Исследование свободных и вынужденных колебаний стержневой системы, содержащей нанообъект, на основе теории С.П. Тимошенко
Система координат и действующие нагрузки. Разработка теоретических методов определения упругих характеристик нанообъектов на основе теории ученого С.П. Тимошенко. Уравнения равновесия малого элемента балки. Частотное уравнение в теории С.П. Тимошенко.
Рубрика | Физика и энергетика |
Вид | автореферат |
Язык | русский |
Дата добавления | 31.07.2018 |
Размер файла | 210,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
АВТОРЕФЕРАТ
диссертации на соискание ученой степени кандидата физико-математических наук
Исследование свободных и вынужденных колебаний стержневой системы, содержащей нанообъект, на основе теории С.П. Тимошенко
01.02.04 - Механика деформируемого твердого тела.
Тулкина А.Н.
Санкт-Петербург 2011
Работа выполнена на кафедре теории упругости математико-механического факультета Санкт-Петербургского государственного университета.
Научный руководитель: доцент ПАВИЛАЙНЕН Вольдемар Яковлевич
Официальные оппоненты: доктор физико-математических наук, профессор
ФИЛИППОВ Сергей Борисович
(Санкт-Петербургский государственный университет)
кандидат физико-математических наук, доцент ПОМЫТКИН Сергей Павлович
(Санкт-Петербургский государственный технологический университет растительных полимеров)
Ведущая организация: Институт проблем машиноведения РАН
ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ
Актуальность темы. В настоящее время является актуальной задача определения механических характеристик нанообъектов, представляющих собой микроразмерные стержни. При экспериментальных исследованиях наблюдается несоответствие между значениями модулей упругости, полученных в результате экспериментов на микро - и макроуровнях (работы Кривцова А.М., Морозова Н.Ф., Быкова Д.Л., Коновалова Д.Н. и др.) В макромеханике один из наиболее эффективных методов определения упругих модулей основан на измерении собственных частот исследуемого объекта.
Исследование свойств нанообъектов в настоящее время осуществляется с помощью зондовой микроскопии. Для этих целей широко используется атомный силовой микроскоп (АСМ). Важнейшим элементом АСМ является сканирующий зонд - кантилевер.
Имеет место принципиальное отличие условий экспериментов с нанообъектами от условий экспериментов с макрообъектами. При исследовании макрообъектов размеры измерительных приборов (например, тензодатчиков) существенно меньше размеров исследуемого объекта. При изучении объектов наноразмерного масштабного уровня используется микроразмерное оборудование.
Поэтому большое значение приобретает задача анализа взаимодействия нанообъектов с измерительными устройствами (в частности, с кантилевером АСМ). Ее решению посвящен ряд работ, основанных на применении классической теории колебаний стержней Бернулли - Эйлера.
Цель работы состоит в разработке теоретических методов определения упругих характеристик нанообъектов на основе теории С.П. Тимошенко, сравнение результатов с результатами, полученными по теории Бернулли - Эйлера.
Научная новизна. Задача о колебаниях системы кантилевер - исследуемый нанообъект, решение которой построено на основе классической теории Бернулли - Эйлера, опубликована в статье профессора Ивановой Е.А., профессора Индейцева Д.А., академика Морозова Н.Ф., «К вопросу об определении параметров жесткости нанообъектов», СПб: Журнал технической физики, 2006, том 76, вып.10. стр. 74-80.
В предлагаемой диссертации эта задача решается на основе теории С.П. Тимошенко. Научная новизна содержащихся в диссертации результатов состоит в учете угла поворота поперечного сечения и деформаций сдвига, как в уравнениях равновесия, так и в соотношениях упругости.
В работе построены частотные уравнения в задачах о свободных колебаниях стержневой системы кантилевер - исследуемый нанообъект и получены их точные решения, дающие спектры частот и формы свободных колебаний. Далее рассматривается задача о вынужденных колебаниях, вызванных кинематическим возбуждением на защемленной опоре кантилевера. Даны точные решения для форм колебаний, изгибающих моментов и поперечных сил в элементах системы. В этой же задаче получены условия динамического гашения колебаний исследуемого объекта.
Результаты, выносимые на защиту.
1) Выбор разрешающей системы уравнений свободных и вынужденных колебаний двух сопряженных консольных стержней с одинаковыми операторами в левых частях позволил получить рациональные аналитические решения.
2) Построены частотные уравнения в задаче о свободных колебаниях стержневой системы кантилевер - исследуемый нанообъект и получены их точные решения, дающие спектры частот и формы свободных колебаний на основе теорий Бернулли - Эйлера и Тимошенко. Дан анализ спектров собственных частот системы.
