Приборы для измерения температуры
Классификация методов и приборов для измерения температуры. Контактный, бесконтактный и люминесцентный методы измерения. Прямое и косвенное измерение физических параметров, зависящих от температуры. Температурные шкалы Цельсия, Кельвина, Фаренгейта.
Рубрика | Физика и энергетика |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 04.04.2018 |
Размер файла | 129,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Как подразделяются методы и приборы для измерения температуры
Для определения значения температуры какого-либо тела необходимо выбрать эталон температуры, то есть тело, которое при определённых условиях, равновесных и достаточно легко воспроизводимых, имело бы определённое значение температуры. Это значение температуры является реперной точкой соответствующей шкалы температур - упорядоченной последовательности значений температуры, позволяющей количественно определять температуру того или иного тела. Температурная шкала позволяет косвенным образом определять температуру тела путем прямого измерения какого-либо его физического параметра, зависящего от температуры.
Наиболее часто при получении шкалы температур используются свойства вода. Точки таяния льда и кипения воды при нормальном атмосферном давлении выбраны в качестве реперных точек в современных (но не обязательно изначальных) температурных шкалах, предложенных Андерсом Цельсием (1701-1744), Рене Антуаном Фершо Реомюром (1683 - 1757), Даниэлем Габриэлем Фаренгейтом (1686-1736). Последний создал первые практически пригодные спиртовой и ртутный термометры, широко используемые до сих пор. Температурные шкалы Реомюра и Фаренгейта применяют в настоящее время в США, Великобритании и некоторых других странах.
Введенную в 1742 году температурную шкалу Цельсия, который предложил температурный интервал между температурами таяния льда и кипения воды при нормальном давлении (1 атм или 101 325 Па) разделить на сто равных частей (градусов Цельсия), широко используют и сегодня, правда в уточненном виде, когда один градус Цельсия считается равным одному кельвину. При этом температура таяния льда берется равной 0 C, а температура кипения воды становится приблизительно равной 99,975 C. Возникающие при этом поправки, как правило, не имеют существенного значения, так как большинство используемых спиртовых, ртутных и электронных термометров не обладают достаточной точностью (поскольку в этом обычно нет необходимости). Это позволяет не учитывать указанные, очень небольшие поправки.
После введения Международной системы единиц (СИ) к применению рекомендованы две температурные шкалы. Первая шкала - термодинамическая, которая не зависит от свойств используемого вещества (рабочего тела) и вводится посредством цикла Карно. Эта температурная шкала подробно рассмотрена в третьей главе. Отметим только, что единицей измерения температуры в этой температурной шкале является один кельвин (1 К), одна из семи основных единиц в системе СИ. Эта единица названа в честь английского физика Уильяма Томсона (лорда Кельвина) (1824-1907), который разрабатывал эту шкалу и сохранил величину единицы измерения температуры такой же, как и в температурной шкале Цельсия. Вторая рекомендованная температурная шкала - международная практическая. Эта шкала имеет 11 реперных точек - температуры фазовых переходов ряда чистых веществ, причём значения этих температурных точек постоянно уточняются. Единицей измерения температуры в международной практической шкале также является 1 К.
В настоящее время основной реперной точкой, как термодинамической шкалы, так и международной практической шкалы температур является тройная точка воды. Эта точка соответствует строго определенным значениям температуры и давления, при которых вода может одновременно существовать в твердом, жидком и газообразном состояниях. Причем, если состояние термодинамической системы определяется только значениями температуры и давления, то тройная точка может быть только одна. В системе СИ температура тройной точки воды принята равной 273,16 К при давлении 609 Па.
Кроме задания реперных точек, определяемых с помощью эталона температуры, необходимо выбрать термодинамическое свойство тела, описывающееся физической величиной, изменение которой является признаком изменения температуры или термометрическим признаком. Это свойство должно быть достаточно легко воспроизводимо, а физическая величина - легко измеряемой. Измерение указанной физической величины позволяет получить набор температурных точек (и соответствующих им значений температуры), промежуточных по отношению к реперным точкам.
Тело, с помощью измерения термометрического признака которого осуществляется измерение температуры, называется термометрическим телом.
Термометрическими признаками могут быть изменения: объёма газа или жидкости, электрического сопротивления тел, разности электрического потенциала на границе раздела двух проводящих тел и т.д. Соответствующие этим признакам приборы для измерения температуры (термометры) будут: газовый и ртутный термометры, термометры, использующие в качестве датчика термосопротивление или термопару.
