Государственные стандарты и проблемы контроля качества электроэнергии
Разработка информационно-управляющих систем предприятий электроэнергетики. Диагностика отклонений напряжения и частоты сети от эталонных значений. Использование многофункциональных измерительных приборов для сбора информации о качестве электроэнергии.
Рубрика | Физика и энергетика |
Вид | статья |
Язык | русский |
Дата добавления | 30.07.2018 |
Размер файла | 47,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://allbest.ru
Московский государственный технический университет
им. Н.Э. Баумана
Кафедра информатики и систем управления
Государственные стандарты и проблемы контроля качества электроэнергии
Хорунжина Кристина Сергеевна- магистрант,
направление: компьютерные системы и сети
г. Москва
В связи с развитием рыночных отношений в электроэнергетике электроэнергию следует рассматривать не только как физическое явление, но и как товар, который должен соответствовать определённому качеству и требованиям рынка. Федеральный закон «Об электроэнергетике» определяет ответственность энергосбытовых организаций и поставщиков электроэнергии перед потребителями за надёжность обеспечения их электрической энергией и её качество в соответствии с техническими регламентами и иными обязательными требованиями [1]. Именно поэтому обеспечение бесперебойной работы сети контроль ее качества является важной задачей инженеров электроотделов. Рассмотрим существующий ГОСТ для стандартизации параметров электроэнергии, изучим список показателей качества электроэнергии (ПКЭ), их нормировочные значения, познакомимся с существующими способами передачи ПКЭ на станции мониторинга его качества.
В России показатели и нормы качества электрической энергии в электрических сетях систем электроснабжения общего назначения переменного трёхфазного и однофазного тока частотой 50 Гц в точках, к которым присоединяются электрические сети или электроустановки потребителей устанавливаются Межгосударственным стандартом ГОСТ 32144-2013 «Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения» (от 22 июля 2013 г.).
Старые стандарты часто не позволяли нормально требовать качества питания в сети от поставщиков электроэнергии. Во-первых, стандарты по электричеству были ориентированы на старую бытовую технику, а не на текущую цифровую с новыми блоками питания и иностранными требования к питанию. Во-вторых, новый ГОСТ стал ближе и понятней потребителям. В-третьих, он стал жёстче, что для потребителей лучше. Выделим некоторые из основных отличий между старыми и новым стандартом:
-- В отличие от ГОСТ 13109-97 в ГОСТ Р 32144-2013 процедура проведения контроля производится на основе ГОСТ Р 51317.4.30-2008 и ГОСТ Р 51317.4.7-2008, что принципиально важно, т.к. при использовании в совокупности этих стандартов создается единая система требований к ведению контроля КЭ.
-- В новом стандарте ужесточены требования к интервалам усреднения показателей КЭ. Например, при отклонение частоты - интервал усреднения составляет 10 секунд вместо 20 секунд в старом.
-- В ГОСТ 32144-2013 введены интергармонические составляющие напряжения.
-- В стандарте 2013 года добавлены таблицы классификации провалов напряжения, прерываний напряжения и перенапряжений.
-- В соответствии с ГОСТ Р 51317.4.30-2008 непосредственно в сам ГОСТ Р 32144-2013 введено понятие маркирования данных для следующих категорий событий: отклонение частоты, медленные изменения напряжения, фликер, несимметрия напряжений, гармонические составляющие напряжения.
-- Важным отличием старого и нового стандартов является основа, на которой они были сформированы. ГОСТ 13109-97 создавался с использованием положений первых советских стандартов данной отрасли контроля, в то время как ГОСТ Р 32144-2013 был разработан уже на базе современных мировых стандартов [2], [3].
Настоящий стандарт устанавливает показатели и нормы качества электрической энергии (КЭ) в точках передачи электрической энергии пользователям электрических сетей низкого, среднего и высокого напряжения систем электроснабжения общего назначения переменного тока частотой 50 Гц.