3) Рассмотрена задача о вынужденных колебаниях для обеих теорий, вызванных кинематическим возбуждением на защемленной опоре кантилевера. Даны точные решения для форм колебаний, изгибающих моментов и поперечных сил в элементах системы. В этой же задаче получены условия динамического гашения колебаний исследуемого объекта. Дан анализ спектров частот системы при вынужденных колебаниях, полученных при варьировании исходных геометрических параметров элементов системы.
Теоретическая ценность работы заключается в построении уравнений свободных и вынужденных колебаний системы кантилевер - исследуемый нанообъект и получении точных решений для уравнений частот, форм свободных и вынужденных колебаний, а также для величины прогибов, изгибающих моментов и поперечных сил.
Получены числовые результаты и дан их анализ. При этом варьируются геометрические параметры исследуемого нанообъекта, что по результатам расчета показывает влияние изменения указанных выше параметров исследуемого нанообъекта на количественную и качественную характеристику картины колебаний. В этом состоит практическая ценность работы.
Апробация работы. Основные результаты диссертации докладывались и обсуждались на семинарах кафедрах теории упругости и теоретической механики математико-механического факультета СПбГУ, на объединенном семинаре СПбГУ и ПГУПС "Компьютерные методы в механике сплошной среды" (Computer Methods in Continuum Mechanics) в Санкт-Петербургском государственном университете путей сообщения (СПбГУПС), на международной конференции по механики «V Поляховские чтения» (СПбГУ, 2009).
Публикации. По теме диссертации опубликовано четыре работы. Список приведен в конце автореферата. Работа [1] опубликована в журнале из перечня ВАК. Работы [2] - [4] опубликованы в соавторстве. В работах [2] - [4] научному руководителю принадлежат общая постановка задачи и указания на идеи исследования, а их детальная реализация принадлежит диссертанту.
Структура и объем диссертации. Работа состоит из введения, трех глав, заключения и приложения. Общий объем диссертации составляет - 110 страниц, включая 35 рисунков, 18 таблиц и список цитированной литературы из 26 наименований.
СОДЕРЖАНИЕ РАБОТЫ
Во введении содержится краткий обзор литературы по теме диссертации, сформулирована цель работы.
Отмечено, что основной моделью балки, используемой в расчетах, является предложенная в XVIII веке модель балки Бернулли - Эйлера. Она довольно проста и обеспечивает достаточную точность решения простых инженерных задач, и поэтому она используется наиболее часто. Однако опыты показывают, что частоты, полученные в рамках теории Бернулли - Эйлера, несколько завышены.
Другая теория, уточняющая теорию Бернулли - Эйлера, за счет учета влияния в уравнениях равновесия и соотношениях упругости инерционных нагрузок при повороте элемента поперечного сечения и деформации сдвига получила название теории Тимошенко.
Задача, рассматриваемая в диссертации, представляет практический интерес. Рассмотренная в работе система стержней является механической моделью сканирующий зонд (кантилевер) - исследуемый нанообъект, простейшая схема которой представлена на Рис.1.
Рис. 1. Механическая модель системы кантилевер - исследуемый объект.
В предлагаемой диссертации эта задача решается на основе теории С.П. Тимошенко, в которой учитываются деформации сдвига, как в уравнениях равновесия, так и в соотношениях упругости.
В настоящее время актуальной является задача экспериментального определения механических характеристик нанообъектов. Несоответствие между значениями модулей упругости, полученных в результате экспериментов на микро - и макроуровнях отмечали многие исследователи (Кривцов А.М., Морозов Н.Ф., Иванова Е.А., Дунаевский М.С.). В макромеханике один из наиболее эффективных методов определения упругих модулей основан на измерении собственных частот исследуемого объекта.
Исследование свойств нанообъектов в настоящее время осуществляется с помощью зондовой микроскопии. Для этих целей широко используется атомный силовой микроскоп (АСМ). Важнейшим элементом АСМ является сканирующий зонд - кантилевер. Стандартные промышленные кантилеверы имеют габаритные размеры порядка 200 х 35 х 1,5 мкм и резонансные частоты порядка 10 - 400 кГц; радиус кривизны конца иглы меняется в интервале 10 - 50 нм. Игла (пирамидка) устанавливается на свободном конце измерительной консоли. Пирамидки изготавливают из кремния или из более прочного материала - нитрида кремния (Si3N4).
