Исследование потерь и улучшение эксплуатационных режимов трехфазного асинхронного двигателя

Определение тока и потерь асинхронных двигателей. Мощность и коэффициент полезного действия электрических машин. Электродвигатели переменного тока с короткозамкнутым ротором, их характеристики и отличительные особенности. Нагревание электрических машин.

Рубрика Физика и энергетика
Вид диссертация
Язык русский
Дата добавления 23.05.2018
Размер файла 1,7 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Магнитные потери ?РМ (потери в стали) возникают в сердечниках якоря и полюсов (главным образом, в полюсных наконечниках) в результате перемагничивания стали этих сердечников и образования в них вихревых токов. Перемагничивание стали сердечника якоря происходит потому, что при вращении якоря каждая его точка попеременно проходит то под северным, то под южным полюсам. Перемагничивание стали полюсных наконечников вызывается в результате изменения магнитной индукции в воздушном зазоре машины в пределах ±В при вращении зубчатого якоря (рис.). При этом в прилегающих к зазору ферромагнитных элементах магнитной системы (полюсных наконечниках и зубцах якоря) индуцируются вихревые токи, изменяющиеся с высокой частотой (1000 Гц и более) и сосредоточенные, главным образом, на их поверхности. Поэтому потери мощности, созданные этими токами, называют поверхностными.

Рис. 6. Энергетические диаграммы машины постоянного тока при работе ее в режиме генератора (а) и электродвигателя (б)

В машинах, имеющих зубцы на статоре и роторе (машины постоянного тока с компенсационной обмоткой, асинхронные и синхронные), при вращении ротора создаются заметные пульсации индукции в зубцах, что также приводит к образованию вихревых токов и соответствующим потерям мощности. Эти потери называют пульсационными. Магнитные потери возникают также и в стальных бандажах, укрепляющих обмотку якоря, которые при вращении якоря пересекают силовые линии магнитного поля машины. Магнитные потери вызывают нагрев сердечника якоря и полюсов, они почти не зависят от нагрузки машины, но резко возрастают с увеличением частоты перемагничивания, т. е. частоты вращения якоря.

Механические потери ?PМХ возникают в результате трения: в подшипниках, щеток по коллектору, деталей машины о воздух в процессе вентиляции. Эти потери вызывают нагрев подшипников, коллектора и щеток, с увеличением нагрузки они возрастают незначительно. При повышении частоты вращения якоря электрической машины механические потери резко возрастают.

Добавочные потери ?Pдоб обусловливаются различными вторичными явлениями, имеющими место при работе электрических машин под нагрузкой: возникновением вихревых токов в проводниках обмотки якоря, неравномерным распределением тока по сечению проводников и индукции в воздушном зазоре машины, воздействием коммутационных токов (в машинах постоянного тока) и переменных потоков рассеяния (в машинах переменного тока), которые индуцируют вихревые токи в крепежных деталях, и др.

При работе электрической машины под нагрузкой ее проводники, лежащие в пазах ротора и статора, пронизываются продольным и поперечным пазовыми потоками (рис.). При вращении якоря эти потоки индуцируют в проводниках вихревые токи, так как якорь, непрерывно перемещаясь, проходит под различными полюсами, вследствие чего все время изменяются и пронизывающие его продольный и поперечный пазовые потоки. То же происходит и при изменении тока в проводниках, т. е. нагрузки машины.

Рис.7. Распределение индукции в воздушном зазоре машины с зубчатым якорем

Рис.8. Схема возникновения продольных (а) и поперечных (б) потоков

Рис.9. Вытеснение тока в верхнюю часть проводников обмотки якоря (а) и распределение плотности тока ?i по их высоте h (б)

При вращении якоря эти потоки индуцируют в проводниках вихревые токи, так как якорь, непрерывно перемещаясь, проходит под различными полюсами, вследствие чего все время изменяются и пронизывающие его продольный и поперечный пазовые потоки. То же происходит и при изменении тока в проводниках, т. е. нагрузки машины.