Необходимо выбрать применяемые статистические индексы КЭ, с которыми будут сравниваться результаты измерений. Эти сведения будут полезны для определения продолжительности измерений, пороговых значений и порядка статистической обработки результатов измерений. Номенклатура измеряемых величин зависит, в основном, от целей проведения мониторинга, стандартов, применяемых при оценке соответствия, а также от других факторов. В настоящем стандарте приняты следующие ПКЭ и их обозначения:
- номинальное значение частоты электропитания, Гц;
?f - отклонение частоты, Гц;
- номинальное напряжение электропитания, В, кВ;
- согласованное напряжение электропитания, В, кВ;
- напряжение, равное номинальному или согласованному напряжению электропитания, В, кВ;
? - отрицательное отклонение напряжения электропитания, %;
? - положительное отклонение напряжения электропитания, %;
- значение основной гармонической составляющей напряжения, В, кВ;
- коэффициент n-ой гармонической составляющей напряжения, %;
- суммарный коэффициент гармонических составляющих напряжения, %;
- коэффициент несимметрии напряжений по обратной последовательности, %;
- коэффициент несимметрии напряжений по нулевой последовательности, %;
?t - длительность провала напряжения, с; ?пр - длительность прерывания напряжения, с; n - номер гармонической составляющей напряжения.
Методы измерения показателей КЭ, описанные в данном ГОСТ32144, установлены в ГОСТ 30804.4.30 и ГОСТ 30804.4.7. Обратимся к ним и создадим базу нормировочных диапазонов для каждого из вышеописанных параметров электросети [3].
В задаче мониторинга ПКЭ большое значение имеет точность измерений и их совпадения с эталонными значениями, которые установлены стандартом, поэтому необходимо учитывать классы характеристик процесса измерения.
Согласно ГОСТ30804.430 для каждого измеряемого показателя КЭ устанавливается три класса - A, S и В. Для каждого класса определены методы измерений и соответствующие требования к характеристикам средств измерений (СИ).
Класс А. Данный класс применяют, если необходимо проведение точных измерений, например, при проверке соответствия стандартам, устанавливающим нормы КЭ, например, при выполнении условий договоров, предусматривающих возможность разрешения спорных вопросов путем измерений. Любые измерения показателя КЭ, проведенные двумя различными СИ, соответствующими требованиям класса А, должны при измерении одних и тех же сигналов обеспечивать получение воспроизводимых результатов с установленной для данного показателя неопределенностью.
Класс S. Данный класс применяют при проведении обследований и оценке КЭ с использованием статистических методов, в том числе при ограниченной номенклатуре показателей. Хотя интервалы времени измерений показателей КЭ для классов S и А одинаковы, требования к характеристикам процесса измерения класса S снижены.
Класс В. Данный класс установлен для того, чтобы избежать признания СИ многих существующих типов устаревшими. Класс В не имеет практического интереса и не рекомендуется для вновь разрабатываемых СИ, поэтому в дальнейшем будем уделять внимание первым двум классам.
Для классов приняты следующие обозначения: A ("advanced") - «повышенного типа»; S ("survey") - «для наблюдений». Класс В ("basic") - «начальный», не рекомендован для СИ новых типов, так как может быть исключен в следующем издании настоящего стандарта [4].
Как уже отмечалось очень важным вопросом данной предметной области является соблюдение стандартов. После проведения большой исследовательской работы и изучения ГОСТ, устанавливающих нормы применительно к ПКЭ , было принято решение на основе ГОСТ32144-2013 предложить нормировку ПКЭ. Вначале рассмотрим причину возможности возникновения помех в электросети и перечень параметров на которые эти самые изменения влияют.
Изменения характеристик напряжения электропитания в точке передачи электрической энергии пользователю электрической сети, относящихся к частоте, значениям, форме напряжения и симметрии напряжений в трехфазных системах электроснабжения, подразделяют на две категории - продолжительные изменения характеристик напряжения и случайные события.