При измерении частот исследуемого объекта с помощью АСМ возникает перераспределение собственных частот колебаний системы кантилевер - исследуемый нанообъект между собственными частотами каждого из них в отдельности. Как было отмечено в работе профессора Ивановой Е.А., профессора Индейцева Д.А., академика Морозова Н.Ф., характер смещения спектра существенно зависит от расстояния между острием иглы сканирующего зонда и поверхностью нанообъекта, так как это равносильно изменению «жесткости» связи полевого взаимодействия.
Это указывает на принципиальное отличие условий для экспериментов с нанообъектами от условий экспериментов с макрообъектами. При исследовании макрообъектов размеры измерительных приборов (например, тензодатчиков) существенно меньше размеров исследуемого объекта. При изучении объектов наноразмерного масштабного уровня используется микроразмерное оборудование. Поэтому большое значение приобретает задача анализа взаимодействия нанообъектов с измерительными приборами. В работе Ивановой Е.А., Индейцева Д.А., академика Морозова Н.Ф. эта проблема обсуждается применительно к задаче экспериментального определения упругих характеристик нанообъектов с помощью АСМ и дана реализация известной в классической теории методики определения резонансных и «антирезонансных» частот. Была предложена механическая модель системы кантилевер - исследуемый объект (Рис. 1.), в которой полевое взаимодействие между кантилевором и исследуемым нанообъектом моделируется линейной пружиной с жесткостью С, это соответствует линеаризации потенциала Леннарда - Джонса в области статического равновесного состояния. Кантилевер вдали от исследуемого объекта занимает горизонтальное положение, при приближении к объекту кантилевер начинает деформироваться, но на определенном расстоянии от него снова занимает горизонтальное положение - это и есть статическое равновесие. В отсчетной конфигурации стержни считаются недеформированными, а пружина - ненапряженной.
В работе профессора Ивановой Е.А., профессора Индейцева Д.А., академика Морозова Н.Ф. было отмечено, что в окрестности положения статического равновесия жесткость связи между кантилевером и исследуемым объектом достаточно большая, то есть C >> C1, где C - жесткость кантилевера, C1 - жесткость связи. По этой причине определить жесткость связи С из статических экспериментов крайне трудно - разность между перемещением конца кантилевера и исследуемого объекта оказывается в пределах погрешности измерений. При жесткости связи C ~ C1 или C << C1 проводить измерения сложно, так как эта область находится на неустойчивом участке зависимости сила - перемещение.
На основании приведенного обзора в настоящее время актуальными и требующими дальнейшего исследования является разработка теоретической базы для решения задач о свободных и вынужденных колебаниях системы стержней. Решение первой задачи будет ответом на вопрос определения упругих модулей исследуемого нанобъекта по частотам системы, а решение второй задачи позволит разработать условия эксперимента, при которых из спектра системы можно выделить собственные частоты нанообъекта. Эти задачи были решены на основе теории Бернулли - Эйлера в работе профессора Ивановой Е.А., профессора Индейцева Д.А., академика Морозова Н.Ф., «К вопросу об определении параметров жесткости нанообъектов», СПб: Журнал технической физики, 2006, том 76, вып.10. стр. 74-80.
В предлагаемой диссертации на основе теории С.П. Тимошенко построены частотные уравнения в задачах о свободных колебаниях стержневой системы кантилевер - исследуемый нанообъект и получены их точные решения, дающие спектры частот и формы свободных колебаний. Далее рассматривается задача о вынужденных колебаниях, вызванных кинематическим возбуждением на защемленной опоре кантилевера. Даны точные решения для форм колебаний, изгибающих моментов и поперечных сил в элементах системы. В этой же задаче получены условия динамического гашения колебаний исследуемого объекта. Полученные решения сравниваются с результатами, полученными на основе теории Бернулли - Эйлера.
В первой главе дан расчет частот и форм свободных и вынужденных колебаний консольного стержня на основе теорий Бернулли - Эйлера и Тимошенко. Полученное решение иллюстрируется числовыми примерами, графиками и таблицами. Дан анализ полученных результатов.
В первом параграфе рассматривается задача о свободных колебаниях балки. Рассмотрим балку длины l с защемленным левым и свободным правым концом, ось которой лежит в вертикальной плоскости симметрии xOy (Рис. 2) и направлена по оси Ox. Положительные направления изгибающего момента M и поперечной силы Q в сечениях x и x+dx, а также распределенной на оси инерционной поперечной нагрузки q(x,t) и распределенного инерционного момента m(x,t) при повороте элемента показаны на Рис. 2.
нагрузка балка тимошенко уравнение
Рис. 2. Система координат, действующие нагрузки.
