Использование генетических алгоритмов для оптимизации режимов электроэнергетических систем

Использование эволюционных принципов для поиска оптимального решения. Разработка математической модели, основанной на генетическом алгоритме. Разработка структуры хромосомы, в которой будет храниться решение. Оптимизация многопараметрических функций.

Рубрика Физика и энергетика
Вид реферат
Язык русский
Дата добавления 22.03.2018
Размер файла 69,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Использование генетических алгоритмов для оптимизации режимов электроэнергетических систем

Т.Ш. Гайибов, А.А. Собитов

Генетические алгоритмы - это очень популярные в настоящее время способы решения задач оптимизации. В их основе лежит использование эволюционных принципов для поиска оптимального решения. Уже сама идея выглядит довольно интригующей и любопытной, чтобы претворить её в жизнь, а многочисленные положительные результаты только разжигают интерес со стороны исследователей. Зачастую небольшое изменение одного из них может привести к неожиданному улучшению результата. Применение генетических алгоритмов полезно лишь в тех случаях, когда для данной задачи нет подходящего специального алгоритма решения.

Формально генетический алгоритм -- это алгоритм, который позволяет найти удовлетворительное решение к аналитически неразрешимым проблемам через последовательный подбор и комбинирование искомых параметров с использованием механизмов, напоминающих биологическую эволюцию [1].

Генетические алгоритмы применяются для решения следующих задач:

· Экстремальные задачи (нахождение точек минимума и минимума);

· Задачи о кратчайшем пути;

· Задачи компоновки;

· Составление расписаний;

· Аппроксимация функций;

· Отбор (фильтрация) входных данных;

· Настройка искусственной нейронной сети;

· Моделирование искусственной жизни

· Биоинформатика (свертывание белков и РНК);

· Игровые стратегии;

· Нелинейная фильтрация;

· Развивающиеся агенты/машины.

Генетические алгоритмы это стохастические эвристические оптимизационные методы, основная идея которых взята из теории эволюционного развития видов. Основным механизмом эволюции является естественный отбор, суть которого состоит в том, что более приспособленные особи имеют больше шансов на выживание и размножение и, следовательно, приносят больше потомства, чем менее приспособленные особи. При этом благодаря передаче генетической информации потомки наследуют от родителей основные их качества. Носителями генетической информации индивидуума выступают молекулы ДНК. При размножении животных происходит слияние двух родительских половых клеток. Их ДНК взаимодействуют, образуя ДНК потомка. Основной способ взаимодействия кроссинговер. При кроссинговере ДНК предков делятся на две части, а затем обмениваются своими половинками. При наследовании возможны мутации из-за радиоактивности или других влияний, в результате которых могут измениться некоторые гены в половых клетках одного из родителей. Измененные гены передаются потомку и придают ему новые свойства. Если эти новые свойства полезны, они, скорее всего, сохранятся в данном виде и при этом произойдёт скачкообразное повышение приспособленности вида.

Первым шагом при разработке математической модели, основанной на генетическом алгоритме, является разработка структуры хромосомы, в которой будет храниться решение. Выбранная структура должна учитывать все особенности и ограничения, предъявляемые к искомому решению, а также то, что от её выбора напрямую зависят реализации алгоритмов кроссинговера и мутации. В конечном счёте, выбор хромосомы влияет не только на скорость, но и на сходимость алгоритма вообще.

Структура хромосомы удобна тем, что уже на этапе задания начальных данных можно исключить заведомо неудачные решения, заблокировав соответствующие ячейки.

На следующем шаге алгоритма создаётся начальная популяция, размер которой зависит от размерности задачи и составляет обычно несколько сотен решений.

Для организации оптимизирующего процесса необходимо создать направляющую силу развития популяции. В качестве такой силы выступает требование минимизации целевой функции или, в терминах генетических алгоритмов, фитнес функции. Обычно в качестве её используется аддитивный показатель оптимальности, основанный на штрафах, устанавливаемых каждому решению за какой либо неудобный. Преимуществом такого выбора является возможность настройки алгоритма под конкретную задачу путём варьирования коэффициентов и, тем самым, изменения приоритетов при поиске оптимального решения.