По принципу действия все термометры делятся на следующие группы, которые используются для различных интервалов температур:
1 Термометры расширения от - 260 до +700 °С, основанные на изменении объемов жидкостей или твердых тел при изменении температуры.
2 Манометрические термометры от - 200 до +600 °С, измеряющие температуру по зависимости давления жидкости, пара или газа в замкнутом объеме от изменения температуры.
3. Термометры электрического сопротивления стандартные от --270 до +750 °С, преобразующие изменение температуры в изменение электрического сопротивления проводников или полупроводников.
4. Термоэлектрические термометры (или пирометры), стандартные от --50 до +1800 °С, в основе преобразования которых лежит зависимость значения электродвижущей силы от температуры спая разнородных проводников.
Пирометры излучения от 500 до 100000 °С, основанные на измерении температуры по значению интенсивности лучистой энергии, испускаемой нагретым телом,
Термометры, основанные на электрофизических явлениях от -272 до +1000 °С (термошумовые термоэлектрические преобразователи, объемные резонансные термопреобразователи, ядерные резонансные термопреобразователи).
Контактный метод измерения температуры
Существуют два основных способа для измерения температур -- контактные и бесконтактные. Контактные способы основаны на непосредственном контакте измерительного преобразователя температуры с исследуемым объектом, в результате чего добиваются состояния теплового равновесия преобразователя и объекта. Этому способу присущи свои недостатки. Температурное поле объекта искажается при введении в него термоприемника. Температура преобразователя всегда отличается от истинной температуры объекта. Верхний предел измерения температуры ограничен свойствами материалов, из которых изготовлены температурные датчики. Кроме того, ряд задач измерения температуры в недоступных вращающихся с большой скоростью объектах не может быть решен контактным способом.
- Газовый термометр постоянного объёма (рис. № 1) состоит из термометрического тела - порции газа, заключенной в сосуд, соединенный с помощью трубки с манометром. Измеряемая физическая величина (термометрический признак), обеспечивающая определение температуры, - давление газа при некотором фиксированном объёме. Постоянство объёма достигается тем, что вертикальным перемещением левой трубки уровень в правой трубке манометра доводится до одного и того же значения (опорной метки) и в этот момент производится измерения разности высот уровней жидкости в манометре. Учет различных поправок (например, теплового расширения стеклянных деталей термометра, адсорбции газа и т.д.) позволяет достичь точности измерения температуры газовым термометром постоянного объема, равной одной тысячной кельвина.
Рис. № 1 Схема газового термометра
измерение температура шкала
Газовые термометры имеют то преимущество, что температура, определяемая с их помощью, при малых плотностях газа не зависит от природы используемого газа, а шкала газового термометра - хорошо совпадает с абсолютной шкалой температур.
Газовые термометры используют для градуировки других видов термометров, например, жидкостных. Они более удобны на практике, однако, шкала жидкостного термометра, проградуированного по газовому, оказывается, как правило, неравномерной. Это связано с тем, что плотность жидкостей нелинейным образом зависит от их температуры.
- Жидкостной термометр (рис. № 2) - это наиболее часто используемый в обыденной жизни термометр, основанный на изменении объёма жидкости при изменении её температуры. В ртутно-стеклянном термометре термометрическим телом является ртуть, помещенная в стеклянный баллон с капилляром. Термометрическим признаком является расстояние от мениска ртути в капилляре до произвольной фиксированной точки. Ртутные термометры используют в диапазоне температур от -35 oC до нескольких сотен градусов Цельсия.
Рис. № 2 Схема жидкостного термометра
а -- комнатный термометр с наружной шкалой;
б -- лабораторный термометр с вложенной шкалой, имеющий на шкале точку 0°С.
При высоких температурах (свыше 300 °C) в капилляр накачивают азот (давление до 100 атм или 107 Па), чтобы воспрепятствовать кипению ртути. Применение в жидкостном термометре вместо ртути таллия позволяет существенно понизить нижнюю границу измерения температуры до -59 °C.
Другими видами широко распространённых жидкостных термометров являются спиртовой (от -8 °C до +8 °C) и пентановый (от -200 °C до +35°C). Отметим, что воду нельзя применять в качестве термометрического тела в жидкостном термометре: объём воды с повышением температуры сначала падает, а потом растёт, что делает невозможным использование объема воды в качестве термометрического признака.
С развитием измерительной техники, наиболее удобными техническими видами термометров стали те, в которых термометрическим признаком является электрический сигнал. Это термосопротивления (металлические и полупроводниковые) и термопары.