Уравнения равновесия малого элемента балки имеют вид
, ,
отличающийся от уравнений С.П. Тимошенко только знаками некоторых слагаемых вследствие принятого противоположного направления оси Oy (Рис. 2). Если y = y(x,t) - уравнение изогнутой оси балки, то q (x,t) и m (x,t) определяется формулами
в которых с, F, J - соответственно плотность материала стержня, площадь и момент инерции его поперечного сечения.
Приводится решение в теории Бернулли - Эйлера в кратком изложении, что необходимо для его обобщения на дальнейшие задачи и сравнения получаемых результатов.
Уравнение равновесия в перемещениях
,
решение которого должно удовлетворять граничным условиям
Решая эту задачу, находим частотное уравнение, известное в литературе (С.П.Тимошенко; Пономарев С.Д., Бидерман В.Л. и др.)
.(1)
Значения k из частотного уравнения можно найти численным методом, после чего определяется спектр собственных круговых частот по формуле:
где i - номера корней частотного уравнения (1) и соответствующей собственной частоты.
Частотное уравнение на основе теории Тимошенко. При учете инерционных нагрузок и деформаций сдвига уравнения равновесия элемента балки, сохраняют свой вид, а угол поворота поперечного сечения в теории С.П. Тимошенко записывается в виде суммы:
,
где г - угол сдвига, а ш - угол поворота, определяющий величину изгибающего момента (касательные напряжения, соответствующие углу г, момента не вызывают).
Получена система уравнений равновесия в перемещениях с искомыми функциями y(x,t) и ш(x,t)
, , (2)
решение которой должно удовлетворять граничным условиям:
Кинематические граничные условия формулируются для перемещений X и углов повора Ш, это обеспечивает выполнение закона сохранения энергии и теоремы взаимности работ, обоснование этого приводится в работе В.И. Сливкера. Решая систему (2), получаем частотное уравнение
. (3)
Здесь для краткости введены обозначения
(4)
Нетрудно показать, что частотное уравнение, полученное в теории Тимошенко, в частном случае неучета деформаций сдвига и угла поворота поперечного сечения переходит в соответствующее частотное Бернулли - Эйлера (1).
Во втором параграфе рассматриваются численные примеры. Исследуется влияние варьирования геометрических параметров стержня на спектры собственных частот. Полученные результаты согласуются с результатами в публикациях по теории колебаний, где отмечено, что в модели балки Тимошенко вклад от учета деформаций сдвига и инерции поворота поперечного сечения площади возрастает с ростом высоты h и уменьшением длины l (Босаков С.В., Щедько Н.С.; Павилайнен В.Я., Тулкина А.Н.).
Во второй главе исследуются свободные колебания сопряженной системы двух стержней. Сначала рассматривается система стержней, соединенных шарнирно, а потом в нее вводится упругое сопряжение. Получены частотные уравнения системы, уравнения для прогибов, изгибающих моментов и поперечных сил для каждого элемента системы на основе теорий Бернулли - Эйлера и Тимошенко. Полученное решение иллюстрируется числовыми примерами, графиками и таблицами. Дан анализ полученных результатов.
В первом параграфе исследуется система двух шарнирно сопряженных стержней. Правый конец первого стержня x1 = l1 шарнирно соединен с правым концом второго стержня x2 = l2, противоположные концы обоих стержней жестко заделаны (Рис. 3). Положительные направления изгибающего момента Mi и поперечной силы Qi в сечениях xi и xi+dxi, а также распределенной на оси инерционной поперечной нагрузки qi (xi,t) и распределенного инерционного момента mi (xi,t) при повороте элемента показаны на Рис. 3, где i - номер стержня (i =1,2), щ - собственная круговая частота колебаний системы.
Рис. 3. Система координат и действующие нагрузки.
Уравнения равновесия малого элемента i - го стержня (неизменные для всех рассматриваемых в дальнейшем задач) имеют вид
(7)
отличающийся от уравнений С.П. Тимошенко только знаками некоторых слагаемых вследствие принятого противоположного направления осей Oy (Рис. 3).
Нагрузки qi (x i,t) и mi (x i,t) определяются формулами
в которых yi = yi(x i,t) - уравнение изогнутой оси i - го стержня, сi, Fi, Ji - соответственно плотность материала стержня, площадь и момент инерции его поперечного сечения.
Решение задачи на основе теории Бернулли - Эйлера. Из уравнений равновесия (7) с учетом распределенной нагрузки qi (x i,t), после применения метода Фурье и перехода к безразмерной координате о = xi/li (0 ? о ? 1), получаем уравнение колебаний
, где введено обозначение .
