Устройство для автономного электроснабжения на основе элементов Пельтье при реализации эффекта Зеебека
Проект устройства для автономного электроснабжения жилого здания общей потребностью 2 кВт/сут. Схематическое представление эффекта Зеебека на примере спая термоэлектрических элементов n- и p-типа. Принцип работы термоэлектрического генераторного модуля.
Рубрика | Физика и энергетика |
Вид | статья |
Язык | русский |
Дата добавления | 20.07.2018 |
Размер файла | 3,3 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru//
Размещено на http://www.allbest.ru//
Ивановская пожарно-спасательная академия ГПС МЧС России
Устройство для автономного электроснабжения на основе элементов Пельтье при реализации эффекта Зеебека
Кропотова Наталья Анатольевна
кандидат наук, преподаватель
В статье приводится решение создания устройства для автономного электроснабжения жилого здания, общей потребностью 2 кВт/сут. Устройство основано на работе целого ряда моделей Пельтье, но особенность данного устройства заключается в реализации эффекта Зеебека.
Развитие современной техники и технологий неразрывно связано с поиском новых источников энергии, в первую очередь - электрической. Основное требование - увеличить объем ее выработки, но в последнее время все большее внимание привлекает энергия, которая должна вырабатываться экологически чистым путем, должна быть возобновляемая и никак не связана с углеродом. Сегодня усилия многих ученых направлены на развитие «зеленой» энергетики. Не стало исключением и явление, открытое в 1821 году Т.И. Зеебеком (Th. J. Seebeck) и названное позже «Эффектом Зеебека». Эффект Зеебека, открытый в начале XIX века, актуален и в настоящее время [1]. Возможности его применения неограничены. Множество лабораторий и исследовательских центров занимаются разработкой способов применения эффекта Пельтье (обратный эффекту Зеебека) и очень малая часть занимается исследованием эффектов Зеебека, Пельтье и Томсона, практических же приборов и устройств автономного электроснабжения на основе элементов Зеебека нет.
Элемент Пельтье - это термоэлектрический преобразователь, принцип действия которого базируется на эффекте Пельтье -- возникновении разности температур при протекании электрического тока. Эффект, обратный эффекту Пельтье, называется эффектом Зеебека, который нам показался более интересным в практическом решении и создании автономного устройства электроснабжения.
Поскольку в основе термоэлектрической генерации лежит эффект Зеебека - термоэлектрический эффект, заключающийся в возникновении термоЭДС при нагреве контакта (спая) двух разнородных металлов или полупроводников (термопары). Напряжение термоЭДС (Eтэдс) прямо пропорционально коэффициенту Зеебека б и разнице температур ДT между горячей Th и холодной Tc сторонами (спаями) термоэлектрического модуля (рисунок 1).
Рисунок 1. Схематическое представление эффекта Зеебека на примере спая термоэлектрических элементов n- и p-типа [1]
Для увеличения получаемых электрической мощности и напряжения термопары соединяют последовательно, при этом они образуют термобатарею, или термоэлектрический модуль, графическое изображение которого представлено на рисунках 2 и 3.
Рисунок 2. Чертеж термоэлектрического генераторного модуля [1]
Рисунок 3. Термоэлектрический генераторный модуль в разрезе [1]
автономный электроснабжение термоэлектрический зеебек
Разность температур между горячей и холодной стороной модуля Зеебека может достигать 70 °C.
Надо понимать, что эффективность термоэлектрического модуля Пельтье (для осуществления эффекта Зеебека) зависит от разницы температур, создаваемых на разных участках - чем больше разница температур, тем выше эффективность.
Предлагаемые нами полуметаллы (висмут, сурьма) и особенно полупроводниковые материалы позволяют получить значительно более высокую чувствительность, чем металлы - до 1000 мкВ/К.
Обосновывая принцип работы термоэлектрического генераторного модуля, мы приходим к его схематическому изображению в действительности и установке для работы (рисунок 4).
Рисунок 4. Схематическое изображение
Используя данную схему, мы проектируем две системы для поддержания разницы температур (рисунок 4) - одна на поверхности обеспечивает одну температуру (среднесуточная температура зимой в средней полосе России -200С, летом +200С), другую помещаем ниже точки промерзания (1,6 м), где средняя температура колеблется от 2,6 до 3,6 0С. С помощью проводников данные системы связываются с модулями Зеебека. Единственное, что хочется здесь добавить это то, что потребуется теплоизоляция проводника, выходящего на поверхность (см. рисунок 5).
Рисунок 5 - Схематическое изображение расположения термоэлектрической генераторной установки
В результате всего вышесказанного, нами предлагается следующее проектное решение устройства автономного электроснабжения на основе элементов Зеебека (рисунок 6).