- В металлическом термометре сопротивления измерение температуры основано на явлении роста сопротивления металла с ростом температуры. Для большинства металлов вблизи комнатной температуры эта зависимость близка к линейной, а для чистых металлов относительное изменение их сопротивления при повышении температуры на 1 К (температурный коэффициент сопротивления) имеет величину близкую к 4*10-3 1/К. Термометрическим признаком является электрическое сопротивление термометрического тела - металлической проволоки. Чаще всего используют платиновую проволоку, а также медную проволоку или их различные сплавы. Диапазон применения таких термометров от водородных температур (~20 К) до сотен градусов Цельсия. При низких температурах в металлических термометрах зависимость сопротивления от температуры становится существенно нелинейной, и термометр требует тщательной калибровки.
- В полупроводниковом термометре сопротивления (термисторе) измерение температуры основано на явлении уменьшения сопротивления полупроводников с ростом температуры. Так как температурный коэффициент сопротивления полупроводников по абсолютной величине может значительно превосходить соответствующий коэффициент металлов, то и чувствительность таких термометров может значительно превосходить чувствительность металлических термометров.
Специально изготовленные полупроводниковые термосопротивления могут быть использованы при низких (гелиевых) температурах порядка нескольких кельвин. Однако следует учитывать то, что в обычных полупроводниковых сопротивлениях возникают дефекты, обусловленные воздействием низких температур. Это приводит к ухудшению воспроизводимости результатов измерений и требует использования в термосопротивлениях, специально подобранных полупроводниковых материалов.
- Другой принцип измерения температуры реализован в термопарах. Термопара (рис. № 3) представляет собой электрический контур, спаянный из двух различных металлических проводников, один спай которых находится при измеряемой температуре (измерительный спай), а другой (эталонный спай) - при известной температуре, например, при комнатной температуре. Из-за разности температур спаев возникает электродвижущая сила (термо-ЭДС), измерение которой позволяет определять разность температур спаев, а следовательно, температуру измерительного спая.
В таком термометре термометрическим телом является спай двух металлов, а термометрическим признаком - возникающая в цепи термо-ЭДС. Чувствительность термопар составляет от единиц до сотен мкВ/К, а диапазон измеряемых температур от нескольких десятков кельвин (температуры жидкого азота) до полутора тысяч градусов Цельсия. Для высоких температур применяются термопары из благородных металлов. Наибольшее применение нашли термопары на основе спаев следующих материалов: медь-константан, железо-константан, хромель-алюмель, платинородий - платина.
Рис. № 3 Схема термопары
Следует отметить, что термопара способна измерить только разность температур измерительного и свободного спаев. Свободный спай находится, как правило, при комнатной температуре. Поэтому для измерения температуры термопарой необходимо использовать дополнительный термометр для определения комнатной температуры или систему компенсации изменения температуры свободного спая.
В радиотехнике часто применяют понятие шумовой температуры, равной температуре, до которой должен быть нагрет резистор, согласованный с входным сопротивлением электронного устройства, чтобы мощность тепловых шумов этого устройства и резистора были равными в определенной полосе частот. Возможность введения такого понятия обусловлена пропорциональностью средней мощности шума (среднего квадрата шумового напряжения на электрическом сопротивлении) абсолютной температуре сопротивления. Это позволяет использовать шумовое напряжение в качестве термометрического признака для измерения температуры. Шумовые термометры используются для измерения низких температур (ниже нескольких кельвинов), а также в радиоастрономии для измерения радиационной (яркостной) температуры космических объектов
Бесконтактный метод измерения температуры
Бесконтактный способ основан на восприятии тепловой энергии, передаваемой через лучеиспускание и воспринимаемой на некотором расстоянии от исследуемого объема. Этот способ менее чувствителен, чем контактный. Измерения температуры в большой степени зависят от воспроизведения условий градуировки при эксплуатации, а в противном случае появляются значительные погрешности. Устройство, служащее для измерения температуры путем преобразования ее значений в сигнал или показание, называется термометром (ГОСТ 13417-76).
Thermopiles - это термоэлементы, включенные последовательно, которые используют известный Seebeck - эффект. Термоэлемент состоит из двух электропроводных материалов, которые расположены в виде проводящих дорожек и которые в одной точке (так называемой hot junction) контактируют друг с другом. Если за счет внешнего воздействия возникнет разница температур между точкой контакта (hot junction) и обеими открытыми концами (cold junction), то на обоих концах термоэлементов появится напряжение в несколько милливольт.
При бесконтактном способе измерения температуры повышение температуры точки «hot junction» вызывается за счет абсорбирования попадающего в эту точку инфракрасного излучения. Каждый объект излучает инфракрасный свет, причем энергия этого света повышается с повышением температуры объекта. Базируясь на этом эффекте Thermopile-модули измеряют излучаемую мощность и таким образом с высокой точностью определяют температуру объекта.