Общие решения уравнений имеют вид
и должны удовлетворять граничным условиям
и условиям кинематического и статического сопряжения на концах стержней о = 1 соответственно
, . (9)
После определения из граничных условий всех коэффициентов через А1, А2 из условий сопряжения (9) получаем систему для составления частотного уравнения, которое после преобразования примет вид
(10)
В частном случае одинаковых стержней (k1 = k2 = k) частотное уравнение (10) распадается на два частотных уравнения
,
первое из которых соответствует частотному уравнению (1) в задаче о свободных колебаниях одного стержня, один конец которого жестко заделан, а второй свободен, а второе - частотному уравнению в задаче о свободных колебаниях одного стержня, один конец которого жестко заделан, а второй шарнирно оперт (Пономарев С.Д., Бидерман В.Л. и др.).
После определения коэффициента А2 через произвольный коэффициент А1 из любого условия сопряжения стержней, получены расчетные формулы для амплитудных значений прогибов стержней, изгибающих моментов и поперечных сил.
Решение задачи на основе теории Тимошенко. При учете инерционных нагрузок и деформаций сдвига уравнения равновесия элемента стержня сохраняют свой вид (7), а угол поворота поперечного сечения в теории Тимошенко записывается в виде суммы:
,
где гi - угол сдвига i-го стержня, а шi - угол поворота, определяющий величину изгибающего момента (касательные напряжения, соответствующие углу гi, момента не вызывают). Тогда связь момента Mi и угла поворота шi представима формулой
,
а соотношение между поперечной силой Qi и углом сдвига гi, полученное по формуле Журавского, будет иметь вид
.
Здесь Gi - модуль сдвига i - го стержня, n - коэффициент формы поперечного сечения, имеющий значение n = 3/2 в случае прямоугольника (Гастев В.А.). Знак «минус» в формуле необходим для соблюдения равенства знаков в левой и правой частях формулы, так как при положительных значениях поперечной силы Qi (Рис. 3) угол сдвига в плоскости x iO iy i будет отрицательным. Такой же вид имеет аналогичная формула в работе (Пономарев С.Д., Бидерман В.Л. и др.).
Система уравнений равновесия в перемещениях с искомыми функциями yi(xi,t) и шi(xi,t)
Исключая из этой системы функцию шi(xi,t), получаем разрешающее уравнение относительно функции yi(xi,t), а исключая yi(xi,t) - разрешающее уравнение относительно шi(xi,t).
,
.
Операторы для функций yi(xi,t) и шi(xi,t) в левых частях одинаковые, что позволяет выбрать одинаковую общую фундаментальную систему решений
Общие решения
должны удовлетворять граничным условиям
и условиям кинематического и статического сопряжения (6).
Связь между коэффициентами для стержней определяется из второго уравнения равновесия (12) и граничных условий, после этого из условий сопряжения получаем систему для составления частотного уравнения, которое окончательно имеет вид
где для краткости введены обозначения,
,
,
,
,
,
,
(16)
В частном случае одинаковых стержней (E1 = E2 = E, г1 = д1, г2 = д2) частотное уравнение (15) распадается на два частотных уравнения,
,
,
первое из которых соответствует частотному уравнению (3) в задаче о свободных колебаниях одного стержня, у которого один конец защемлен, а второй свободен, а второе - частотному уравнению в задаче о свободных колебаниях одного стержня, у которого один конец защемлен, а второй шарнирно оперт.
Нетрудно показать, что уравнение, полученное на основе теории Тимошенко в частном случае неучета деформаций сдвига и угла поворота поперечного сечения, переходит в уравнение, полученное на основе теории Бернулли - Эйлера.
Из кинематического условия сопряжения определена связь между коэффициентами А1 и А2 и получены расчетные формулы для амплитудных значений прогибов стержней, изгибающих моментов и поперечных сил.
В параграфе 2 получены спектры собственных частот и формы свободных колебаний системы двух шарнирно сопряженных упругим элементом стержней.
Введем в ранее рассмотренную систему упругий элемент с коэффициентом податливости с, как показано на Рис.4.
Рис. 4. Система координат и действующие нагрузки.
Исходные соотношения, уравнения равновесия, граничные условия остаются такими же, как в предыдущей задаче, рассмотренной в предыдущем параграфе, и, следовательно, решения тоже. Условия сопряжения в данной задаче имеют вид
, , (23)
где - удлинение (сжатие) упругого элемента, - растягивающая (сжимающая) сила в упругом элементе, с - коэффициент податливости упругого элемента.
Решение строится аналогично Главе 2, §1. В теории Бернулли - Эйлера частотное уравнение после некоторых преобразований окончательно примет вид
В теории С.П. Тимошенко получаем частотное уравнение
В частном случае только шарнирного соединения, без упругого элемента (с = 0) частотные уравнения, полученные в этой задаче, переходят в уравнения, полученные в предыдущем параграфе.