Рисунок 6. Проектное решение устройства автономного электроснабжения на основе элементов Зеебека
Таким образом, не возникает дополнительных вопросов при освоении земель, удаленных от «цивилизации», если уже 21 век. Не придется протягивать отдельную линию электропередачи для обеспечения жизнедеятельности целого жилого дома.
Данный исследовательский проект нашел практическое применение эффекта Зеебека в создании устройства для автономного электроснабжения на примере жилого здания. Предлагаемое техническое решение устройства автономного электроснабжения на основе эффекта Зеебека позволяет выработать требуемую электрическую энергию без дополнительных затрат, система устройства дешевая, не требует затрат энергии и других видов топлива, проста, доступна, эффективна.
Список литературы
Шостаковский, П. Термоэлектрические источники альтернативного электропитания. / П. Шостаковский. // Новые технологии. - 2010. № 12. - С. 131-138.
Кропотова Н.А. Аналитический обзор аналогов автономного электроснабжения. // NovaInfo.Ru, 2017. - №58, - Т. 4. - С. 88-93.Баукин, В.Е. Оптимизация параметров термоэлектрических генераторов большой мощности / В.Е. Баукин, А.П. Вялов, И.А. Гершберг, Г.К. Муранов и др. // Термоэлектрики и их применение. Доклады VIII Межгосударственного семинара (ноябрь 2002 г.). СПб: ФТИ, 2002.
Тахистов, Ф.Ю. Оптимизация параметров термоэлектрического генераторного модуля с учетом эффективности теплообмена на сторонах модуля. // Доклады XI Межгосударственного семинара (ноябрь 2008 г.). СПб: ФТИ, 2008.
Пучков П.В. Магнитожидкостное уплотнение подшипника качения. / П.В. Пучков, А.В. Топоров, Н.А. Кропотова, И.А. Легкова. // Сборник научных трудов по материалам Международной научно-практической конференции «Наука и образование в социокультурном пространстве современного общества». В 3-х частях. - Смоленск. 2016. С. 33-35.
Разумов А.А. Оценка потребления количества теплоты в бакелизаторах при изготовлении абразивных изделий на бакелитовой связке. Технологические приемы экономии энергии при термообработке. / А.А. Разумов, Н.А. Кропотова. // Сборник статей по материалам III всероссийской научно-практической конференции с международным участием «Пожарная безопасность: проблемы и перспективы». ИВИ ГПС МЧС России. - Иваново, 2012. С. 312-314.
Киселев В.В. К вопросу защиты металлоконструкций от теплового потока при пожаре. / В.В. Киселев, Н.А. Кропотова, А.А. Покровский, А.Н. Мальцев, И.А. Легкова. // Сборник научных трудов по материалам Международной научно-практической конференции «Наука 21 века: открытия, инновации, технологии». 2016. С. 75-76.
Крылов Е.Н. Расчет селективности при нитровании алкилбензолов в трифторуксусной кислоте. / Е.Н. Крылов, Н.А. Жирова. //
Известия высших учебных заведений. Серия: Химия и химическая технология. - Иваново, 2007. Т. 50. № 1. С. 10-15.
Размещено на Allbest.ru
...Подобные документы
Немецкий физик Томас Иоганн Зеебек - первооткрыватель явления термоэлектричества. Открытие термоэлектрического эффекта Зеебека как результат опыта Эрстеда по воздействию постоянного электрического тока на магнитную стрелку с изменением источника тока.
реферат [244,9 K], добавлен 26.06.2013Открытие, объяснение эффекта Пельтье. Схема опыта для измерения тепла Пельтье. Использование полупроводниковых структур в термоэлектрических модулях. Структура модуля Пельтье. Внешний вид кулера с модулем Пельтье. Особенности эксплуатации модулей Пельтье.
курсовая работа [499,8 K], добавлен 08.11.2009Цель и задачи разработки опытной теплонасосной установки с автономным электроснабжением. Теплофизические параметры объекта; блок-схема устройства автономного электроснабжения; выбор и обоснование преобразователя. Составление математической модели ТНУ.
дипломная работа [1,8 M], добавлен 16.05.2012Актуальность применения и преимущества альтернативной энергетики. Варианты электроснабжения жилого дома (дизельные электрические агрегаты, микроГЭС, ветроэлектрическая установка), их эффективность. Выбор электрооборудования и молниезащита объекта.
дипломная работа [2,2 M], добавлен 20.12.2015Природные ресурсы, используемые в энергетике. Выбор типа и расчет количества аккумуляторных батарей для системы автономного электроснабжения. Расчет фотоэлектрических модулей нагрузок. Электроснабжение автономного объекта с помощью солнечных панелей.