Люминесцентный метод измерения температуры
В основе люминесцентных методов измерения температуры лежит температурная зависимость интенсивности люминесцентного излучения некоторых люминофоров, которое находит применение в различных датчиках измерения температуры и термопокрытиях.
Современные волоконно-оптические датчики позволяют измерять многие характеристики лабораторных и промышленных объектов, в частности температуру. Не смотря на то, что их использование достаточно трудоемко, оно дает ряд преимуществ, использования подобных датчиков на практике: безындукционность (т.е. неподверженность влиянию электромагнитной индукции); малые размеры датчиков, эластичность, механическая прочность, высокая коррозийная стойкость и т.д.
1. Датчик на основе теплового излучения. В качестве устройств для измерения температуры могут быть использованы волоконно-оптические датчики на основе теплового излучения, сущность которых состоит в следующем. Изучаемое вещество при температуре большей 0 К вследствие тепловых колебаний атомов и молекул испускает тепловое излучение. Энергия излучения увеличивается по мере повышения температуры, а длина волны, на которой излучение максимально, уменьшается. Соответственно для определения температуры можно использовать формулу Планка для энергии теплового излучения черного тела на фиксированной длине волны или в диапазоне волн.
Основным преимуществом данного способа является возможность бесконтактного измерения высоких температур. В зависимости от диапазона измеряемых температур выбирают световые детекторы и оптические волокна. Область измерения температур для волоконно-оптических датчиков излучения находится в пределах от 400 до 2000 °С. При использовании оптических волокон, прозрачных для инфракрасных лучей с длиной волны 2 мкм и более, можно осуществлять измерение и более низких температур.
2. Датчик на основе поглощения света полупроводником. Известны также волоконно-оптические датчики, работа которых основана на оптических свойствах некоторых полупроводников. Используемый полупроводник имеет граничную длину волны спектра оптического поглощения. Для света с более короткой длиной волны, чем у проводника, поглощение усиливается, причем по мере роста температуры граничная длина волны отодвигается в сторону более длинных волн (около 3 нм/К). При подаче на полупроводниковый кристалл луч от источника света, имеющего спектр излучения в окрестности указанной границы спектра поглощения, интенсивность света, проходящего через светочувствительную часть датчика, с повышением температуры будет падать. По выходному сигналу детектора, указанным методом можно регистрировать температуру.
Используя данный метод можно мерить температуру в интервале от 30 до 300 °С с погрешностью ±0,5 °С.
3. Датчик на основе флуоресценции. Данный датчик устроен следующим образом. На торец оптического волокна светочувствительной части нанесено флуоресцентное вещество. Флуоресцентное излучение, возникающее под воздействием ультрафиолетовых лучей, проводимых оптическим волокном, принимается этим же волокном. Температурный сигнал выявляется путем вычисления отношения соответствующих значений интенсивности флуоресцентного излучения для сигнала с длиной волны, сильно зависящего от температуры к интенсивности сигнала с другой длиной волны, слабо зависящего от температуры.
Область измеряемых температур таким датчиком находится в пределах от -50 до 200 °С с погрешностью ±0,1 °С.
Использование волоконно-оптических датчиков, при всей своей привлекательности, позволяет производить измерение температуры только в локальной точке объекта, что несколько сужает область их применения.
Размещено на Allbest.ru
...Подобные документы
Разработка и совершенствование технологий измерения температуры с использованием люминесцентных, контактных и бесконтактных методов. Международная температурная шкала. Создание спиртовых, ртутных, манометрических и термоэлектрических термометров.
курсовая работа [476,6 K], добавлен 07.06.2014Основные шкалы измерения температуры. Максимальное и минимальное значение в условиях Земли. Температура среды обитания человека. Температурный фактор на территории Земли. Распределение температуры в различных областях тела в условиях холода и тепла.
доклад [1,0 M], добавлен 18.03.2014Средства измерения температуры. Характеристики термоэлектрических преобразователей. Принцип работы пирометров спектрального отношения. Приборы измерения избыточного и абсолютного давления. Виды жидкостных, деформационных и электрических манометров.
учебное пособие [1,3 M], добавлен 18.05.2014Измерение температуры с помощью мостовой схемы. Разработка функциональной схемы измерения температуры с применением термометра сопротивления. Реализация математической модели четырехпроводной схемы измерения температуры с использованием источника тока.