Продолжительные изменения характеристик напряжения электропитания представляют собой длительные отклонения характеристик напряжения от номинальных значений и обусловлены, в основном, изменениями нагрузки или влиянием нелинейных нагрузок.
Случайные события представляют собой внезапные и значительные изменения формы напряжения, приводящие к отклонению его параметров от номинальных. Данные изменения напряжения, как правило, вызываются непредсказуемыми событиями (например, повреждениями оборудования пользователя электрической сети) или внешними воздействиями (например, погодными условиями или действиями стороны, не являющейся пользователем электрической сети).
Применительно к продолжительным изменениям характеристик напряжения электропитания, относящихся к частоте, значениям, форме напряжения и симметрии напряжений в трехфазных системах, в настоящем стандарте установлены показатели и нормы КЭ [3]. Соберем все влияющие на входной электрический сигнал величины, которые могут оказать неблагоприятное воздействие на ПКЭ [5], [6].
Класс А для характеристик процесса измерения устанавливает нормы для точных измерений и содержит в себе более жесткие требования для оценки ПКЭ, поэтому для реализации функции анализа значений параметров лучше руководствоваться именно его установленными значениями.
Как правило. Место, где показатели качества электроэнергии собираются, и место, где они обрабатываются, находятся в разных местах. Это расстояние может быть настолько велико, что организация передачи этих данных ложиться на интернет ресурсы.
На электростанциях устанавливают многофункциональные измерительные приборы, предназначенные для сбора информации о качестве электросети, данные загружаются на сервер, где через специальные приложения на точках обработки информации специалисты в электроэнергетики занимаются анализом пришедших ПКЭ.
Таблица 1. Сводная таблица ПКЭ с нормировочным диапазоном по ГОСТ32144
№ |
ПКЭ |
Класс |
Нормировочные диапазоны |
|||
1 |
Частота |
А |
Диапазон измерений |
Неопределенность |
||
42,5-57,5 / 51 - 69 Гц |
± 0,01 Гц |
|||||
S |
42,5-57,5 / 51 - 69 Гц |
± 0,01 Гц |
||||
2 |
Напряжение |
А |
(10 - 150) % U din |
|||
S |
(10 - 120) % U din |
|||||
3 |
Фликер |
A |
0,2 - 10 |
|||
S |
0,4 - 4 |
|||||
4 |
Провалы напряжения перенапряжения |
и |
A |
± 0,02 % U din |
||
S |
± 1 % U din |
|||||
5 |
Прерывания напряжения |
A |
U rms(1) + Urms(1/2) |
|||
S |
U rms(1) + Urms(1/2) |
|||||
6 |
Несимметрия напряжения |
A |
± 0,15 % |
|||
S |
± 0,3 % |
|||||
7 |
Гармоники напряжения |
A |
10% - 200% |
|||
S |
10% - 100% |
|||||
8 |
Интергармоники напряжения |
A |
10% - 200% |
|||
S |
Не установлено |
|||||
9 |
Напряжения сигналов электрической сети |
в |
А |
Диапазон измерений |
Неопределенность |
|
0% - 1% |
Не установлено |
|||||
1% - 3% |
± 0,15 % U din |
|||||
3% - 15% |
± 5 % U din |
|||||
S |
Не установлено |
|||||
10 |
Установившееся отклонение U В СЭ частотой 50 Гц |
А |
± 0,2 % U din |
|||
S |
± 0,5 % U din |
Передачу информации на сервер верхнего уровня можно организовать множеством способов, но наибольший интерес сейчас представляет протокол передачи МЭК 60870-5-104-2004. Настоящий стандарт из серии ГОСТ Р МЭК 870-5 распространяется на устройства и системы телемеханики с передачей данных последовательными двоичными кодами для контроля и управления территориально распределенными процессами. Данный протокол мощный инструмент для передачи информация, и может передавать более 100 параметров ПКЭ [7].