дипломная работа [6,9 M], добавлен 27.10.2011История возникновения элементов системы бесперебойного электроснабжения, их общая характеристика и критерии оценки энергетической эффективности. Внутреннее устройство данной системы и принцип ее действия. Направления и перспективы дальнейшего развития.
реферат [840,8 K], добавлен 22.01.2015Понятие потенциометрического эффекта и его применение в технике. Эквивалентная схема потенциометрического устройства. Измерение физических величин на основе потенциометрического эффекта. Датчики, построенные на основании потенциометрического эффекта.
контрольная работа [674,6 K], добавлен 18.12.2010Проведение расчетов электрических нагрузок, компенсирующего устройства, элементов электроснабжения (силовой шкаф, магнитный пускатель, предохранитель), токов короткого замыкания, заземления. Определение мероприятий по организации безопасности труда.
курсовая работа [102,2 K], добавлен 25.02.2010Суть производства и потребителей электрической энергии. План расположения электрического оборудования цеха. Расчет компенсирующего устройства и трансформаторов. Подсчет токов короткого замыкания и проверка элементов в характерной линии электроснабжения.
курсовая работа [374,1 K], добавлен 12.06.2021Электрические расчеты элементов системы электроснабжения объекта нефтегазового комплекса. Выбор синхронных двигателей, трансформаторов, кабеля. Построение эпюр напряжения. Изучение основных характеристик и электрических нагрузок компрессорной станции.
практическая работа [939,9 K], добавлен 26.05.2013Основные требования к системам электроснабжения. Описание автоматизированного участка. Расчет электрических нагрузок. Выбор числа и мощности цеховых трансформаторов, компенсирующих устройств. Расчет релейной защиты. Проверка элементов цеховой сети.
курсовая работа [778,1 K], добавлен 24.03.2012Автоматическая защита воздушных кабельных линий и систем электроснабжения от многофазных и однофазных замыканий, устройства сигнализации. Расчет токов КЗ, схема электроснабжения. Дифференциальная и газовая защита трансформатора, АД от замыканий на землю.
курсовая работа [6,6 M], добавлен 23.08.2012Определение расчетных силовых электрических нагрузок. Выбор схемы электроснабжения предприятия, мощности силовых трансформаторов. Разработка схемы электроснабжения и сетевых элементов на примере ремонтно-механического цеха. Проверка защитных аппаратов.
курсовая работа [579,4 K], добавлен 26.01.2015Описание электрического оборудования и технологического процесса цеха и завода в целом. Расчет электрических нагрузок завода, выбор трансформатора и компенсирующего устройства. Расчет и выбор элементов электроснабжения. Расчет токов короткого замыкания.
дипломная работа [286,7 K], добавлен 17.03.2010Выбор типа схемы электроснабжения и величины питающих напряжений. Выбор числа и мощности силовых трансформаторов подстанции. Описание принципа работы схемы насосного агрегата. Построение системы планово-предупредительного ремонта электрооборудования.
дипломная работа [231,4 K], добавлен 07.06.2022Характеристика пьезоэлектрического эффекта. Изучение кристаллической структуры эффекта: модельное рассмотрение, деформации кристаллов. Физический механизм обратного пьезоэлектрического эффекта. Свойства пьезоэлектрических кристаллов. Применение эффекта.
курсовая работа [718,8 K], добавлен 09.12.2010Проектирование электроснабжения шахты, которое осуществляется глубоким вводом от подстанции ПС 110/ 6/6,6 "Костромовская", с трансформаторами мощностью 10000 кВА. Расчет схемы электроснабжения напряжением 3000 В. Охрана труда и промышленная безопасность.
контрольная работа [64,8 K], добавлен 04.10.2010Анализ существующей системы электроснабжения и вариантов ее модернизации или реконструкции, разработка технического задания. Определение расчетных нагрузок потребителей, выбор числа и мощности силовых трансформаторов. Выбор элементов электроснабжения.
дипломная работа [12,8 M], добавлен 02.05.2010Определение электрических нагрузок в зависимости от стадии проектирования и места расположения расчетного узла. Выбор питающих напряжений распределительных сетей, схемы электроснабжения. Расчет токов короткого замыкания. Релейная защита и автоматика.
дипломная работа [243,0 K], добавлен 12.02.2014Техническая характеристика принципиальной схемы системы тягового электроснабжения переменного тока 2х25 кВ: принцип устройства, векторная диаграмма, преимущества и недостатки. Питание потребителей электричества от тяговой подстанции железной дороги.
контрольная работа [30,8 K], добавлен 13.10.2010