курсовая работа [1,4 M], добавлен 19.09.2019Температура - параметр, характеризующий тепловое состояние вещества. Температурные шкалы, приборы для измерения температуры и их основные виды. Термодинамический цикл поршневого двигателя внутреннего сгорания с подводом тепла при постоянном давления.
контрольная работа [124,1 K], добавлен 25.03.2012Методики, используемые при измерении температур пламени: контактные - с помощью термоэлектрического термометра, и бесконтактные - оптические. Установка для измерения. Перспективы применения бесконтактных оптических методов измерения температуры пламени.
курсовая работа [224,1 K], добавлен 24.03.2008Средства обеспечения единства измерений, исторические аспекты метрологии. Измерения механических величин. Определение вязкости, характеристика и внутреннее устройство приборов для ее измерения. Проведение контроля температуры и ее влияние на вязкость.
курсовая работа [465,3 K], добавлен 12.12.2010Основы измерения физических величин и степени их символов. Сущность процесса измерения, классификация его методов. Метрическая система мер. Эталоны и единицы физических величин. Структура измерительных приборов. Представительность измеряемой величины.
курсовая работа [199,1 K], добавлен 17.11.2010Понятие и источники теплового излучения, его закономерности. Классификация пирометрических методов и приборов измерения температур. Устройство и принцип работы пирометра типа ОППИР-09, методика проведения его поверки, возможные поломки и их ремонт.
курсовая работа [794,4 K], добавлен 02.12.2012Состояние системы мер и измерительной техники в различные исторические периоды. Измерение температуры, давления и расхода жидкости с применением различных методов и средств. Приборы для измерения состава, относительной влажности и свойств вещества.
курсовая работа [589,2 K], добавлен 11.01.2011Понятие о физической величине как одно из общих в физике и метрологии. Единицы измерения физических величин. Нижний и верхний пределы измерений. Возможности и методы измерения физических величин. Реактивный, тензорезистивный и терморезистивный методы.
контрольная работа [301,1 K], добавлен 18.11.2013Мостовой и косвенный методы для измерения сопротивления постоянного тока. Резонансный, мостовой и косвенный методы для измерения параметров катушки индуктивности. Решение задачи по измерению параметров конденсатора с использованием однородного моста.
контрольная работа [156,9 K], добавлен 04.10.2013Виды давления, классификация приборов для его измерения и особенности их назначения. Принцип действия мановакуумметров, характеристика их разновидностей. Многопредельные измерители и преобразователи давления. Датчики-реле давления, виды манометров.
презентация [1,8 M], добавлен 19.12.2012Контактный и пирометрический методы измерения теплового поля тонких полосковых проводников. Экспериментальное измерение температурного поля и коэффициента теплоотдачи полосковых проводников пирометрическим методом с помощью ИК-термографа SAT-S160.
курсовая работа [1,3 M], добавлен 22.09.2014Характеристика величины, характеризующей тепловое состояние тела или меры его "нагретости". Причина Броуновского движения. Прародитель современных термометров, их виды. Единицы измерения температуры, типы шкал. Эксперимент по изготовлению термоскопа.
презентация [297,1 K], добавлен 14.01.2014Согласование средства измерения с объектом измерения. Влияние наблюдателя. Методы сопряжения. Влияние окружающей среды и помехи. Совершенствование методики измерения. Использование методов компенсации. Изменение формы входного сигнала или его спектра.
презентация [10,7 M], добавлен 02.08.2012Понятие измерения в теплотехнике. Числовое значение измеряемой величины. Прямые и косвенные измерения, их методы и средства. Виды погрешностей измерений. Принцип действия стеклянных жидкостных термометров. Измерение уровня жидкостей, типы уровнемеров.
курс лекций [1,1 M], добавлен 18.04.2013Измерение поглощаемой мощности как наиболее распространенный вид измерения СВЧ мощности. Приемные преобразователи ваттметров проходящей мощности. Обзор основных методов для измерения импульсной мощности, характеристика их преимуществ и недостатков.
реферат [814,2 K], добавлен 10.12.2013Рассмотрение основных методов измерения электрической мощности и энергии в цепи однофазного синусоидального тока, в цепях повышенной и высокой частот. Описание конструкции ваттметров, однофазных счетчиков. Изучение особенностей современных приборов.
реферат [1,5 M], добавлен 08.01.2015Определение мощности лазерного излучения, подаваемого на образец. Вычисление размеров лазерного пучка на образце. Разработка системы измерения мощности излучения и длительности лазерного импульса, системы измерения температуры в зависимости от времени.
лабораторная работа [503,2 K], добавлен 11.07.2015