В частном случае неучета деформаций сдвига и угла поворота поперечного сечения частотное уравнение (25), полученные на основе теории Тимошенко, переходит в уравнение (24), полученное по теории Бернулли - Эйлера.
В §3 рассмотрены примеры расчета спектров собственных частот и форм свободных колебаний системы стержней, дан анализ влияния коэффициента податливости на спектры собственных частот. Показано в таблицах и на графиках, что чем жестче связь между кантилевером и исследуемым объектом, тем ниже собственная частота колебаний системы.
Глава 3 посвящена исследованию вынужденных колебаний сопряженной системы двух стержней. На основе теорий Бернулли - Эйлера и Тимошенко получены уравнения для прогибов, изгибающих моментов и поперечных сил для каждого элемента системы. Найдены условия динамического гашения колебаний. Решения иллюстрируется числовыми примерами, графиками и таблицами. Дан анализ полученных результатов.
В §1 рассматривается задача о вынужденных колебаниях системы двух шарнирно сопряженных стержней. Правый конец первого стержня x1 = l1 шарнирно соединен с правым концом второго стержня x2 = l2, левые концы обоих стержней жестко заделаны. Левый, жестко защемленный, конец первого стержня совершает вертикальные колебания в плоскости x1O1y1 по закону y1(0,t) = A0sinщt, где y1 = y1(x,t) - уравнение колебаний изогнутой оси первого стержня, A0 и щ - заданные амплитуда и частота вынужденных колебаний.
Положительные направления изгибающего момента Mi и поперечной силы Qi в сечениях xi и xi+dxi, а также распределенной на оси инерционной поперечной нагрузки qi (xi,t) и распределенного инерционного момента mi (xi,t) при повороте элемента показаны на Рис. 2.
В теории Бернулли - Эйлера поставленная задача должна удовлетворять граничным условиям
, ,
а в теории Тимошенко
, .
Условия кинематического и статического сопряжения на правых концах стержней сохраняют вид (9) и дают систему для определения оставшихся неизвестных коэффициентов А1 и А2.
Получены расчетные формулы для прогибов стержней, изгибающих моментов и поперечных сил в теориях Бернулли - Эйлера и Тимошенко.
В §2 рассмотрены вынужденные колебания системы двух шарнирно сопряженных упругим элементом стержней. Введем в ранее рассмотренную систему упругий элемент с коэффициентом податливости с, как показано на Рис. 4.
Уравнения равновесия (7), граничные условия и условия сопряжения (23) остаются такими же, как и в предыдущей задаче.
Нетрудно показать, что полученные расчетные формулы в §1-§2 в частном случае неучета деформаций сдвига и угла поворота поперечного сечения переходят в расчетные формулы в теории Бернулли - Эйлера.
В §3 исследуется эффект динамического демпфирования колебаний. Если вынуждающую частоту колебаний системы щ сделать равной частоте собственных колебаний исследуемого объекта при закрепленном правом конце кантилевера, тогда колебания правого конца первого стержня будут полностью устранены, а второй стержень будет колебаться (Пономарев С.Д., Бидерман В.Л., и др.).
Чтобы найти соответствующие частоты необходимо решить уравнение
.
Решение задачи на основе теории Бернулли - Эйлера дает
Решение этого уравнения дает частоты, при которых амплитуда колебаний правого конца первого стержня обращается в нуль. Структура уравнения такова, что оно распадается на два, первое из которых после преобразований имеет вид
, (27)
и зависит только от параметров первого стержня, а второе уравнение выглядит так
, (28)
зависит только от параметров второго стержня и представляет наибольший интерес, так как второй стержень является моделью исследуемого нанообъекта. Уравнения (27) и (28) в точности до обозначений совпадают с уравнениями, полученными в работе Ивановой Е.А., Индейцева Д.А., Морозова Н.Ф., «К вопросу об определении параметров жесткости нанообъектов» При этом уравнение (28) в точности совпадает с уравнением, определяющим собственные частоты стержня, имеющего упругое опирание.
Решение задачи на основе теории Тимошенко дает
Как и в классическом случае, уравнение (29) распадается на два уравнения, одно из которых зависит только от параметров первого стержня и не представляет интереса
(30)
а второе только от параметров второго стержня
Именно уравнение (31) определяет «антирезонансные» частоты, при которых происходит динамическое гашение колебаний правого конца кантилевера. Оно в точности совпадает с уравнением, определяющим собственные частоты стержня, имеющего упругое опирание.
Нетрудно показать, что при переходе к теории Бернулли - Эйлера уравнения (30), (31) переходят в (27), (28).