Вихревые токи не только увеличивают электрические потери в проводниках обмоток, но и приводят к неравномерному распределению тока по сечению проводников, вызывая вытеснение тока в более удаленные от дна паза слои. Это явление возникает из-за действия индуцируемых поперечными пазовыми потоками э. д. с. самоиндукции eL (рис. 148, а), которые стремятся противодействовать прохождению по проводникам тока нагрузки iя. В нижних слоях каждого проводника индуцируются большие э. д. с. eL, чем в верхних, так как их охватывает большое количество силовых магнитных линий (от нижней части паза до рассматриваемого слоя). Поэтому ток, проходящий по проводникам, несколько вытесняется в верхнюю часть и плотность тока ?i, этой части увеличивается (рис. 148,б). В этом отношении условия прохождения постоянного тока по проводникам обмотки якоря аналогичны условиям прохождения переменного тока, который, как это будет подробно рассмотрено ниже, всегда стремится проходить по наружным слоям проводника. Неравномерное распределение тока по поперечному сечению проводника создает добавочные потери мощности, так как при этом как бы уменьшается площадь поперечного сечения и увеличивается электрическое сопротивление проводников.

Для уменьшения добавочных потерь, связанных с этим явлением, в тяговых двигателях стремятся уменьшить высоту проводников обмотки якоря. Для этого проводники разделяют по высоте паза на две-три параллельно соединенные части (рис. 149, а) или располагают их в пазах плашмя (рис. 149,б). При разделении проводников на несколько частей каждую из них изолируют отдельно, для того чтобы вихревые токи замыкались только в пределах одной части.

Коэффициент полезного действия. Соотношение между потребляемой и отдаваемой машиной мощностями характеризуется коэффициентом полезного действия: для генератора

µ = Pэл/Pмх = Pэл/(Pэл+?P)

для двигателя

µ = Pмх/Pэл = Pмх/(Pмх+?P)

где ?Р -- суммарные потери мощности.

К. п. д. стационарных машин постоянного тока колеблется в зависимости от мощности машины в пределах от 0,75 до 0,95 (машины большой мощности имеют более высокий к. п. д.). К. п. д. тяговых двигателей составляет 0,86--0,92, к. п. д. тепловозных генераторов -- 0,92--0,94.

При изменении нагрузки отдельные виды потерь изменяются по-разному. Электрические потери ?Рэл в обмотках, по которым проходит ток нагрузки Iя (обмотках якоря, добавочных полюсов и компенсационной), изменяются пропорционально Iя, электрические потери в щеточном контакте ?Рщ.эл -- пропорционально Iя, а магнитные ?Рм и механические ?Рмх остаются практически постоянными -- такими же, как и при холостом ходе, если напряжение машины U и частота ее вращения п не изменяются.

По этому принципу все виды потерь можно разделить на две группы: постоянные потери ?Pпост = ?Рм +?Рмх и переменные ?Рпер =?Рэл + ?Рщ.эл, которые можно считать пропорциональными квадрату тока нагрузки Iя2 (обычно значение потерь ?Рщ.эл мало по сравнению с ?Рэл) .

Формула для определения к. п. д. принимает вид

µ = P2/P1 = P2 / (P2+?Рпер+?Pпост)

где Р2 -- полезная мощность, отдаваемая машиной (РЭЛ в генераторах и Рмх-- электродвигателях) ; P1 -- потребляемая машиной мощность.

При холостом ходе полезная мощность Р2 = 0, поэтому к. п. д. тоже равен нулю. При малых нагрузках магнитные и механические потери, оставаясь постоянными, имеют относительно большое значение по сравнению с полезной мощностью и к. п. д. незначителен. В дальнейшем с увеличением нагрузки полезная мощность Р2 и к. п. д. увеличиваются и при некотором значении Р2кР к. п. д. достигает максимального значения. Этот режим соответствует равенству ?Pпост = ?Рпер (точка А на рис.). Обычно максимум к. п. д. имеет место при 75--85 % номинальной мощности. При дальнейшем возрастании нагрузки к. п. д. начинает падать, так как рост электрических потерь, пропорциональный квадрату тока нагрузки I2я, начинает превышать прирост полезной мощности, пропорциональный только первой степени от этого тока.

