Элементы квантовой физики атомов и молекул
Анализ состояния электрона. Квантовые числа и кратность вырождения. Распределение плотности вероятности. Спектральные линии атомов щелочных металлов. Расчет собственного момента импульса электрона. Оценка механического момента многоэлектронного атома.
Рубрика | Физика и энергетика |
Вид | реферат |
Язык | русский |
Дата добавления | 14.08.2018 |
Размер файла | 961,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Молекулярные спектры применяются для исследования строения и свойств молекул, используются в молекулярном спектральном анализе, лазерной спектроскопии, квантовой электронике и т.д.
9. Магнитный момент атома. Опыт Штерна и Герлаха
Орбитальный магнитный момент. В квантовой теории магнитный момент м и механический момент М атома следует заменить операторами и :
(46) |
Отсюда следует, что изучение свойств магнитного момента электрона сводится к изучению свойств операторов и . А так как операторы и , и отличаются друг от друга только постоянным множителем, то их свойства совершенно аналогичны: магнитный и механический моменты квантуются по одинаковым правилам.
В стационарном состоянии определенные значения могут иметь только модуль магнитного момента и одна из его проекций на произвольную ось Z. Имея в виду (46), а также (34) и (36), запишем собственные значения операторов и :
L = 0, 1, 2, ... |
(47) |
|
мLz = -мБ mL, mL = 0, ± 1, ± 2, …, ± L, |
(48) |
где мБ -- магнетон Бора: мБ = eћ/2mc. Он играет роль кванта магнитного момента (точнее его проекции мz).
Опыты Штерна и Герлаха. Наличие у атомов магнитных моментов и их квантование было доказано экспериментально Штерном и Герлахом (1921). В их опытах пучок атомов пропускался сквозь сильно неоднородное поперечное магнитное поле (рис. 10, а). Необходимая степень неоднородности поля достигалась с помощью специальной формы полюсных наконечников N и S электромагнита (рис. 10, б). После прохождения магнитного поля пучок атомов попадал на фотопластинку Р и оставлял на ней след.
Рис. 10.
Если атомы обладают магнитным моментом, то согласно электродинамике на них будет действовать сила, проекция которой на ось Z (см. рис. 10, б)
(49) |
где мz -- проекция магнитного момента атома на ось Z. Из этой формулы видно, что для получения необходимого эффекта при малых значениях мz нужно обеспечить достаточно большую неоднородность поля, т. е. ?Bz/?z. Это и достигалось с помощью указанной формы полюсных наконечников.
В отсутствие магнитного поля след пучка на фотопластинке Р имел вид одной полоски (z = 0). При включении же магнитного поля наблюдалось расщепление пучка (рис. 10, в), что являлось следствием квантования проекции магнитного момента мz в формуле (49): мz может принимать только ряд дискретных значений. В опытах обнаружилось также, что для разных атомов число компонент, на которые расщеплялся пучок, было или нечетным, или четным. Анализ полученных результатов показал, что нечетное число компонент возникает у атомов, обладающих только орбитальным механическим моментом ML, тогда магнитное поле снимает вырождение по L и число компонент (значений mL) будет равно 2L + 1, т. е. нечетным.
Если же момент атома является суммой орбитального и спинового, т. е. определяется квантовым числом J, то число компонент будет равно 2J+ 1, и в зависимости от того, полуцелым или целым будет значение J, число компонент будет соответственно четным или нечетным.
Спиновый магнитный момент. Зная степень неоднородности магнитного поля, т. е. дВг/дг, Штерн и Герлах по величине расщепления пучка на фотопластинке рассчитали значение проекции спинового магнитного момента на направление магнитного поля, мB. Выяснилось, что мB равен одному магнетону Бора. Этот результат приводит к гиромагнитному отношению вдвое превышающему гиромагнитное отношене для орбитальных моментов. В связи с этим говорят, что спин обладает удвоенным магнетизмом.
Итак, спиновый магнитный момент и его проекция на произвольную ось Z определяются как
(50) |
мSz = -2мБ ms, ms=S,S-1, …, -S. |
(51) |
При S = 1/2 ms = +1/2 и -1/2.
Принято говорить, что спиновый магнитный момент электрона равен одному магнетону Бора. Такая терминология обусловлена тем, что при измерении магнитного момента мы обычно измеряем его проекцию, а она как раз и равна одному мБ. Опыты Штерна и Герлаха явились еще одним убедительным доказательством наличия у электрона спина. Помимо этих опытов следует упомянуть и о так называемых магнитомеханических явлениях -- опытах Эйнштейна и де Хааса, а также опыте Барнетта. И в этих опытах было обнаружено, что гиромагнитное отношение спиновых моментов тоже вдвое больше отношения орбитальных.