Попробуем в данной статье сопоставить протокол передачи МЭК 104 и государственный стандарт ГОСТ 32144. В силу того что данный протокол передачи оперирует весьма большим объемом информации привести весь список параметров из него крайне неудобно. Поэтому ниже приведена небольшая выписка из данного стандарта с демонстрацией соответствий с государственным стандартом, отталкиваясь от которых можно задать нормировочный диапазон параметрам.
эталонный электроэнергетика напряжение частота
Таблица 2. Список параметров пришедших по МЭК 870-5-104 c установкой нормирочных значений ПКЭ согласно ГОСТ32144
с |
Адре |
Параметр качества электроэнергии |
Номер ПКЭ из таблицы 1 |
|
1 |
Fa, частота напряжения фазы А |
1 |
||
2 |
Fb, частота напряжения фазы B |
1 |
||
3 |
Fc, частота напряжения фазы C |
1 |
||
4 |
Ua, напряжение фазы А |
2 |
||
5 |
Ub, напряжение фазы B |
2 |
||
6 |
Uc, напряжение фазы C |
2 |
||
22 |
Частота сети |
1 |
||
0 |
1120 |
Коэфф-т несимметрии U по обратной последовательности |
6 |
|
1 |
1120 |
Коэфф-т несимметрии U по нулевой последовательности |
6 |
|
4 |
1150 |
Установившееся отклонение междуфазного напряжения AB |
10 |
|
4 |
1150 |
Установившееся отклонение междуфазного напряжения BC |
10 |
Всем списком передаваемых параметров можно ознакомится в национальном стандарте Российской Федерации, в разделе устройства и системы телемеханики, части 5, раздел 104 и убедиться в колоссальном объеме параметров передаваемых с помощью данного протокола. В свою очередь ГОСТ 32144 не охватывает весь спектр возможных передаваемых параметров, и как следствие не декларирует их нормировочный диапазон, поэтому создание соответствия списка параметров ПКЭ согласно ГОСТ с данными протокола является актуальной и трудоемкой задачей.
Данные действия могут стать хорошим подспорьем при создании и организации связи пользовательских приложений, создаваемых для обработки и мониторинга показателей качества электроэнергии, с сервером верхнего уровня, взаимодействующим с электростанциями. Тем самым вы наглядно можете увидеть, как планируется нормировка показателей качества электросети в программах мониторинга качества электроэнергии на основе актуальных государственных стандартов и новых протоколов передачи информации по сети.
Литература
1. Качество электрической энергии. [Электронный ресурс], 2016. Режим доступа: https://ru.wikipedia.org/wiki/Качество_электрической_энергии/ (дата обращения: 13.09.2016).
2. Электрическая энергия. Совместимость технических средств электромагнитная. Нормы качества электрической энергии в системах электроснабжения общего назначения. ГОСТ 13109-97. Введ. 199901-01. М.: Стандартинформ, 2006.
3. Нормы качества электрической энергии в системах электроснабжения общего назначения. ГОСТ Р 32144-2013. Введ. 2014-07-01. М.: Стандартинформ, 2014.
4. Открытая база ГОСТов. [Электронный ресурс], 2016. Режим доступа: http://standartgost.ru/ (дата обращения: 03.11.2016).
5. Совместимость технических средств электромагнитная. Фликерметр. Функциональные и конструктивные требования. ГОСТ Р 51317.4.15-2012 (МЭК 61000-4-15:2010). Введ. 2013-01-01. М.: Стандартинформ, 2014.
6. Электромагнитная совместимость. Часть 2. Электромагнитная обстановка. Раздел 4. ГОСТ Р 51317.2.4-2000 (МЭК 61000-2-4:2002). Введ. 2002-01-01. М.: Стандартинформ, 2014.