Рис.10. Вертикальное (а) и горизонтальное (б) размещение проводников обмотки якоря в пазах

Рис.11. Зависимости к.п.д. и потерь мощности от полезной мощности

В зависимости от назначения локомотива целесообразно, чтобы максимальное к. п. д. электродвигателей было при различных нагрузках. Это обеспечивают при проектировании благодаря перераспределению отдельных видов потерь мощности. Например, для тяговых двигателей электропоездов, работающих в условиях частых пусков с большими токами, выгоднее, чтобы максимальный к. п. д. располагался в зоне больших нагрузок, что достигают путем снижения электрических потерь. Для двигателей электровозов и тепловозов, работающих преимущественно при токах, меньших номинального, стремятся, чтобы максимальный к. п. д. находился в зоне средних токов. Добиться этого можно уменьшением магнитных и механических потерь.

Нагревание электрических машин. Нагрузочная способность электрических машин в большинстве случаев определяется условиями нагревания, так как повышение температуры является главной причиной, ограничивающей мощность машины при длительных нагрузках. С увеличением нагрузки возрастают потери энергии в машине, увеличивается количество выделяющегося тепла и при чрезмерной нагрузке температура отдельных ее частей может превысить допустимые пределы.

Процессы нагревания и охлаждения в электрических машинах всех типов подчиняются общим законам, так как любую электрическую машину можно в первом приближении рассматривать как некоторое однородное тело. Тепло, выделяющееся в электрической машине, частично затрачивается на повышение температуры машины, а частично отдается в окружающую среду. Чем больше превышение температуры машины 8 над температурой окружающей среды, тем энергичнее идет теплоотдача, поэтому при некотором определенном превышении температуры устанавливается тепловое равновесие; в машине выделяется столько тепла, сколько она отдает в окружающую среду.

Превышение температуры, при котором наступает тепловое равновесие, называется установившимся превышением температуры t. После достижения теплового равновесия машина может работать при данной нагрузке сколь угодно долгое время без дальнейшего повышения температуры.

При увеличении нагрузки машины возрастают потери мощности ?Р и количество выделяемого тепла, а также повышается значение t. Следовательно, чем больше мощность, отдаваемая машиной, тем выше ее температура. При снятии нагрузки температура машины постепенно снижается.

Для более наглядного представления о характере изменения превышения температуры t во времени по опытным данным строят кривые нагревания и охлаждения электрических машин.

В процессе нагревания и охлаждения превышение температуры машины t над температурой окружающей среды изменяется. При нагревании (например, при увеличении нагрузки) величина P возрастает (кривая 1 на рис. 151, а) от некоторого начального значения P0, постепенно приближаясь к установившемуся значению ??1. При охлаждении (например, при уменьшении нагрузки) величина P уменьшается (кривая 2) до другого установившегося значения ??2.

Температура, при которой может нoрмально работать электрическая машина, строго ограничена теплостойкостью ее деталей. Особенно чувствительны к повышению температуры изоляционные материалы, применяемые в электрических машинах, в частности, изоляция проводов их обмоток. Поэтому тепловое равновесие в машине должно устанавливаться при такой температуре, которая не вызывает разрушение изоляции, однако постепенный износ изоляции (ее старение) неизбежен. Чем выше допустимая предельная температура отдельных частей, тем меньше срок службы электрической машины вследствие старения ее изоляции и тем менее надежна она в эксплуатации. С другой стороны, чем выше эта температура, тем больше можно нагрузить данную машину. Государственными стандартами на электрические машины установлены предельные значения температуры отдельных их деталей. Эти температуры выбраны на основании опытов. Их соблюдение позволяет обеспечить длительную (примерно 15--20 лет) и надежную работу машины при хорошем использовании материалов.

Нормируются превышения температуры различных частей электрической машины по отношению к температуре окружающей среды. Предельные превышения температуры определяются теплостойкостью изоляции, применяемой в электрической машине (классом изоляции).

Мощности продолжительного и часового режимов. В паспорте стационарных электрических машин обычно указывают их номинальную мощность продолжительного режима PN, т. е. такую мощность, которую машина может отдавать неограниченно долго, не перегреваясь ни в одной своей части свыше значений ?max, допускаемых нормами. При работе машины в режиме номинальной мощности P1 = ?max (рис.) тепловое равновесие практически достигается через 3--6 ч.