Полный магнитный момент атома. Вследствие удвоенного магнетизма спина гиромагнитное отношение полных моментов м/MJ оказывается значительно более сложным. Оно зависит от квантовых чисел L, S и J. Соответствующий расчет, проводимый в квантовой теории, позволил найти магнитный момент м и его проекцию на ось Z:
(52) |
м z = - мБgmJ, mJ = J, J-1, …, -J, |
(53) |
где g -- множитель (или фактор) Ланде
В частности, в синглетных состояниях (S = 0) J = L, g = 1, и мы приходим к формулам (47) и (48). А при L = 0 (J = S, g = 2) -- к формулам (50) и (51).
9. Атом во внешнем магнитном поле. Эффект Зеемана
Расщепление в магнитном поле энергетических уравнений атомов, приводящее к расщеплению спектральных линий в спектрах, называют эффектом Зеемана.
Различают эффект Зеемана: нормальный (простой), когда каждая линия расщепляется на три компонента, и аномальный (сложный), когда каждая линия расщепляется на большее, чем три, число компонентов.
Эффект Зеемана характерен для атомов парамагнетиков, так как только эти атомы обладают отличным от нуля магнитным моментом и могут взаимодействовать с внешним магнитным полем.
Атом, обладающий магнитным моментом, приобретает в магнитном поле дополнительную энергию
?E = -мJBB, |
(54) |
где мJB -- проекция полного магнитного момента атома на направление поля В. Имея в виду формулу (53), запишем выражение для энергии каждого подуровня:
E = E0 + ?E = E0 + мБgBmJ , mJ = J, J-1, …, -J, |
(55) |
где Е0 -- энергия уровня в отсутствие магнитного поля.
Отсюда следует, что уровни с квантовым числом J расщепляются в магнитном поле на 2J + 1 равноотстоящих друг от друга подуровней, причем величина расщепления зависит от множителя Ланде g, т. е. интервалы дЕ между соседними подуровнями пропорциональны g: дЕ ? g. Таким образом, магнитное поле в результате расщепления уровней снимает вырождение по mJ.
Кроме этого, необходимо учесть, что возможны только такие переходы между подуровнями, принадлежащими разным уровням, при которых выполняются следующие правила отбора для квантового числа тJ:
?mJ = 0, ±1. |
(56) |
Если в (55) B = 0, то энергетический уровень определяется только первым членом, если В ? 0, то необходимо учитывать возможные значения mJ , а оно может принимать 2J + 1 значений. Это означает расщепление первоначального энергетического уровня на 2J+ 1 подуровней.
Теперь можно понять происхождение мультиплетов Зеемана. На рис. 11 рассмотрены возможные переходы в атоме водорода между состояниями р (l = 1)иs(l=0) для двух случаев:
когда В = 0 (внешнее магнитное поле отсутствует);
когда В ? 0.
В отсутствие поля наблюдается одна линия с частотой v0. В магнитном поле p-состояние расщепляется на три подуровня (при l = 1, ml, = 0, ± 1), с каждого из которых могут происходить переходы на уровень s, и каждый переход характеризуется своей частотой: v0 - ?v, v0, v0 + ?v. Следовательно, в спектре появляется триплет (наблюдается нормальный эффект Зеемана).
Рис. 11.
Не вдаваясь в подробности, отметим, что нормальный эффект Зеемана наблюдается в том случае, если исходные линии не обладают тонкой структурой (являются синглетами). Если исходные уровни обладают тонкой структурой, то в спектре появляется большее число компонентов и наблюдается аномальный эффект Зеемана.
Размещено на Allbest.ru
...Подобные документы
Правило интервалов Ланде. Кратность вырождения энергетических состояний. Нахождение термов электронных конфигураций. Возможные наборы состояний эквивалентных p-электронов. Правила отбора в приближении LS-связи. Степень вырождения состояний электрона.
презентация [108,0 K], добавлен 19.02.2014Состояние электрона в атоме, его описание набором независимых квантовых чисел. Определение энергетических уровней электрона в атоме с помощью главного квантового числа. Вероятность обнаружения электрона в разных частях атома. Понятие спина электрона.
презентация [313,7 K], добавлен 28.07.2015Стабильная, отрицательно заряженная элементарная частица, одна из основных структурных единиц вещества. Эксперимент по изучению катодных лучей и открытие электрона. Боровская модель атома. Открытие самопроизвольного распада атомов некоторых элементов.
презентация [143,8 K], добавлен 15.11.2011Открытие сложного строения атома - важнейший этап становления современной физики. В процессе создания количественной теории строения атома, объясняющей атомные системы, сформированы представления о свойствах микрочастиц, описанные квантовой механикой.