7. Устройства и системы телемеханики. Часть 5. Протоколы передачи. Раздел 104. Доступ к сети для ГОСТ Р МЭК 870-5-101 с использованием стандартных транспортных профилей. ГОСТ Р МЭК 60870-5-104-2004. Введ. 2005-07-01. М.: Стандартинформ, 2006.
Аннотация
Государственные стандарты и проблемы контроля качества электроэнергии. Хорунжина Кристина Сергеевна- магистрант, направление: компьютерные системы и сети, кафедра информатики и систем управления, Московский государственный технический университет им. Н. Э. Баумана, г. Москва
В данной статье представлена информация по современному государственному стандарту оценки качества электроэнергии, рассмотрена проблема комплексной оценки электросети, а также предложена организация нормировки показателей качества электроэнергии, что систематизирует и показывает их отклонения от эталонных значений.
Это улучшит их диагностику и скорость реагирования на неполадки, что актуально для сферы автоматизации подстанций и электростанций, в качестве повышения эффективности обработки показателей качества электроэнергии. В результате исследования было получено законченное решение, которое можно внедрить в информационно-управляющие системы предприятий электроэнергетики.
Ключевые слова: электроэнергия, напряжений, частота, фликер, протокол, мониторинг, эталонное значение.
Abstract
State standards and quality control of power problems. Horunzhina K.
This article provides information on the current state standard of evaluation of power quality, the problem of a complex estimation of power, as well as the proposed organization of the normalization power quality that organizes and displays them deviations from the reference values. This will improve their diagnosis and speed of response to the problem, which is important for the scope of substation automation and power plants, as the increase of efficiency of processing power quality. As a result of the study was to get a complete solution that can be implemented in the information management system of electric power companies.
Keywords: electricity, voltage, frequency, flicker, protocol, monitoring, reference value.
Размещено на Allbest.ru
...Подобные документы
Разработка методики и внедрение модели единой автоматизированной системы контроля качества электроэнергии (АСККЭ) в регионе на напряжение от 0,4 кВ до 220 кВ с одновременным и непрерывным контролем и управлением показателей качества электроэнергии (ПКЭ).
автореферат [2,6 M], добавлен 07.09.2010Показатели качества электроэнергии. Причины, вызывающие отклонения параметров сети от номинальных значений. Отклонение напряжения и его колебания. Отклонение фактической частоты переменного напряжения. Несинусоидальность формы кривой напряжения и тока.
контрольная работа [153,4 K], добавлен 13.07.2013Автоматизированная информационно-измерительная система "Телеучет". Автоматизированный коммерческий учет электроэнергии субъектов оптового рынка электроэнергии. Состав технических средств. Розничный рынок электроэнергии. Тарифы на электрическую энергию.
курсовая работа [676,6 K], добавлен 31.05.2013Краткий обзор наиболее распространенных видов приборов учета и различных способов автоматизированного контроля и учета электроэнергии. Состав и содержание основных стадий проектирования системы автоматизированной системы контроля и учета электроэнергии.
отчет по практике [35,5 K], добавлен 24.06.2015Исследование особенностей применения трансформаторов тока и напряжения. Изучение схемы подключения приборов и реле к вторичным обмоткам. Измерение показателей качества электроэнергии. Расчетные счетчики активной и реактивной энергии трехфазного тока.
презентация [2,0 M], добавлен 23.11.2014Общие сведения по коллективным (общедомовым) приборам учета электроэнергии, их наладка и эксплуатация. Инструкционно-техническая карта на монтаж приборов учета электроэнергии. Охрана труда при работе с счетчиками на электростанциях и подстанциях.
курсовая работа [26,7 K], добавлен 09.12.2014История рождения энергетики. Виды электростанций и их характеристика: тепловая и гидроэлектрическая. Альтернативные источники энергии. Передача электроэнергии и трансформаторы. Особенности использования электроэнергетики в производстве, науке и быту.