В §4. даны примеры расчета. Найдены антирезонансные частоты, построены формы колебаний для этих частот, исследовано поведение форм колебаний при варьировании задаваемых частот.
Заключение содержит основные результаты, выносимые на защиту:
1) Выбор разрешающей системы уравнений свободных и вынужденных колебаний двух сопряженных консольных стержней с одинаковыми операторами в левых частях позволил получить рациональные аналитические выражения для построения решений, вывода расчетных формул и получения частотных уравнений.
2) В работе построены частотные уравнения в задаче о свободных колебаниях стержневой системы кантилевер - исследуемый нанообъект и получены их точные решения, дающие спектры частот и формы свободных колебаний на основе теорий Бернулли - Эйлера и Тимошенко.
3) Дан анализ спектров частот системы при свободных и вынужденных колебаниях, полученных при варьировании исходных геометрических параметров элементов системы.
4) Рассмотрена задача о вынужденных колебаниях для обеих теорий, вызванных кинематическим возбуждением на защемленной опоре кантилевера. Даны точные решения для форм колебаний, изгибающих моментов и поперечных сил в элементах системы. В этой же задаче получены условия динамического гашения колебаний.
5) Полученные решения в диссертации на основе теорий Тимошенко и Бернулли - Эйлера, сравниваются с результатами, полученными на основе теории Бернулли - Эйлера в работе проф. Ивановой Е.А., проф. Индейцева Д.А., акад. Морозова Н.Ф.
6) Все полученные решения в диссертации иллюстрируются числовыми примерами, результаты которых представлены в таблицах и на графиках.
Приложение состоит их двух параграфов, в которых рассмотрены вспомогательные задачи на основе теорий Бернулли - Эйлера и Тимошенко. В первом параграфе рассматривается задача о свободных колебаниях консольного стержня, один конец которого жестко заделан, а второй шарнирно оперт. Во втором параграфе исследована задача о свободных колебаниях консольного стержня, один конец которого жестко заделан, а второй имеет упругое опирание.
Найдены спектры собственных частот, построены формы свободных колебаний, полученные решения иллюстрируются примером расчета.
ПУБЛИКАЦИИ АВТОРА ПО ТЕМЕ ДИССЕРТАЦИИ
Статья в журнале, рекомендованном ВАК:
1. Тулкина А.Н. Определение частот и форм колебаний стержневой системы, содержащей нанообъект, на основе теории С.П. Тимошенко. // «Вестник СПбГУ (Серия 1)», СПбГУ, 2011, март, Вып. №1, с. 144-154.
Другие публикации:
2. Павилайнен В.Я., Тулкина А.Н. Расчет частот и форм свободных колебаний консольной балки на основе теории С.П. Тимошенко. // Труды семинара «Компьютерные методы в механике сплошной среды» 2007-2008 гг., СПбГУ, СПбГУПС, 2008, с. 39-59.
3. Павилайнен В.Я., Тулкина А.Н. Исследование и расчет вынужденных колебаний консольных стержней на основе теории С.П. Тимошенко. // Труды семинара «Компьютерные методы в механике сплошной среды» 2008-2009 гг., СПбГУ, СПбГУПС, 2009, с. 17-34.
4. Павилайнен В.Я., Тулкина А.Н. Свободные и вынужденные колебания системы консольных стержней на основе теории С.П. Тимошенко. // Труды семинара «Компьютерные методы в механике сплошной среды» 2009-2010 гг., СПбГУ, СПбГУПС, 2010, с. 147-170.
Размещено на Allbest.ru
...Подобные документы
Применение расчетных формул для определения собственных частот и форм колебаний стержня (одномерное волновое уравнение) и колебаний балки с двумя шарнирными заделками. Использование теоретических значений первых восьми собственных частот колебаний.
контрольная работа [2,6 M], добавлен 05.07.2014Сложение взаимно перпендикулярных механических гармонических колебаний. Дифференциальное уравнение свободных затухающих колебаний и его решение; автоколебания. Дифференциальное уравнение вынужденных колебаний. Амплитуда и фаза колебаний; резонанс.
презентация [308,2 K], добавлен 28.06.2013Определение понятия свободных затухающих колебаний. Формулы расчета логарифмического декремента затухания и добротности колебательной системы. Представление дифференциального уравнения вынужденных колебаний пружинного маятника. Сущность явления резонанса.
презентация [95,5 K], добавлен 24.09.2013Математическая модель невозмущенного движения космических аппаратов. Уравнения, определяющие относительные движения тел-точек в барицентрической системе координат. Исследование системы уравнений с точки зрения теории невозмущенного кеплеровского движения.