Рис.12. Кривые нагревания и охлаждения электрической машины

Номинальная мощность PN зависит от теплостойкости применяемой изоляции и интенсивности охлаждения. Чем выше интенсивность охлаждения, тем большую мощность можно получить от данной машины без недопустимого превышения ее температуры. Поэтому в большей части электрических машин применяют принудительное охлаждение внутренних деталей воздухом, прогоняемым посторонним вентилятором (при независимой вентиляции) или вентилятором, насаженным на вал самой машины (при самовентиляции).

Таким образом, основными мероприятиями, обеспечивающими увеличение мощности, которую можно получить от электрических машин, является применение более теплостойкой изоляции и усиление интенсивности их охлаждения. Эти меры широко применяют в электромашиностроении, благодаря их использованию удалось в течение последних 50 лет уменьшить примерно в 2--4 раза массу и размеры электрических машин одинаковой мощности.

При работе машины с мощностями Р2 и Р3, большими, чем PN (с перегрузкой), величины P2 и P3 будут больше максимально допустимого значения ?max (см. рис.). Следовательно, длительная работа машины при таких мощностях недопустима и время ее работы должно быть ограничено соответственно значениями t2 и t3. При этом перегрузка должна быть снята прежде, чем температура машины достигнет предельного значения. Чем больше перегрузка, тем быстрее возрастает температура и тем скорее она достигает предельного значения. Поэтому небольшие перегрузки электрические машины могут выдерживать сравнительно длительное время, большие же перегрузки должны быть кратковременными.

При работе тяговых двигателей режим их нагрузки резко меняется в зависимости от профиля пути и массы поезда; эти условия работы тяговых двигателей не позволяют характеризовать их работоспособность одним значением номинальной мощности PN. Поэтому наряду с номинальной длительной мощностью для характеристики тяговых двигателей используют также понятия часовой и максимальной мощностей. Часовой мощностью Рч (мощностью часового режима) называется мощность, при которой машина может работать в течение 1 ч с нормально действующей вентиляцией от холодного состояния, не перегреваясь свыше предельной температуры. Эта мощность, так же как и ?max, ограничивается условиями нагревания машины, она позволяет судить о временной перегрузочной способности двигателя. Токи, соответствующие номинальным мощностям Pm и Рч, называются продолжительным и часовым токами тягового двигателя. В паспортах тяговых двигателей указывают обычно их часовую мощность.

Наибольшей мощностью тягового двигателя называется мощность, которую он может кратковременно отдавать (в течение 1 мин) без недопустимого искрения под щетками и возникновения кругового огня; следовательно, она ограничивается условиями коммутации машины. Отношение максимальной мощности к часовой называют коэффициентом перегрузки, или перегрузочной способностью машины. По стандарту на тяговые двигатели коэффициент перегрузки их должен быть не менее двух. Отношение Pm/Р1 характеризует интенсивность вентиляции двигателя и называется коэффициентом вентиляции. У современных тяговых машин с независимой вентиляцией этот коэффициент составляет 0,8--0,9.

В эксплуатации работа тяговых двигателей с часовой мощностью может иметь место при движении поезда на подъемах. На руководящих подъемах, движение по которым продолжается менее получаса, реализуется мощность несколько большая, чем часовая. При движении на наибольших незатяжных подъемах мощность двигателей может превышать часовую на 10--15 %. При пуске электровозов и тепловозов токи тяговых двигателей могут превышать часовой ток на 60--80 %.

ВЫВОДЫ

Наличие зубцов на статоре определяет возникновение поверхностных потерь в роторе, и, наоборот, зубцы ротора вызывают поверхностные потери на статоре. Поверхностные потери возникают во всех машинах, имеющих зубчатую поверхность на одной или на двух сторонах воздушного зазора.

Список использованных литератур

1. И.А.Каримов. Наша главная задача - дальнейшее развитие страны и повышение благосостояния народа /И.А.Каримов.- Т.: «Узбекистан», 2010. 2.Сандлер А.С; Сарбатов Р.С. Автоматическое частотное управление асинхронными двигателями. М. «Энергия»1974.