реферат [146,3 K], добавлен 05.01.2009Модели строения атома. Формы атомных орбиталей. Энергетические уровни атома. Атомная орбиталь как область вокруг ядра атома, в которой наиболее вероятно нахождение электрона. Понятие протона, нейтрона и электрона. Суть планетарной модели строения атома.
презентация [1,1 M], добавлен 12.09.2013Особенности определения энергии и волновых функций 3-го и 4-го стационарных состояний электрона в потенциальной яме. Порядок вычисления вероятности обнаружения электрона в каждом из секторов ямы. Понятие и сущность оператора Гамильтона в квантовой теории.
курсовая работа [262,7 K], добавлен 03.06.2010Кинетическая энергия электрона. Дейбролевская и комптоновская длина волны. Масса покоя электрона. Расстояние электрона от ядра в невозбужденном атоме водорода. Видимая область линий спектра атома водорода. Дефект массы и удельная энергия связи дейтерия.
контрольная работа [114,0 K], добавлен 12.06.2013Возникновение неклассических представлений в физике. Волновая природа электрона. Эксперимент Дэвиссона и Джермера (1927 г.). Особенности квантово-механического описания микромира. Матричная механика Гейзенберга. Электронное строение атомов и молекул.
презентация [198,3 K], добавлен 22.10.2013Определение импульса, полной и кинетической энергии электрона. Расчет плотности и молярной массы смеси. Уравнение состояния Менделеева-Клапейрона, описывающее поведение идеального газа. Коэффициент внутреннего трения воздуха (динамической вязкости).
контрольная работа [405,8 K], добавлен 22.07.2012Квантово-механическая картина строения атома. Квантовые числа. Пространственное квантование. Спин электрона. Суть опыта Штерна и Герлаха. Эффект Зеемана. Расщепление энергетических уровней в магнитном поле. Орбитальный магнитный момент. Проекция спина.
презентация [3,7 M], добавлен 07.03.2016Анализ всеобщего свойства движения веществ и материи. Способы определения квазиклассического магнитного момента электрона. Сущность, особенности и доказательство теории WAZA, ее вклад в развитие физики и естествознания. Парадоксы в теории П. Дирака.
доклад [137,8 K], добавлен 02.03.2010Принципы симметрии волновых функций. Использование принципа Паули для распределения электронов в атоме. Атомные орбитали и оболочки. Периодическая система элементов Менделеева. Основные формулы физики атомов и молекул. Источники рентгеновского излучения.
реферат [922,0 K], добавлен 21.03.2014Классическая модель строения атома. Понятие орбиты электрона. Набор возможных дискретных частот. Водородоподобные системы по Бору. Недостатки теории Бора. Значение квантовых чисел. Спектр излучения атомов. Ширина спектральных линий. Доплеровское уширение.
реферат [145,6 K], добавлен 14.01.2009Объединение изолированных атомов в кристалл. Схема локальных энергетических уровней электронов. Основные элементы зонной теории. Особенность состояний электронов в кристаллах. Уменьшение сопротивления металлов. Физические основы квантовой электроники.
контрольная работа [1,9 M], добавлен 09.01.2012Особенности электростатического взаимодействия между электронами в атомах. Уравнение полной потенциальной энергии электрона. Понятие и примеры электронных конфигураций атома. Расчет энергии состояний. Последовательность заполнения электронных оболочек.
презентация [110,8 K], добавлен 19.02.2014Электронное строение атомов переходных элементов. Физические свойства редкоземельных металлов, их применение. Решение уравнения Шредингера для кристалла. Современные методы расчета зонной структуры. Расчет электрона энергетического спектра неодима.
дипломная работа [1000,2 K], добавлен 27.08.2012Магнитные моменты электронов и атомов. Намагничивание материалов за счет токов, циркулирующих внутри атомов. Общий орбитальный момент атома в магнитном поле. Микроскопические плотности тока в намагниченном веществе. Направление вектора магнитной индукции.
презентация [2,3 M], добавлен 07.03.2016Понятие моментов импульса электронов и атомов. Нормальный и аномальный эффекты Зеемана. Цель и идея экспериментов Штерна–Герлаха. Правила отбора квантовых чисел атома. Механический, магнитный и полный моменты импульса атома. Атом в магнитном поле.
реферат [89,9 K], добавлен 02.02.2009Структура спектров испускания атомов щелочных металлов. Основные отличия схем уровней натрия и водородного атома. Характеристика рентгеновского излучения. Сравнительная характеристика Сплошной и дискретный спектр. Закон Мозли и эффект экранирования ядра.
реферат [171,5 K], добавлен 12.12.2009Возникновение гипотезы о том, что вещества состоят из большого числа атомов. Развитие конкретных представлений о строении атома по мере накопления физикой фактов о свойствах вещества. Выводы из опыта по рассеиванию альфа-частиц частиц Резерфорда.
презентация [797,7 K], добавлен 15.02.2015