презентация [51,7 K], добавлен 18.01.2011Характеристика электрифицируемого района и потребителей электроэнергии. Выбор конструкции, номинального напряжения линий сети, количества и мощности силовых трансформаторов. Электробаланс предприятия, себестоимость передачи и распределения электроэнергии.
курсовая работа [110,4 K], добавлен 24.07.2012Разработка алгоритма и программы, реализующей расчет нагрузочных потерь активной мощности и электроэнергии. Использование среднеквадратического тока линии. Учет параметров П-образной схемы замещения. Определение суммарных годовых потерь электроэнергии.
курсовая работа [3,4 M], добавлен 28.08.2013Разработка структурной схемы выдачи электроэнергии. Расчет токов короткого замыкания. Выбор токоведущих частей и сборных шин, контрольно-измерительных приборов, типов релейной защиты, измерительных трансформаторов и средств защиты от перенапряжений.
курсовая работа [647,0 K], добавлен 20.03.2015Традиционные методы производства электроэнергии. Электростанции, использующие энергию течений. Приливные, волновые, геотермальные и солнечные электростанции. Способы получения электроэнергии. Проблемы развития альтернативных источников электроэнергии.
презентация [2,5 M], добавлен 21.04.2015Построение сети энергоснабжения. Прохождение тока по линиям сети и потери электроэнергии. Трансформаторные подстанции потребителей. Сооружение распределительных пунктов. Расчет проводов по потерям электроэнергии. Несоблюдение норм потери напряжения.
курсовая работа [199,8 K], добавлен 07.06.2011Структура электрических сетей, их режимные характеристики. Методика расчета потерь электроэнергии. Общая характеристика мероприятий по снижению потерь электроэнергии и определение их эффективности. Зависимость потерь электроэнергии от напряжения.
дипломная работа [2,0 M], добавлен 18.04.2012Проблема защиты электрооборудования от некачественного напряжения в сети. Показатели качества электроэнергии. Виды реле защиты. Разработка трёхфазного импульсного источника питания, вырабатывающего постоянные напряжения. Расчет узлов и блока прибора.
дипломная работа [450,4 K], добавлен 22.07.2014Передача электроэнергии от электростанции к потребителям как одна из задач энергетики. Эффективность передачи электроэнергии на расстояние. Тенденция к увеличению напряжения как к главному средству повышения пропускной способности линии электропередач.
реферат [21,3 K], добавлен 19.01.2014Составление схемы замещения электрической сети и расчет её параметров. Определение технических потерь и их структуры в элементах сети по методу средних нагрузок. Вычисление показателей развёрнутого баланса на основе показаний счётчиков электроэнергии.
контрольная работа [221,2 K], добавлен 13.12.2013Способ хищения электроэнергии "Ноль" для однофазных и трехфазных счетчиков. Способ хищения электроэнергии "Генератор": детали, конструкция, наладка. Способ хищения электроэнергии "Фаза розетка". Меры по обнаружению и предотвращению хищения электроэнергии.
реферат [1,3 M], добавлен 09.11.2010Развитие рынка электроэнергии на основе экономического метода управления, условия его эффективности и современное состояние. Разработка структурной схемы устройства. Выбор измерительных и промежуточных преобразователей. Оценка и определение его точности.
курсовая работа [62,6 K], добавлен 15.11.2014Выбор оптимального варианта конфигурации электрической сети и разработка проекта электроснабжения населённых пунктов от крупного источника электроэнергии. Расчет напряжения сети, подбор трансформаторов, проводов и кабелей. Экономическое обоснование сети.
курсовая работа [2,2 M], добавлен 20.10.2014Определение потери мощности, электроэнергии и напряжения в кабельной сети. Коэффициенты загрузки трансформаторов, верхнего предела экономически целесообразной загрузки. Удельные затраты на потери электроэнергии. Номинальная мощность трансформатора.
курсовая работа [92,1 K], добавлен 17.01.2014