Таким образом, поместив начальную популяцию в созданную нами искусственную среду и реализовав процессы селекции, кроссинговера и мутации, мы получим итерационный алгоритм поиска оптимального решения, на каждой итерации которого выполняются следующие действия:

1. Каждая особь популяции оценивается с помощью фитнес функции.

2. Лучшие решения копируются в новую популяцию без изменения. Такой принцип (принцип элитизма) предотвращает потери лучших решений и обеспечивает повышенную сходимость алгоритма.

3. На основе пропорционального отбора из текущей популяции выбираются два решения, которые подвергаются рекомбинации. Для этого хромосомы родителей обмениваются соответствующими участками.

4. Если новая популяция сформирована, то старая удаляется, после чего переходим к этапу 1.В противном случае переходим к этапу 3.

На рисунке изображена схема работы любого генетического алгоритма:

Рассмотренный алгоритм является не только устойчивым к локальным минимумам, но и благодаря внутреннему параллелизму, выраженному в работе не с отдельными решениями, а с целыми классами решений, обеспечивает относительно быстрый поиск оптимального решения. Методы исследования в своей основе используют итерационную технику улучшения результатов. В течение одной итерации они ищут решение, лучшее в окрестностях данного. Если такое решение найдено, оно становится текущим и начинается новая итерация. Это продолжается до тех пор, пока прирост целевой функции не уменьшится практически до нуля или не выполнится заданное количество итераций. Очевидно, что такие методы ориентированы на поиск только локальных оптимумов, причём положение найденного оптимума зависит от стартовой точки. Глобальный же оптимум может быть найден только случайно. Для повышения вероятности нахождения глобального оптимума используется множественный эксперимент с различными начальными точками, что существенно увеличивает время поиска.

эволюционный генетический алгоритм хромосома

Заключение

В связи с этим представляет интерес разработка алгоритмов, сохраняющих преимущества описанных методов и свободных от указанного недостатка. К таким алгоритмам относятся генетические алгоритмы. Генетические алгоритмы являются универсальным методом оптимизации многопараметрических функций, что позволяет решать широкий спектр задач. Генетические алгоритмы имеют множество модификаций и сильно зависят от параметров. Зачастую небольшое изменение одного из них может привести к неожиданному улучшению результата. Следует помнить, что применение ГА полезно лишь в тех случаях, когда для данной задачи нет подходящего специального алгоритма решения.

Литература

1. Емельянов В. В., Курейчик В. В., Курейчик В. М. Теория и практика эволюционного моделирования. -- М: Физматлит, 2003. -- С. 432.

2. Гладков Л. А., Курейчик В. В., Курейчик В. М. Генетические алгоритмы: Учебное пособие. -- 2-е изд. -- М: Физматлит, 2006. -- С. 320.

3. Darrel Whitley "A Genetic Algorithm Tutorial", 1993.

Размещено на Allbest.ur

...

Подобные документы

  • Эффективность создания и объединения электроэнергетических систем. Эффект масштаба. Основные эффекты, достигаемые при объединении электроэнергетических систем. Межгосударственные электрические связи и объединения. Разновидности межгосударственных связей.

    презентация [3,3 M], добавлен 26.10.2013

  • Разработка математической модели сети, основанной на определении ее параметров. Анализ исходного рабочего режима сети, экономичного режима работы до и после подключения нового присоединения. Исследование переходных процессов в линии нового присоединения.

    курсовая работа [856,2 K], добавлен 23.06.2014

  • Разработка математических методов и построенных на их основе алгоритмов синтеза законов управления. Обратные задачи динамики в теории автоматического управления. Применение спектрального метода для решения обратных задач динамики, характеристики функций.

    курсовая работа [1,4 M], добавлен 14.12.2009

  • Построение рациональных эксплуатационных режимов асинхронного двигателя, выбор системы управления. Исследование двухмассового динамического стенда на базе математической модели. Техническая разработка лабораторного стенда на базе асинхронного двигателя.

    магистерская работа [2,0 M], добавлен 20.10.2015

  • Градиентный метод Флетчера-Ривса: стратегия поиска, алгоритм, пример. Постановка задачи оптимизации. Задача на минимум функции скорости и ускорения. Проблемы в составлении штрафной функции, необходимой для избавления ограничений и выборе параметра.