3.Роддатис К.Ф. Котельные установки. Учеб. пособие для студентов вузов. М. «Энергия».1977.

4.С.В.Усов; В.В.Кантан; Е.Н.Кизеветтер; Б.Н.Михалев; А.К.Черновец. Электрическая часть электростанции. Под редакции С.В. Усова. Учебник для вузов. Л. «Энергия» 1977.

5.И.П.Копылов; Б.К. Клокова. Справочник по электрическим машинам. Том 1- М. «Энергоатомиздат»1988.

6. Башарин А.В; Новиков В.А; Соколовский Г.Г; Управление электроприводами: Учебное пособие для вузов. Л. «Энергоиздат» 1982.

7. А.Н.Барсуков; С.С.Бодрухина; Ф.К.Бойко; И.А. Будзко; О.А. Бушуева; С.И. Вершинина; М.В.Кудрук; Н.Д. Рыкова; В.Г.Сальников. Справочник по электроснабжению и электрооборудованию. Под общ.ред.. А.А. Федорова.- М. «Энергоатомиздат». 1987.

8. А.М. Бакластов; Б.Г. Борисов; В.М. Бродянский; Э.П.Волков; Д.Б.Вольфберг; В.В.Галактионов; В.А. Горбенко; А.К.Городов; В.А. Григорьев. Промышленная теплоэнергетика и теплотехника: Справочник. Под общ. ред. В.А. Григорьева, В.М. Зорина. М. «Энергоатомиздат». 1991.

9.Безпалов В.Я. Котеленец Н.Ф. Электрические машины. 2006.

10.ВольдекА.И; Попов В.В. Электрические машины. Введение в электромеханику. Учебник для вузов. 2008

11.Ф.М.Фролев.Эксплуатация водяных систем теплоснабжения. 1990.

Размещено на Allbest.ur

...

Подобные документы

  • Разборка машин средней мощности. Ремонт статорных обмоток машин переменного тока. Обмотки многоскоростных асинхронных двигателей с короткозамкнутым ротором. Ремонт якорных и роторных обмоток. Ремонт обмоток возбуждения. Сушка и пропитка обмоток.

    учебное пособие [3,4 M], добавлен 30.03.2012

  • Принцип действия трехфазного асинхронного двигателя с короткозамкнутым ротором. Конструкция асинхронного двигателя с фазным ротором. Снижение тока холостого хода. Магнитопровод и обмотки. Направление электромагнитных сил. Генераторный режим работы.

    презентация [1,5 M], добавлен 09.11.2013

  • Исследование способов регулирования напряжения в электрических цепях переменного и трехфазного тока с последовательным и звездообразным соединением приемников. Испытание однофазного трансформатора и трехфазного асинхронного двигателя с замкнутым ротором.

    лабораторная работа [831,0 K], добавлен 27.12.2010

  • Особенность использования асинхронных машин в качестве двигателей. Сбор сердечников статора и ротора из отдельных листов электротехнической стали. Прохождение трехфазного переменного тока по обмоткам статора. Принцип действия частотного преобразователя.

    презентация [784,7 K], добавлен 18.08.2019

  • Паспортные данные устройства трехфазного асинхронного электродвигателя с короткозамкнутым ротором. Определение рабочих характеристик двигателя: мощность, потребляемая двигателем; мощность генератора; скольжение; КПД и коэффициент мощности двигателя.

    лабораторная работа [66,3 K], добавлен 22.11.2010

  • Устройство и принцип действия трехфазного асинхронного двигателя с короткозамкнутым ротором. Рабочие характеристики и свойства двигателя, его применение для преобразования электрической энергии трехфазного переменного тока в механическую энергию.

    лабораторная работа [117,9 K], добавлен 22.02.2013

  • Сравнение характеристик электрических машин различных типов. Понятие постоянных и переменных потерь энергии. Способы измерения частоты вращения асинхронного двигателя. Определение критического момента и номинальной мощности электрической машины.