презентация [191,8 K], добавлен 07.12.2015Законы изменения параметров свободных затухающих колебаний. Описание линейных систем дифференциальными уравнениями. Уравнение движения пружинного маятника. Графическое представление вынужденных колебаний. Резонанс и уравнение резонансной частоты.
презентация [95,6 K], добавлен 18.04.2013Понятие и физическая характеристика значений колебаний, определение их периодического значения. Параметры частоты, фазы и амплитуды свободных и вынужденных колебаний. Гармонический осциллятор и состав дифференциального уравнения гармонических колебаний.
презентация [364,2 K], добавлен 29.09.2013Аспекты теории динамической устойчивости упругих систем. Изгибная форма, возникающая в стержне при приложении к его торцу внезапной нагрузки. Описание динамических эффектов модельными уравнениями. Параметрическое приближение, учет "волны параметра".
статья [141,6 K], добавлен 14.02.2010Составление дифференциального уравнения колебаний механической системы с одной степенью свободы около положения устойчивого равновесия. Определение периода установившихся вынужденных колебаний, амплитудно-частотной и фазочастотной характеристики системы.
курсовая работа [687,7 K], добавлен 22.02.2012Законы и аксиомы динамики материальной точки, уравнения движения. Условие возникновения свободных и затухающих колебаний, их классификация. Динамика механической системы. Теорема об изменении количества движения. Элементы теории моментов инерции.
презентация [1,9 M], добавлен 28.09.2013Анализ уравнения движения математического маятника. Постановка прямого вычислительного эксперимента. Применение теории размерностей для поиска аналитического вида функции. Разработка программы с целью нахождения периода колебаний математического маятника.
реферат [125,4 K], добавлен 24.08.2015Теория напряженно-деформированного состояния в точке тела. Связь между напряженным и деформированным состоянием для упругих тел. Основные уравнения и типы задач теории упругости. Принцип возможных перемещений Лагранжа и возможных состояний Кастильяно.
реферат [956,3 K], добавлен 13.11.2011Свободные колебания осциллятора в отсутствие сопротивлений. Режим вынужденных колебаний, их возникновение. Схема для исследования свободных колебаний в линейной системе. Фазовая диаграмма колебательной системы при коэффициенте усиления источника.
лабораторная работа [440,9 K], добавлен 26.06.2015Определение механики, ее место среди других наук, подразделения механики. Развитие методов механики с XVIII в. до нашего времени. Механика в России и СССР. Современные проблемы теории колебаний, динамики твердого тела и теории устойчивости движения.
реферат [47,3 K], добавлен 19.06.2019Уравнения баланса тепла частиц. Броуновское движение. Уравнения Ланжевена и Фоккера-Планка. Основные положения линейной неравновесной термодинамики. Вывод соотношений взаимности Онсагера из теории флуктуаций. Электронный ветер. Ультраразреженные газы.
курсовая работа [293,3 K], добавлен 07.02.2016Исследование условий равновесия шара. Составление уравнений проекций всех сил, приложенных к шару. Построение силового треугольника. Определение равнодействующей распределенной нагрузки. Уравнения моментов всех сил системы относительно трёх осей.
контрольная работа [623,8 K], добавлен 18.02.2011Уравнение равновесия для стержней, направление сил, действующих на точку равновесия, в противоположную сторону. Построение графиков перемещения, ускорения точки, движущейся прямолинейно. Запись уравнения скорости на каждом участке представленного графика.
контрольная работа [5,2 M], добавлен 08.11.2010Вывод дифференциального уравнения движения с использованием теоремы об изменении кинетической энергии механической системы. Определение реакций внутренних связей. Уравнение динамики системы как математическое выражение принципа Даламбера-Лагранжа.
курсовая работа [477,8 K], добавлен 05.11.2011Опыт Майкельсона и крах представлений об эфире. Эксперименты, лежащие в основе специальной теории относительности. Астрономическая аберрация света. Эффект Доплера, связанный с волновыми движениями. Принцип относительности и преобразования Лоренца.
курсовая работа [214,7 K], добавлен 24.03.2013Особенности методов исследования технологических процессов: теоретические, экспериментальные, подобие. Общая характеристика теории подобия, его виды, расчет их некоторых параметров. Основные положения теории подобия. Специфика критериев подобия.
реферат [2,8 M], добавлен 06.06.2011Особенности определения давления газа на стенку сосуда с использованием второго закона Ньютона. Связь этой величины со средней кинетической энергией молекул и их концентрацией. Специфика схематичного вывода основного уравнения упрощенным методом.
презентация [316,6 K], добавлен 19.12.2013