    курсовая работа [339,9 K], добавлен 30.06.2011

  • Характеристика основных методов решения задач нелинейного программирования. Особенности оптимизации текущего режима электропотребления по реактивной мощности. Расчет сети, а также анализ оптимальных режимов электропотребления для ОАО "ММК им. Ильича".

    магистерская работа [1,2 M], добавлен 03.09.2010

  • Задачи и критерии оптимизации режимов энергосистем. Математическое моделирование. Оптимизации режимов электрической сети. Контроль напряжений узлов и перетоков мощности в линиях электропередачи. Планирование режимов работы электрических станций.

    реферат [198,5 K], добавлен 08.01.2017

  • Обоснование реконструкции насосных установок. Определение мощности электродвигателей, выбор системы регулирования электропривода центробежного насоса, расчет характеристик. Экономическая эффективность установки частотных тиристорных преобразователей.

    дипломная работа [1,7 M], добавлен 03.07.2011

  • Разработка на основе концепций обратных задач динамики математических методов и построенных на их основе алгоритмов синтеза законов управления; определение параметров настройки САУ. Применение спектрального метода для решения обратных задач динамики.

    курсовая работа [1,4 M], добавлен 14.01.2010

  • Описание процесса распространения электромагнитной волны в волноводе дифференциальным уравнением. Исследование сходимости ряда аналитического решения. Вычисление функций Бесселя. Сравнение теоретической и практической оценок количества членов ряда Фурье.

    курсовая работа [870,1 K], добавлен 27.02.2014

  • Общие положения об электроприводе. Современный автоматизированный электропривод и тенденции его развития. Двигатели постоянного тока. Построение структурной схемы АЭП, синтез математической модели. Сравнительный анализ разработанных систем управления.

    курсовая работа [681,0 K], добавлен 08.07.2012

  • Основная особенность электроэнергетики - непрерывность и практическое совпадение во времени процессов производства, распределения и потребления. Основные элементы электроэнергетической системы. Характеристика основных принципов энергетической логистики.

    реферат [19,9 K], добавлен 06.01.2011

  • Проектирование электрических систем. Генерация и потребление активной и реактивной мощностей в сети. Выбор схемы, номинального напряжения и основного электрооборудования линий и подстанций. Расчет основных режимов работы сети и определение их параметров.

    курсовая работа [1,7 M], добавлен 15.12.2014

  • Разработка жестко-последовательных программ (ЖПП) поиска места отказа для различных объектов электроснабжения. Разработка ЖПП "по функциональной схеме". Разработка гибко-последовательных программ поиска места отказа для объектов электроснабжения.

    курсовая работа [1,3 M], добавлен 12.04.2015

  • Разработка математической модели, описывающей все процессы, происходящие в системе управления двигателем переменного тока с последовательным возбуждением. Получение передаточных функций объекта. Временные и частотные характеристики, коррекция системы.

    курсовая работа [680,8 K], добавлен 14.06.2014

  • Получение оптимальной сети по критерию минимальных издержек на передачу активной мощности, исходя из матрицы удельных затрат. Расчет установившегося режима по полученной схеме. Суммарное распределение нагрузки системы методом приведенного градиента.

    контрольная работа [30,6 K], добавлен 26.08.2009

  • Принцип действия магнитноразрядного измерителя плотности, механизм возникновения самостоятельного разряда. Разработка модернизированной математической модели моделирования аэродинамического взаимодействия набегающего потока с заданными параметрами.

    дипломная работа [798,2 K], добавлен 03.02.2012

  • Разработка структурно-функциональной схемы объекта диагностирования - ручного пылесоса "Спутник ПР-280". Принцип работы устройства. Функциональные модели наиболее встречающихся неисправностей, разработка алгоритма их поиска методом половинного разбиения.

    реферат [1,1 M], добавлен 18.05.2015

  • Представление законов Кирхгофа в матричной форме и в виде системы уравнений. Переход к системе алгебраических уравнений относительно неизвестных токов в ветвях. Расчет значений узловых напряжений методом Гаусса. Устойчивость системы по критерию Гурвица.

    курсовая работа [190,4 K], добавлен 03.11.2014

  • Построение профилей суточных графиков электрических нагрузок потребителей по активной мощности. Номинальное напряжение в узле подключения нагрузки. Статическая характеристика реактивной мощности и параметры схемы замещения асинхронного электродвигателя.

    лабораторная работа [182,5 K], добавлен 16.12.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.