    презентация [103,7 K], добавлен 21.10.2013

  • Расчет параметров обмотки статора и ротора асинхронного двигателя с короткозамкнутым ротором. Расчет механической характеристики асинхронного двигателя в двигательном режиме по приближенной формуле М. Клосса и в режиме динамического торможения.

    курсовая работа [827,2 K], добавлен 23.11.2010

  • Перспектива совершенствования технологии проектирования электрических машин. Выбор главных размеров. Расчет зубцовой зоны и обмотки статора, магнитной цепи, параметров рабочих режимов, потерь, рабочих характеристик. Работа двигателя при отключениях.

    курсовая работа [1,7 M], добавлен 17.08.2013

  • Определение главных размеров электродвигателя. Расчёт обмотки, паза и ярма статора. Параметры двигателя для рабочего режима. Расчёт магнитной цепи злектродвигателя, постоянных потерь мощности. Расчёт начального пускового тока и максимального момента.

    курсовая работа [339,5 K], добавлен 27.06.2016

  • Общие понятия и определение электрических машин. Основные типы и классификация электрических машин. Общая характеристика синхронного электрического двигателя и его назначение. Особенности испытаний синхронных двигателей. Ремонт синхронных двигателей.

    дипломная работа [602,2 K], добавлен 03.12.2008

  • Сущность z1, w1 и площади поперечного сечения провода обмотки статора. Особенности расчета ротора, магнитной цепи и зубцовой зоны. Расчёт пусковых характеристик асинхронного двигателя с короткозамкнутым ротором с учётом влияния эффекта вытеснения тока.

    курсовая работа [676,7 K], добавлен 04.12.2011

  • Основные особенности лабораторной установки для испытания асинхронного двигателя с короткозамкнутым ротором в трехфазном, однофазном и конденсаторном режимах. Общая характеристика принципов действия однофазного и конденсаторного асинхронных двигателей.

    лабораторная работа [381,6 K], добавлен 18.04.2013

  • Составление развернутой схемы неперекрещивающейся простой петлевой обмотки, нахождение полюсов и щеток. Определение значения тока обмотки якоря. Порядок вычисления коэффициента полезного действия генератора, вращающий момент и сумму потерь двигателя.

    контрольная работа [370,0 K], добавлен 10.06.2011

  • Расчет электрических цепей переменного тока и нелинейных электрических цепей переменного тока. Решение однофазных и трехфазных линейных цепей переменного тока. Исследование переходных процессов в электрических цепях. Способы энерго- и материалосбережения.

    курсовая работа [510,7 K], добавлен 13.01.2016

  • Расчет рабочих характеристик асинхронного двигателя с короткозамкнутым ротором. Определение числа пазов статора, витков в фазе обмотки сечения провода обмотки статора. Расчёт размеров зубцовой зоны статора и воздушного зазора. Расчёты основных потерь.

    курсовая работа [1,1 M], добавлен 10.01.2011

  • Анализ основных положений теории электрических цепей, основ промышленной электроники и электрических измерений. Описание устройства и рабочих свойств трансформаторов, электрических машин постоянного и переменного тока. Электрическая энергия и мощность.

    курс лекций [1,5 M], добавлен 12.11.2010

  • Однофазные цепи синусоидального тока. Двигатели постоянного тока параллельного возбуждения. Расчет линейной цепи постоянного тока методом двух законов Кирхгофа. Расчет характеристик асинхронного трехфазного двигателя с короткозамкнутым ротором.

    методичка [1,4 M], добавлен 03.10.2012

  • Ремонт трехфазного асинхронного двигателя с короткозамкнутым ротором. Основные неисправности асинхронного двигателя с фазным ротором. Объем и нормы испытаний электродвигателя. Охрана труда при выполнении работ, связанных с ремонтом электродвигателя.

    курсовая работа [1,7 M], добавлен 28.01.2011

  • Данные двигателя постоянного тока серии 4А100L4УЗ. Выбор главных размеров асинхронного двигателя с короткозамкнутым ротором. Расчет зубцовой зоны и обмотки статора, конфигурация его пазов. Выбор воздушного зазора. Расчет ротора и магнитной цепи.

    курсовая работа [4,8 M], добавлен 06.09.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.