую прочность. Определение нагрузок от гололеда и собственного веса. Расчет защитного заземления.
курсовая работа [1,6 M], добавлен 13.11.2015Изучение современных альтернативных источников энергии. История развития технологии термоядерного синтеза в России и за рубежом. Технология термоядерного синтеза, анализ ее эффективности в будущем, сравнение с другими альтернативными источниками энергии.
презентация [2,2 M], добавлен 10.05.2010Характер и основные причины повреждений в кабельных линиях, порядок и методы их определения: дистанционные, кратковременной дуги, волновые, измерения частичных разрядов. Виды зондирующих сигналов. Помехи импульсной рефлектометрии и борьба с ними.
контрольная работа [519,1 K], добавлен 20.03.2011Необходимость управляемого термоядерного синтеза. Плазма и топливный цикл термоядерного реактора. Высокотемпературный нагрев вещества, лазерный управляемый термоядерный синтез. Характеристика особенностей реализации "лазерного" термоядерного синтеза.
реферат [1,1 M], добавлен 27.05.2012Исследование физических и химических свойств наноразмерных структур, разработка методов по изучению их синтеза. Критерии эффективного внедрения нанотехнологий в промышленность. Сущность и особенности использования метода электрической эрозии в жидкости.
реферат [22,7 K], добавлен 24.06.2010Краткий обзор основных направлений синтеза полупроводниковых нанопроводов и наностержней, общее описание основных подходов к синтезу такого рода наночастиц. Попытка анализа закономерностей протекания самоорганизации наночастиц и ее возможных причин.
курсовая работа [2,8 M], добавлен 28.05.2013Знакомство с моделью двухпроводной линии передачи. Характеристика цепей с распределенными параметрами. Рассмотрение способов решения телеграфных уравнений. Особенности линий передачи электрических сигналов. Анализ эквивалентной схемы участка линии.
презентация [192,5 K], добавлен 20.02.2014